Role of ERK1/2 signaling in cinnabarinic acid-driven stanniocalcin 2 mediated protection against alcohol-induced apoptosis

Nikhil Y. Patil¹, Iulia Rus¹, and Aditya D. Joshi¹*

¹Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117
Running Title: Role of ERK1/2 signaling in Stc2 mediated protection.

Corresponding Author: *Dr. Aditya D. Joshi, Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Ave., Oklahoma City, Oklahoma 73117, Tel: 405-271-6593 (Ext: 47471), E-mail: aditya-joshi@ouhsc.edu

Number of Pages: 38
Number of Tables: 0
Number of Figures: 8
Number of References: 62
Abstract word count: 199
Introduction word count: 599
Discussion word count: 1251

Abbreviations: AhR, aryl hydrocarbon receptor; Arnt, AhR nuclear translocator; CA, cinnabarinic acid; ER, endoplasmic reticulum; ERK1/2, extracellular signal-regulated kinases 1/2; MAPK, mitogen-activated protein kinase; Stc2, stanniocalcin 2; TCDD, dioxin, 2,3,7,8-tetrachlorodibenzo-p-dioxin; XRE, xenobiotic response element

Recommended Section: Cellular and Molecular
ABSTRACT

We have previously shown that a bona fide Aryl hydrocarbon Receptor (AhR) agonist, cinnabarinic acid (CA) protect against alcohol-induced hepatocyte apoptosis via activation of a novel AhR target gene, stanniocalcin 2 (Stc2). Stc2 translates to a secreted disulfide-linked hormone, STC2 known to function in cell development, calcium and phosphate regulation, angiogenesis, and anti-apoptosis – albeit the comprehensive mechanism by which CA-AhR-STC2 axis confers anti-apoptosis is yet to be characterized. In this study, using RNA interference library screening, downstream anti-apoptotic molecular signaling components involved in CA-induced STC2-mediated protection against ethanol-induced apoptosis were investigated. RNA interference library screening of kinases and phosphatases in Hepa1 cells, and subsequent pathway analysis identified mitogen-activated protein kinase (MAPK) signaling as a critical molecular pathway involved in CA-mediated protection. Specifically, phosphorylation of ERK1/2 was induced in response to CA treatment without alterations in p38 and JNK signaling pathways. Silencing Stc2 in Hepa1 cells and in vivo experiments performed in Stc2\(-/-\) (Stc2 knockout) mice – which failed to confer CA-mediated protection against ethanol-induced apoptosis – showed abrogation of ERK1/2 activation, underlining significance of ERK1/2 signaling in CA-STC2 mediated protection. In conclusion, activation of ERK1/2 signaling in CA-driven AhR-dependent Stc2-mediated protection represents a novel mechanism of protection against acute alcohol-induced apoptosis.
SIGNIFICANCE STATEMENT

We have previously shown role of stanniocalcin 2 (Stc2) in CA-mediated protection against alcohol-induced apoptosis. Here, using RNA interference library screening and subsequent in vivo studies, functional significance of ERK1/2 activation in CA-induced Stc2-mediated protection against acute ethanol-induced apoptosis was identified. This study is thus significant as it illustrates a comprehensive downstream mechanism by which CA-induced Stc2 protects against alcoholic liver disease.
INTRODUCTION

Binge alcohol intake is the most common form of excessive alcohol use and repeated episodes of binge drinking lead to spectrum of alcohol-related liver injuries including alcoholic fatty liver (hepatic steatosis), alcoholic steatohepatitis (hepatic steatosis with inflammation), and alcoholic hepatitis (O'Shea et al., 2010; Seitz et al., 2018). In acute ethanol-induced liver injury, hepatocytes are damaged due to oxidative stress, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction which manifests in the form of inflammation, apoptosis, necrosis, and metabolic changes (Ishii et al., 2003; Nagy et al., 2016; Subramaniyan et al., 2021). Several studies have investigated the link between hepatocyte apoptosis and alcohol-induced liver diseases which demonstrated that, compared to a healthy liver the rate of hepatocyte apoptosis is significantly higher in alcoholic liver diseases and it correlates with the severity of the disease (Benedetti et al., 1988; Zhou et al., 2001; Zhou et al., 2003; Ghosh Dastidar et al., 2018). Furthermore, preventing hepatocyte apoptosis has shown to alleviate liver injury (Wang et al., 2016; Zhu et al., 2017; Lee et al., 2019). Therefore, identifying the protective mechanisms against apoptosis can serve in developing therapeutic avenues targeting alcoholic liver diseases.

The aryl hydrocarbon receptor (AhR), known for its role in xenobiotic metabolism and hepatic homeostasis is highly expressed in the liver (Mimura and Fujii-Kuriyama, 2003; Savouret et al., 2003; Wu et al., 2007). In its inactivated form, AhR resides in the cytosol but ligand binding results in its translocation to nucleus, where AhR dimerizes with the AhR nuclear translocator (Arnt) and regulates transcription of various genes including those involved in phase I and II xenobiotic metabolism including cytochrome P450 1A1.
(Cyp1a1) (Reyes et al., 1992; Probst et al., 1993; Wright et al., 2017). Apart from prototypical exogenous AhR ligands of natural and anthropic origin, recent studies have identified plethora of endogenous agonists for AhR (Nguyen and Bradfield, 2008; Granados et al., 2022). Cinnabarinic acid (CA), a tryptophan metabolite of kynurenine pathway is a well-characterized AhR agonist, that does not activate classic AhR target gene Cyp1a1 but induced expression of a novel gene, stanniocalcin 2 (Stc2) in liver (Harper et al., 2013; Joshi et al., 2015b). CA-inducible AhR target, Stc2 translates to a secreted disulfide-linked hormone, STC2 known to function in cell growth, development, anti-apoptosis, calcium and phosphate regulation, and angiogenesis (Joshi, 2020). Our laboratory has previously reported that CA-induced AhR-dependent STC2 upregulation as well as direct STC2 overexpression by plasmid delivery protected isolated primary hepatocytes against apoptosis induced by ethanol (Joshi et al., 2015a). Furthermore, in vivo studies using mouse models of acute and chronic alcoholic liver disease showed CA mediated protection against ethanol-induced apoptosis, hepatic steatosis, and liver injury (Joshi et al., 2015a; Joshi et al., 2022). However, CA did not protect hepatocyte-specific AhR knockout mice livers against ethanol-induced apoptosis establishing that the CA-driven hepatoprotection was dependent on hepatic AhR (Joshi et al., 2015a). Recently, we demonstrated that in Stc2−/− (Stc2 knockout) mice, CA failed to protect against alcoholic liver injury and apoptosis in both acute and chronic models, whereas reintroduction of Stc2 in the liver using in vivo gene delivery restored cytoprotection against injury (Joshi et al., 2022). While these studies strongly indicate that CA-induced AhR-dependent protection against ethanol-induced apoptosis is contingent upon STC2
upregulation, the exact mechanism by which STC2 exert anti-apoptotic function is yet to be unraveled.

In the present study, we performed targeted high-throughput RNA interference library screening of kinases and phosphatases to identify anti-apoptotic genes and downstream pathways involved in CA-induced AhR-STC2 mediated protection against acute ethanol-stress. Current study identified significant role of ERK1/2 pathway in CA-driven STC2-mediated protection against acute alcoholic liver disease.
MATERIALS AND METHODS

Cell culture and in vitro treatments

A murine hepatoma cell line, Hepa1 (Hepa1c1c7) cells were cultured in alpha minimum essential medium (ThermoFisher Scientific, Waltham, MA), supplemented with 10% fetal bovine serum (FBS; R&D Biosystems, Minneapolis, MN) and 1% 100x penicillin-streptomycin solution (ThermoFisher Scientific). Cells were maintained at 37°C in a humidified 5% CO2 incubator. Cells were grown in 6-well plates at 90% confluence and treated with DMSO for 24 hours (Control), 30 μM CA dissolved in DMSO for 24 hours (CA), 100 mM ethanol for 24 hours (Ethanol), and 30 μM CA for 24 hours followed by 100 mM ethanol for another 24 hours (Ethanol + CA). For the studies involving RNA interference, Hepa1 cells were transfected with 50 nM Dharmacon SMARTpool ON-TARGETplus AhR, Stc2, and non-targeting (NT, scrambled) siRNAs using Metafectene FluoR (Biontex, Munchen, Germany) transfection reagent according to the manufacturer’s protocol. Twenty-four hours later, cells were treated with DMSO, 30 μM CA, 100 mM ethanol for 24 hours, and with 30 μM CA for 24 hours followed by 100 mM ethanol for another 24 hour. For ERK inhibition studies, Hepa1 cells were treated with DMSO (vehicle), 30 μM CA, or transfected with Stc2/pCMV-SPORT6 plasmid (Horizon Discovery) using Metafectene FluoR (Biontex, Munchen, Germany) for 24 hours, with or without 10 μM SCH772984 pre-treatment for 2 hours. Except control group, remaining groups were treated with 100 mM ethanol for additional 24 hr.

RNA interference library screening and pathway analysis
The Dharmacon ON-TARGETplus siRNA library for mouse protein kinases and phosphatases was sourced from Horizon Discovery. The library was composed of a mixture of 4 different sequences of siRNAs (SMARTpool) targeting each of the 714 protein kinase and 272 phosphatase genes, arrayed in 96-well plates. The siRNA libraries were re-suspended in Dharmacon 5x siRNA buffer (Horizon Discovery) according to the manufacturer’s instructions to make a stock concentration of 100 µM. Hepa1 cells of identical passage number were plated in an antibiotic-free medium in 96-well plates at a density of 10^4 cells/well. Cells were then transfected with gene-specific and non-targeting (NT, scrambled) siRNA at a final concentration of 50 nM for 24 hours using DharmaFECT 4 transfection reagent (Horizon Discovery) according to the manufacturer’s protocol. The cells were further treated with 30 µM CA dissolved in DMSO for 24 hours followed by 100 mM ethanol for another 24 hours. To account for the background luminescence, each plate had a no-cell control consisting of growth medium-only. A known apoptosis inducer, staurosporine (10 µM) was used as a positive control for each plate. Data were analyzed by subtracting luminescence values from the growth media-only control well from all other wells. Next, luminescence values of the silenced (specific kinases and phosphatases) and treated samples (siRNA + CA + ethanol) were normalized to the values of the non-silenced (non-targeting/scrambled siRNA control) and treated samples (NT-siRNA + CA + ethanol). Genes that when silenced showed higher apoptosis than NT-siRNA + CA + ethanol samples were considered as putative targets and were subjected to pathway analysis tools. The pathway enrichment analysis to decipher comprehensive and objective global network including direct and indirect interactions was performed using STRING, which
implements well-known, curated pathway databases including Gene Ontology (GO), Reactome, and KEGG (Szklarczyk et al., 2021).

Animals and *in vivo* treatments

Eight- to ten-week old wild-type (Stc2+/+) and Stc2 knockout (Stc2−/−) female mice (Zeiger et al., 2011; Joshi et al., 2022) were used in compliance with the guidelines of the Institutional Animal Care and Use Committee at the University of Oklahoma Health Sciences Center. The mice were given an acute alcohol treatment of 6 gm/kg (body weight) ethanol for 12 hours through oral gavage. The mice in the ‘Ethanol + CA’ group were pretreated with 12 mg/kg CA for 12 hours via intraperitoneal injections, following which ethanol was administered for another 12 hours. Twelve hours following the ethanol treatment, mice were euthanized and liver tissue was harvested. This model of acute alcohol induced apoptosis has been previously well-characterized (Zhou et al., 2001; Zhou et al., 2003; Joshi et al., 2015a; Joshi et al., 2022).

Histopathology

Livers from control, CA, ethanol, and ethanol + CA treatment groups were fixed with 10% neutral buffered formalin solution and submitted to the Histology Core Laboratory at the University of Oklahoma Health Sciences Center for paraffin embedding, sectioning and H&E staining.
RNA isolation and quantitative real time - polymerase chain reaction (qRT-PCR)

Cells were rinsed with PBS and total RNA was extracted using TRIzol reagent (Thermofisher Scientific) and quantified. First-strand cDNA was synthesized from 1 µg of RNA using the iScript cDNA Synthesis Kit (Bio-Rad, Hercules, CA). Quantitative RT-PCR was performed using the PowerUp SYBR Green Master Mix (ThermoFisher Scientific) and oligonucleotide primers for mouse Stc2 (forward 5’-GTGGTGTGATTGTGGAGATGAT-3’, reverse 5’-TCCACATAGGGCTCATGCAG-3’) on a StepOnePlus real time PCR system (ThermoFisher Scientific). Expression of each gene was normalized to mouse 18S ribosomal RNA (forward 5’-CTCAACACGGGAAACCTCAC-3’, reverse 5’-CGCTCCACCAACTAAGAAC-3’).

Caspase-3/7 apoptosis assay

Hepa1 cell lysates and liver tissue homogenates were subjected to apoptosis assays as previously described (Joshi et al., 2022). Apoptosis was measured using the ApoTox-Glo™ Triplex Assay (Promega, Madison, WI) following the manufacturer's instructions. In brief, for each well of the 96-well plate, 100 µl of Caspase-Glo® 3/7 reagent was added post treatment and incubated for 1 hour at room temperature. The luminescence generated by the cleavage of DEVD-peptide substrate by caspase 3/7 activity was recorded as a measure of apoptotic cell death on the Synergy 2 plate reader (Agilent, Santa Clara, CA).

Western blot analysis
Hepa1 cell lysates and liver homogenates were subjected to SDS-PAGE electrophoresis (Bio-Rad), followed by transfer to low-fluorescence PVDF membranes. The membranes were probed with antibodies against AhR (Enzo Lifesciences, Farmingdale, NY), Stc2 (ProSci Inc, Poway, CA), ERK1/2, phospho-ERK1/2 (Thr202/Tyr204), p38, phospho-p38 (Thr180/Tyr182), JNK, phospho-JNK (Thr183/Tyr185), Akt, phospho-Akt (Ser473) (Cell Signaling Technology, Inc., Danvers, MA), and actin (Sigma-Aldrich, Inc., St. Louis, MO). Proteins were detected using fluorescently labeled secondary antibodies goat anti-rabbit StarBright 700 and goat anti-mouse StarBright 520 (Bio-Rad), and imaged on the ChemiDoc MP imaging system (Bio-Rad).

Statistical analysis

Acute alcohol treatment on cells and animal studies were conducted with a predetermined plan. Animal and cell/sample sizes per group, data acquisition and analysis methodologies were also preset (Michel et al., 2020). Animal sizes were determined by calculating effect size based on our previous acute-alcohol study and by performing power analysis calculations using G*Power statistical suite 3.1 with type I error set at 5% and type II error at 80% (Faul et al., 2009; Joshi et al., 2022). For comparison of 2 groups, Student’s t-test was performed. For multiple groups, ANOVA with post-hoc Tukey’s procedure was conducted using the Sigma Plot software (Systat software, San Jose, CA). All data unless specified are represented as mean ± SD. Differences between the groups are considered statistically significant if the P value is <0.05.
RESULTS

CA-induced AhR-regulated Stc2 protects against ethanol induced apoptosis in Hepa1 cells

Our laboratory has previously demonstrated that an endogenous AhR agonist, cinnabarinic acid upregulate hepatic expression of a novel AhR target gene, Stc2 (Joshi et al., 2015a; Joshi et al., 2022). Furthermore, in isolated mouse primary hepatocytes and in vivo, CA was able to protect against alcohol induced apoptosis and the protection was both AhR and STC2 dependent (Joshi et al., 2015a; Joshi et al., 2022). In order to identify genes/pathways downstream of CA-induced AhR-dependent STC2 involved in protection against ethanol-induced hepatic apoptosis, we utilized RNA interference library screening in Hepa1 cells. First, CA-mediated induction of Stc2 mRNA and subsequent protection against ethanol-induced apoptosis in Hepa1 cell line was validated. Using quantitative RT-PCR, we confirmed ~ 5-fold upregulation of Stc2 mRNA message upon 30 µM CA treatment compared to the control (DMSO) (Fig. 1A). We then assessed the potential of CA to protect Hepa1 cells against ethanol-induced apoptosis using caspase 3/7 activity assay. As expected, ethanol treatment induced (~ 4-fold) programmed cell death compared to control-only group. Pre-treatment with CA significantly reduced apoptosis induced by ethanol stress and conferred protection (Fig. 1B). Next, we validated role of AhR and Stc2 in CA-mediated protection against ethanol induced apoptosis in Hepa1 cells. Hepa1 cells were transiently transfected with gene-specific (AhR, Stc2) and non-targeting (NT, scrambled) siRNA oligonucleotides followed by CA and ethanol treatments. Suppression of AhR and Stc2 expression was confirmed
by Western blotting (Figure. 1C). In AhR and Stc2 positive cells (NT siRNA treated), CA was able to alleviate ethanol induced apoptosis. On the contrary, CA failed to protect against apoptosis when either AhR or Stc2 was knocked-down (Fig. 1D). Moreover, in the absence of CA treatment, increased caspase 3 activity was observed in ethanol-only groups when AhR and Stc2 were silenced, suggesting an intrinsic cytoprotective role of both AhR and Stc2 (Fig. 1D). These data are in congruence with our previous studies performed in isolated mouse primary hepatocytes and in vivo (Joshi et al., 2015a; Joshi et al., 2022), and confirm that the anti-apoptotic effect exerted by CA against ethanol-induced toxicity are dependent on AhR-mediated Stc2 signaling in Hepa1 cells.

High-throughput RNA interference library screening identified critical genes involved in CA-mediated protection

We next sought to identify signal transduction genes involved downstream of CA-induced STC2-mediated cytoprotective cascade. Since protein kinases and phosphatases are known to play a prominent role in modulating pathways in apoptosis signaling, we employed a high-throughput RNA interference library screening to identify key kinases and phosphatases involved in CA-AhR-STC2 mediated protection against ethanol-induced apoptosis. The library comprised a set of 4 siRNAs per target gene to maintain high-silencing potency and modification patterns to reduce off-target effects. The apoptotic signal from each well of the library transfected with gene-specific siRNA pool and treated with 30 µM CA and 100 mM ethanol was measured and normalized to the signal from the NT-siRNA + 30 µM CA + 100 mM ethanol samples. A total of 214
kinases and 235 phosphatases when silenced showed increased ethanol-induced apoptosis compared to non-silenced group in spite of CA treatment. These 449 kinase and phosphatase genes which when knocked down failed to protect cells from ethanol-induced apoptosis despite having an activated CA-induced AhR-dependent STC2 protection were considered to be involved in the downstream anti-apoptotic pathway and were subjected to pathway enrichment analysis (Fig. 2 A and B).

CA-mediated protection against ethanol-induced apoptosis involves MAPK signaling pathway

A pathway enrichment analysis was performed on the kinases and phosphatases which are involved in modulating CA-driven protection against ethanol-induced apoptosis (Joshi et al., 2015a; Joshi et al., 2022). The input gene names were converted to corresponding protein names and analyzed against the comprehensive databases of cell signaling and metabolic pathways. The Gene Ontology (GO), KEGG and the Reactome pathway libraries identified multiple biological pathways regulated in response to CA treatment. Enriched pathways were screened and top pathways were identified based on the total counts of genes/proteins in the network and false discovery rate (Fig. 3A-C). PI3K-Akt pathway was identified by both Reactome and KEGG, whereas MAPK signaling was detected by all three pathway enrichment analysis tools (Fig. 3A-C). Since both Akt and MAPK pathways have been implicated to play critical role in alcohol-induced apoptosis (Aroor and Shukla, 2004; Han et al., 2020), we validated involvement of these pathways in CA-driven protection. For a secondary screening, genes encoding members of Akt and three components of MAPK pathway
namely ERK1/2, p38, and JNK were knocked-down in Hepa1 cells using RNA interference. Silencing p38 (encoded by p38α/β/γ/δ), JNK1 (MAPK8) and Akt-PI3K (Akt1/2/3 and Pik3ca) had no effect on CA-mediated protection against ethanol-induced apoptosis implying minimal contribution of these pathways in hepatoprotection. However, CA failed to protect against apoptosis when ERK1/2 were silenced (Fig. 3D). This indicates potential involvement of ERK1/2 pathway in CA-driven protection against alcohol induced apoptosis.

CA activates ERK1/2 pathway

Next functional significance of MAPK pathway in CA-mediated protection was investigated. Western blotting indicated increased phosphorylation of ERK1/2 (Thr202/Tyr204) in response to CA treatment compared to control and ethanol-only groups (Fig. 4). In contrast, the phosphorylation status of p38 (Thr180/Tyr182) and JNK (Thr183/Tyr185) was not different in control and any of the treatment groups. CA-treatment was not able to regulate expression of phospho-Akt (Ser473) (Fig. 4). To further investigate whether CA exert its cytoprotective function via activation of ERK1/2 pathway *in vivo*, we utilized an acute model of alcohol-induced liver injury. This well-established single-binge model of *in vivo* acute ethanol treatment is known to induce hepatocyte apoptosis, liver injury, with microvesicular steatosis (Zhou et al., 2001; Zhou et al., 2003; Joshi et al., 2015a; Ghosh Dastidar et al., 2018; Joshi et al., 2022). Wild-type mice were treated with a single dose of 6 gm/kg (body weight) ethanol orally for 12 hours in the absence (saline, control) and presence of 12 mg/kg CA pretreatment as previously described (Joshi et al., 2015a; Joshi et al., 2022). An acute ethanol treatment
elevated hepatocyte apoptosis as measured using caspase 3/7 assays (Fig. 5A) and resulted in a microvesicular steatosis (Fig. 5B). CA administration was able to protect against ethanol-induced apoptosis (Fig. 5A) and steatosis (Fig. 5B), which corroborated with our previous studies (Joshi et al., 2022). Immunoblotting performed on livers indicated activated ERK1/2 signaling in response to CA treatment, whereas CA had no effect on phosphorylation of p38 and JNK (Fig. 5C). The cumulative data thus indicate that CA activate hepatic ERK1/2 signaling both in vitro and in vivo and protect against ethanol-induced apoptosis.

CA-Induced Stc2 expression is critical for the regulation of ERK1/2 and mitigation of apoptosis

We next evaluated whether CA-induced ERK1/2 activation and protection against apoptosis is Stc2 dependent. In the presence of CA, Hepa1 cells transfected with siRNA to knock-down Stc2 did not activate ERK1/2 phosphorylation (Fig. 6A) and failed to protect against ethanol-induced apoptosis (Fig. 1D). In an in vivo study, a single-binge of ethanol elevated hepatic apoptosis in Stc2^{−/−} (Stc2 knockout) mice livers compared with Stc2^{+/+} (wild-type) (Fig. 5A and 6B). CA treatment neither attenuated ethanol-induced cell death (Fig. 6B) nor mitigated hepatosteatosis (Fig. 6C), thus validating in vivo role of Stc2 in CA-mediated protection (Joshi et al., 2022). In Stc2^{−/−} mice, CA treatment did not induce hepatic ERK1/2 phosphorylation (Fig. 6D) strongly suggesting essential role of Stc2 in CA-induced ERK1/2 activation and anti-apoptosis. CA and ethanol treatment had no effect on the phosphorylation of p38 and JNK in Stc2^{−/−} livers (Fig. 6D).
To underline role of ERK1/2 in CA-induced Stc2-mediated anti-apoptosis, we treated Hepa1 cells with an ERK1/2 inhibitor, SCH772984. Stc2 expression upon CA treatment and due to recombinant plasmid delivery (Stc2/pCMV-SPORT6) was monitored by immunoblotting (Fig. 7A). Western blotting also confirmed inhibition of ERK1/2 phosphorylation upon SCH772984 treatment (Fig. 7A). Caspase 3/7 assays indicated that both CA-induced Stc2 upregulation and overexpression of a recombinant Stc2 protein, induced ERK1/2 phosphorylation and protected Hepa1 cells against ethanol induced apoptosis (Fig. 7B). Whereas, Stc2 did not confer protection against alcohol-induced apoptosis when ERK1/2 signaling was obliterated (Fig. 7B). Collectively, this study demonstrates significant role of ERK1/2 activation in CA-driven STC2-mediated protection against acute alcohol-induced apoptosis.
DISCUSSION

Alcohol abuse is a major health risk worldwide leading to approximately 3.3 million deaths each year (Sudhinaraset et al., 2016). Binge drinking is a most common pattern of excessive alcohol use in the United States involving one in six adults (CDC, 2012). Liver, being the major organ metabolizing alcohol, is at the forefront of the harm inflicted by alcohol intake which leads to the manifestation of a broad range of liver diseases from simple steatosis to cirrhosis and hepatocellular carcinoma (O'Shea et al., 2010; Seitz et al., 2018). Most forms of liver diseases are a direct or an indirect result of injury to the hepatocytes which comprise 70-80% of the liver cytoplasmic mass (Blouin et al., 1977). The initiation and/or progression of alcoholic liver disease is often characterized by marked stimulation of hepatocyte apoptosis (Zhao et al., 1997; Day, 2001; Feldstein and Gores, 2005). We have previously identified ability of CA to protect against hepatocyte apoptosis in alcohol-induced liver diseases (Joshi et al., 2015a). This study thus exploits the formerly established CA-AhR-STC2 mediated hepatoprotective pathway to dissect downstream signaling cascades involved in protection against ethanol-induced apoptosis (Joshi et al., 2015a; Joshi et al., 2022).

Prior studies by our group have demonstrated that the CA treatment protect against apoptosis, steatosis, and liver injury in chronic as well as acute models of ethanol feeding and promote hepatocyte survival. Moreover, using hepatocyte-specific AhR knockout and Stc2 knockout mice livers, we showed the role of AhR-dependent STC2
signaling in CA mediated anti-apoptosis (Joshi et al., 2015a; Joshi et al., 2022). To identify anti-apoptotic signaling pathways downstream of CA-AhR-STC2 axis, we utilized a well-characterized and widely-used hepatic cell line, Hepa1 (Bernhard et al., 1973; Hankinson, 1979; Hankinson et al., 1991). These cells have been extensively used to characterize AhR biology and pathways regulated in response to AhR signaling (Hankinson, 1979; Hankinson et al., 1991; Tian et al., 1999; Abiko et al., 2015). Furthermore, Hepa1 cell line has been utilized to decipher mechanisms of ethanol-induced apoptosis and to investigate potential therapeutics against alcoholic-liver disease (Ushida and Talalay, 2013; Byun and Lee, 2015; Lee et al., 2022).

In vitro studies using Hepa1 cells corroborated our previous findings observed in isolated mouse primary hepatocytes and in vivo – which showed induction of Stc2 and attenuation of ethanol-induced apoptosis in response to CA treatment (Fig. 1A-B). Moreover, the protection was incumbent upon activation of AhR and expression of its target gene, Stc2 (Figure 1D). Anti-apoptotic and cytoprotective role of STC2 has been established by multiple previous studies (Ito et al., 2004; Joshi et al., 2015a; Joshi et al., 2022; Patil et al., 2022). We have observed STC2 mediated protection against various cell-death stimuli including ethanol, H₂O₂, thapsigargin and lipotoxicity (Joshi et al., 2015a; Joshi et al., 2022; Patil et al., 2022). Moreover, increased STC2 expression resulted in reduced damage to acinar cells during pancreatitis potentially by the upregulation of protein kinase R-like endoplasmic reticulum kinase (PERK) and activating transcription factor 4 (ATF4) signaling (Fazio et al., 2011). In human adipose-derived mesenchymal stem cells (ADSC) and human mesenchymal stem cells isolated from umbilical cord blood (UCB-MSC), overexpression of STC2 increased cell viability.
and survival under sub-lethal oxidative conditions. STC2 overexpression resulted in upregulation of cell cycle regulator proteins like Cyclin-dependent kinase 2 and 4 (CDK2 and 4), and down-regulation of cell cycle inhibitors p16 and p21, and activation of phosphoprotein kinase B (pAKT) (Kim et al., 2015). STC2 has also been involved in ameliorating hepatosteatosis by regulating signal transducer and the activator of transcription 3 (STAT3) pathway. It is known that STC2 is a secreted protein prominently found in ER and Golgi apparatus of hepatocytes and acts in an autocrine/paracrine manner (McCudden et al., 2002; Ito et al., 2004; Joshi et al., 2015a; Sarapio et al., 2019). Confocal imaging of liver sections has identified presence of STC2 immunostaining on plasma membrane in form of punctate indicating its potential interaction with a yet uncharacterized membrane receptor (Takei et al., 2009; Joshi et al., 2015a). Additionally, the downstream pro-survival signaling pathways activated by STC2 specifically in response to ethanol insult have not been comprehensively determined.

Protein phosphorylation is the most common post-translational modification that controls various aspects of cell fate including metabolism, subcellular trafficking, inflammation, and apoptosis by altering protein localization, stability and/or enzymatic activity (Niemi and MacKeigan, 2013). To identify CA-driven STC2 mediated anti-apoptotic pathways against ethanol-induced hepatotoxicity, we relied on phospho-signaling network involving protein kinases and phosphatases which regulate cell survival and apoptosis signals (Ardito et al., 2017). An RNA interference library screening was performed by individually silencing 986 kinases and phosphatases. The screening identified critical kinases and phosphatases which when knocked down resulted in increased ethanol-
induced cell death despite having an activated CA-induced STC2-mediated mechanism of cytoprotection (Fig. 2). A subsequent enrichment analysis identified multiple pathways including Akt and MAPK signaling potentially involved in CA-mediated protection. Akt is known to inhibit cytochrome c-induced caspase 9 activation thus protect against apoptosis (Zhou et al., 2000) and has been previously implicated in STC2 mediated protection (Kim et al., 2015). However, immunoblotting studies indicated that the CA-treatment had no effect on phosphorylation of Akt thus potentially marginalizing the contribution of Akt pathway in CA-mediated anti-apoptosis against acute ethanol stress (Fig. 4).

There is a substantial evidence that activation of MAPK signaling and its effect in apoptosis in response to ethanol treatment is dictated by tissue/cell-type as well as time and dosage regimen of ethanol (Aroor and Shukla, 2004). Upon ethanol treatment, we did not observe changes in basal ERK1/2, p38, and JNK phosphorylation in Hepa1 cells and liver tissues (Fig. 4-5). These observations correlate well with the previous findings where the phosphorylation levels of ERK1/2 and JNK were not significantly different between the control and twenty-four hour ethanol-treated hepatocytes (Lee et al., 2002; Lee and Shukla, 2005; Gao et al., 2017b). However, treatment with CA was able to induce one of the components of MAPK signaling, ERK1/2, both in vitro and in vivo (Fig. 4-5). In the absence of Stc2, CA failed to upregulate ERK1/2 phosphorylation and did not confer protection against ethanol-induced apoptosis (Fig. 1D and 6). Similarly, upon ablation of ERK activity, Stc2 did not protect against apoptosis (Fig. 7). This study thus underlines the importance of ERK1/2 activation in CA-induced AhR-dependent STC2-mediated protection against acute alcohol-induced apoptosis (Fig. 8). ERK1/2 activation...
has shown anti-apoptotic effects in response to extrinsic as well as intrinsic stimuli through downregulation of pro-apoptotic and/or upregulation of anti-apoptotic proteins (Lu and Xu, 2006). Several studies have indicated pro-survival role of ERK1/2 activation in response to ethanol stress. In isolated rat hepatocytes, ERK1/2 activation conferred protection against ethanol induced toxicity (Lee and Shukla, 2005). A downstream substrate of ERK1/2, RSK has shown to phosphorylate BAD and exert anti-apoptotic effects (Shimamura et al., 2000). Moreover, studies have demonstrated that the treatment with quercetin and licochalcone B activate ERK1/2 signaling and protect against ethanol insult (Yao et al., 2007; Gao et al., 2017a). Future studies, beyond the scope of this manuscript, will focus on characterizing the precise involvement of ERK1 and/or ERK2 signaling in CA-induced STC2 mediated hepatoprotection.

The present study validated CA-mediated protection against ethanol-induced apoptosis by upregulation of AhR-dependent Stc2 in an in vitro model. Moreover, CA-induced Stc2 expression facilitated activation of the ERK1/2 signaling pathway and attenuated hepatic apoptosis in response to ethanol insult both in vitro and in vivo. In summary, this study has characterized the mechanism of hepatoprotection by CA-AhR-STC2 signaling and identified a significant role of ERK1/2 pathway against acute alcohol-induced apoptosis.
DATA AVAILABILITY STATEMENT

The authors declare that all the data supporting the findings of this study are contained within the paper.
AUTHORSHIP CONTRIBUTIONS

Participated in research design: Patil, Joshi

Conducted experiments: Patil, Rus

Contributed new reagents or analytic tools: Patil, Rus, Joshi

Performed data analysis: Patil, Joshi

Wrote or contributed to the writing of the manuscript: Patil, Rus, Joshi
REFERENCES

Gao XP, Qian DW, Xie Z and Hui H (2017b) Protective role of licochalcone B against ethanol-induced hepatotoxicity through regulation of Erk signaling. Iranian Journal of Basic Medical Sciences 20:131-137.

Lee DH, Park JS, Lee YS and Bae SH (2022) PERK prevents hepatic lipotoxicity by activating the p62-ULK1 axis-mediated noncanonical KEAP1-Nrf2 pathway. Redox Biol 50:102235.

FOOTNOTES

This work was supported by the National Institute of Diabetes and Digestive and Kidney Diseases grant R01 DK122028 (to A.D.J.). The authors declare no conflict of interest.
FIGURE LEGENDS

Figure 1. CA upregulates Stc2 expression and protects against acute ethanol-induced apoptosis in an AhR and Stc2-dependent manner. Hepa1 Cells were treated with DMSO (Control), 30 µM CA dissolved in DMSO for 24 hours (Control + CA), 100 mM ethanol for 24 hours (Ethanol), and 30 µM CA for 24 hours followed by 100 mM ethanol for another 24 hours (Ethanol + CA). A) Stc2 mRNA was measured by quantitative RT-PCR and normalized against 18S ribosomal RNA. Results are expressed as fold-value compared to the control treatment. B) Caspase 3/7 activity was recorded as a measure of apoptotic cell death and normalized to total protein concentration and to control treatment. Hepa1 cells were transiently transfected with AhR, Stc2, and non-targeting (NT) siRNA for 24 hours. C) Western blotting was performed to confirm knockdown of AhR and Stc2, and D) apoptosis was measured 24 hours after CA (30 µM) and/or
ethanol (100 mM) treatments of the cells. Data are represented as mean ± SD (n = 3). * P<0.05 compared with control treatment, # P<0.05 compared with ethanol-only treatment.

Figure 2. RNA interference library screening identified critical protein phosphatases and kinases involved in CA-driven protection against ethanol-induced apoptosis. Hepa 1 cells were plated in 96-well plates, transfected with gene-specific siRNA’s or NT-siRNA pool (non-targeting/scrambled) for 24 hours, treated with 30 µM CA (for 24 hours), and 100 mM ethanol for additional 24 hours. The apoptosis signal from kinase and phosphatase specific gene knockdown wells was measured using the ApoTox-Glo™ triplex assay and normalized to the signal from the NT-siRNA + CA + ethanol samples (set at 1) and graphically displayed as A) dot plot (orange = kinases, blue = phosphatases), and B) heatmap.

Figure 3. Pathway enrichment analysis identified association of MAPK and AKT signaling pathways with CA-mediated protection against ethanol-induced apoptosis. Top enriched terms identified by well-known classification systems A) KEGG, B) Gene Ontology, and C) Reactome are depicted. The term at the top has the most significant overlap with the input query gene set. D) For a secondary screening, Hepa1 cells were plated in a 96 well plate, transfected with siRNA’s targeting members of MAPK (ERK1/2, p38α/β/γ/δ, JNK1) and AKT (Akt1/2/3, PI3K) pathways for 24 hours, treated with 30 µM CA for 24 hours, and 100 mM ethanol for additional 24 hours. Caspase 3/7
activity was measured. Data are represented as mean ± SD (n=3). * P<0.05 compared with ethanol-only treatment.

Figure 4. CA activates ERK1/2 pathway *in vitro*. Western blotting was performed on Hepa1 cells treated with DMSO (Control), 30 µM CA (CA), 100 mM ethanol (Ethanol) for 24 hours, or 30 µM CA for 24 hours followed by 100 mM ethanol for additional 24 hours (Ethanol + CA) to monitor expression of total and phosphorylated ERK1/2 (Thr202/Tyr204), p38 (Thr180/Tyr182), JNK (Thr183/Tyr185), and Akt (Ser473). A representative blot is shown out of three independent experiments.

Figure 5. CA phosphorylates ERK1/2 and protect against acute ethanol-induced apoptosis *in vivo*. Wild-type mice were treated with saline (Control), 12 mg/kg (body weight) CA (CA group) for 24 hours, 6 gm/kg (body weight) ethanol (Ethanol group) for 12 hours, or with CA for 12 hours prior to ethanol for 12 hours (Ethanol + CA group). A) Liver homogenates were subjected to caspase 3/7 activity assay. The results are shown as the mean ± SD from four independent experiments. Data is normalized to the caspase 3/7 activity in the control group. * p<0.05 represents statistically significant difference between ethanol-treated and ethanol + CA treated groups. B) H&E staining depicting histopathological changes in the liver. Arrows indicate microvesicular steatosis. C) Immunoblotting was performed on liver lysates to monitor expression of phosphorylated and total ERK1/2, p38, and JNK. Actin was used as a control. A representative blot, out of four independent blots is shown.
Figure 6. CA-mediated activation of ERK1/2 is Stc2-dependent. A) Hepa1 cells were transiently transfected with Stc2 siRNA for 24 hours and treated with DMSO (control), 30 µM CA (CA), 100 mM ethanol (Ethanol) for additional 24 hours, or 30 µM CA for 24 hours followed by 100 mM ethanol for 24 hours (Ethanol + CA). Western blotting was performed using actin as a loading control. A representative immunoblot is shown. B) Caspase 3/7 activity assay was performed on liver homogenates from Stc2\(^{-/-}\) (Stc2 knockout) mice, treated with saline (Control), 12 mg/kg (body weight) CA (CA group) for 24 hours, 6 gm/kg (body weight) ethanol (Ethanol group) for 12 hours, or with 12 mg/kg CA for 12 hours followed by 6 gm/kg ethanol for additional 12 hours (Ethanol + CA group). Data is normalized to the caspase 3/7 activity in the control group (n = 4). C) H&E staining indicating microvesicular steatosis (arrow) and liver pathology. D) Immunoblotting was performed on liver lysates with actin used as a loading control. A representative immunoblot is shown out of four independent experiments.

Figure 7. ERK1/2 activation is critical for Stc2-mediated anti-apoptosis. Hepa1 cells were treated with DMSO (Vehicle), 30 µM CA (CA), transfected with a control (pCMV-SPORT6) or a vector encoding recombinant Stc2 (Stc2/pCMV-SPORT6) for 24 hr. Cells within SCH772984 + Ethanol group were treated with 10 µM SCH772984, two hours before CA treatment or transfections for 24 hours. Twenty-four hours later, cells in Ethanol and SCH772984 + Ethanol groups were treated with 100 mM ethanol for additional 24 hours. A) Western blotting to monitor expression of Stc2, phospho-ERK1/2 and total ERK1/2. Actin was used as a loading control. A representative immunoblot is shown out of three independent experiments. B) Cell lysates were subjected to caspase
3/7 assay to measure apoptotic cell death and normalized to total protein concentration and to the vehicle-treated control (no ethanol) group. The results are shown as the mean ± SD from three independent experiments. * p<0.05 represents statistically significant difference between ethanol-treated and ethanol + CA-treated or between empty pCMV-SPORT6 and Stc2/pCMV-SPORT6 transfected groups. # P<0.05 compared with ethanol-only treatment.

Figure 8. An illustration depicting role of ERK1/2 signaling in CA-induced AhR-dependent Stc2-mediated protection against acute ethanol-induced apoptosis. Upon endogenous AhR ligand CA binding, AhR translocate to the nucleus and interact to the xenobiotic response elements (XREs, depicted in black rectangles) present within the promoter of the Stc2 gene and elevate its expression. Upregulated STC2 induce ERK1/2 signaling pathway and confer protection against alcohol-induced hepatocyte apoptosis.
Figure 1

(A) Stc2 mRNA (fold change)

(B) Caspase 3/7 activity (normalized to protein conc.)

(C) Western blot for AhR and actin

(D) NT siRNA

AhR siRNA

Stc2 siRNA
Figure 2
KEGG

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mmu04010</td>
<td>MAPK signaling pathway</td>
</tr>
<tr>
<td>mmu00562</td>
<td>Inositol phosphate metabolism</td>
</tr>
<tr>
<td>mmu0110</td>
<td>Metabolic pathways</td>
</tr>
<tr>
<td>mmu0070</td>
<td>Phosphatidylinositol signaling</td>
</tr>
<tr>
<td>mmu04152</td>
<td>AMPK signaling pathway</td>
</tr>
<tr>
<td>mmu0151</td>
<td>PI3K-Akt signaling pathway</td>
</tr>
<tr>
<td>mmu04910</td>
<td>Insulin signaling pathway</td>
</tr>
<tr>
<td>mmu04360</td>
<td>Axon guidance</td>
</tr>
<tr>
<td>mmu04660</td>
<td>T cell receptor signaling pathway</td>
</tr>
<tr>
<td>mmu04071</td>
<td>Sphingolipid signaling pathway</td>
</tr>
</tbody>
</table>

GO

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GO:0000185</td>
<td>MAPK cascade</td>
</tr>
<tr>
<td>GO:0000186</td>
<td>Activation of MAPKK activity</td>
</tr>
<tr>
<td>GO:0000187</td>
<td>Activation of MAPK activity</td>
</tr>
<tr>
<td>GO:0000188</td>
<td>Inactivation of MAPK activity</td>
</tr>
<tr>
<td>GO:0000278</td>
<td>Mitotic cell cycle</td>
</tr>
<tr>
<td>GO:0000904</td>
<td>Cell morphogenesis involved in differentiation</td>
</tr>
<tr>
<td>GO:0000902</td>
<td>Cell morphogenesis</td>
</tr>
<tr>
<td>GO:0000302</td>
<td>Response to reactive oxygen species</td>
</tr>
<tr>
<td>GO:000086</td>
<td>G2M transition of mitotic cell cycle</td>
</tr>
<tr>
<td>GO:0001558</td>
<td>Regulation of cell growth</td>
</tr>
</tbody>
</table>

Reactome

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMU-1430728</td>
<td>Metabolism</td>
</tr>
<tr>
<td>MMU-5684996</td>
<td>MAPK1/MAPK3 signaling</td>
</tr>
<tr>
<td>MMU-5683057</td>
<td>MAPK family signaling cascade</td>
</tr>
<tr>
<td>MMU-1483255</td>
<td>PI metabolism</td>
</tr>
<tr>
<td>MMU-5673001</td>
<td>RAF/MAP kinase cascade</td>
</tr>
<tr>
<td>MMU-5675221</td>
<td>Negative regulation of MAPK pathway</td>
</tr>
<tr>
<td>MMU-9008934</td>
<td>Signaling by receptor tyrosine kinase</td>
</tr>
<tr>
<td>MMU-1483257</td>
<td>Phospholipid metabolism</td>
</tr>
<tr>
<td>MMU-199418</td>
<td>Negative regulation of the PI3K/Akt network</td>
</tr>
<tr>
<td>MMU-162582</td>
<td>Signal transduction</td>
</tr>
</tbody>
</table>

Figure 3

[Graph showing caspase 3/7 activity normalized to protein concentration with different treatments]
Figure 4: Western blot analysis showing the effects of control, ethanol, and ethanol + CA on phosphorylation levels of ERK1/2, p38, JNK, and Akt. Control samples show lower phosphorylation levels compared to ethanol and ethanol + CA treatments.
Figure 6
Figure 7

A

Control Ethanol SCH772984 + Ethanol

Vehicle CA Stc2/pCMV-SPORT6 Vehicle CA Stc2/pCMV-SPORT6

Stc2
phospho-ERK1/2
ERK1/2
actin

B

Vehicle CA pCMV-SPORT6 Stc2/pCMV-SPORT6

Caspase 3/7 activity
(normalized to protein conc.)

Control Ethanol SCH772984 + Ethanol

* # ##