Title Page

Levetiracetam Pharmacokinetics and Brain Uptake in a Lateral Fluid Percussion Injury Rat Model

University of Minnesota Twin Cities, Minneapolis, MN, USA (L.D.C, J.C.C, U.M); Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, NY, USA (P.G.S., C.P.L., W.L., Q.L., S.L.M., A.S.G.); The Department of Neuroscience, Monash University, Melbourne, Australia (P.M.C., S.S., R.B., G.Y., M.H., J.S., E.B., T.J.O.); The University of Melbourne, Parkville, Australia (R.B., G.Y., M.H., J.S., E.B.s T.J.O.); Isabelle Rapin Division of Child Neurology, Albert Einstein College of Medicine, Bronx, NY, USA (S.L.M., A.S.G.), Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA (S.L.M., A.S.G.); Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA (S.L.M)

Originating Laboratory:

Center for Orphan Drug Research
Experimental and Clinical Pharmacology
College of Pharmacy, University of Minnesota
4-214 McGuire Translational Research Facility
2001 6th St SE
Minneapolis, MN 55455

Running Title Page
Levetiracetam PK and Brain Uptake in a LFPI Rat Model

Corresponding author: Lisa Coles
Center for Orphan Drug Research
Experimental and Clinical Pharmacology
College of Pharmacy, University of Minnesota
4-214 McGuire Translational Research Facility
2001 6th St SE
Minneapolis, MN 55455
Email: durh0016@umn.edu telephone: 410-926-4788

Number of pages text pages: 10
Number of tables: 2
Number of figures: 4
Number of references: 21
Number of words in the abstract: 250
Number of words in the introduction: 390
Number of words in the discussion: 862

List of nonstandard abbreviations: HPLC: high performance liquid chromatography; Lev: levetiracetam; LFPI: lateral fluid percussion injury; MS: mass spectrometry; PK: pharmacokinetic; PTE: post traumatic epilepsy; TBI: traumatic brain injury,

Recommended section assignment: neuropharmacology

Abstract
Post-traumatic epilepsy (PTE) occurs in some patients following moderate/severe traumatic brain injury (TBI). While there are no approved therapies to prevent epileptogenesis, levetiracetam (LEV) is commonly given for seizure prophylaxis due to its good safety profile. This led us to study LEV as part of the Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) Project. The objective of this work is to characterize the pharmacokinetics (PK) and brain uptake of LEV in naïve control rats and in the lateral fluid percussion injury (LFPI) rat model of TBI following either single intraperitoneal doses or a loading dose followed by a 7-day subcutaneous infusion. Sprague Dawley rats were used as controls and for the LFPI model induced at the left parietal region, using injury parameters optimized for moderate-severe TBI. Naïve and LFPI rats received either a bolus injection (intraperitoneal) or a bolus injection followed by subcutaneous infusion over 7 days. Blood and parietal cortical samples were collected at specified timepoints throughout the study. LEV concentrations in plasma and brain were measured using validated HPLC-MS/MS methods. Non-compartmental analysis and a naive-pooled compartmental PK modeling approach were utilized. Brain-to-plasma ratios ranged from 0.54-1.4-1. LEV concentrations were well fit by one-compartment, first-order absorption PK models with a clearance of 112 mL/hr/kg and volume of distribution of 293 mL/kg. The single dose pharmacokinetic data were used to guide dose selection for the longer term studies and target drug exposures were confirmed. Obtaining LEV PK information early in the screening phase allowed us to guide optimal treatment protocols in EpiBioS4Rx.

Significance Statement

The characterization of levetiracetam pharmacokinetics and brain uptake in an animal model of post-traumatic epilepsy is essential to identify target concentrations and guide optimal treatment for future studies.

Introduction
The risk of epilepsy following traumatic brain injury (TBI) has been reported to be ~3-4% (Bazarian et al. 2009; Burke et al. 2021; Hauser et al., 1991). However, the post-traumatic epilepsy (PTE) risk increases with more severe injury and occurs in up to 25% of patients following moderate/severe traumatic brain injury (TBI) (Bazarian et al. 2009). In PTE, unprovoked seizures occur over the course of weeks, months, or years following TBI. While there are numerous studies of PTE development (Ali et al., 2019; Mukherjee et al., 2020; Gorter et al., 2019; Saletti et al., 2019) the pathophysiological mechanisms of PTE that govern which patients are more likely to develop PTE are not well understood (Brady et al., 2019). Further, there are no approved therapies to prevent epileptogenesis following TBI.

The Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) project is a multidisciplinary program aimed at identifying biomarkers of epileptogenesis and therapies to prevent PTE following TBI (Engel, 2019). One of the EpiBioS4Rx projects is a multicenter preclinical therapy screening platform using the lateral fluid percussion injury (LFPI) rat model of TBI. Here our team has implemented pharmacokinetic (PK) studies early in preclinical research to screen drug candidates and optimize doses and dosing regimens for the longer-term studies. A key aspect of this project is the use of a multiple sites across the world in order to increase reproducibility and also consider site-specific factors that could contribute to the variability of results.

Levetiracetam (LEV) is commonly given for early post-TBI seizure prophylaxis due to its good safety profile (Chaari et al., 2017). LEV modulates synaptic neurotransmitter release through binding to the synaptic vesicle protein SV2A in the brain. It is FDA-approved as both oral and injectable formulations for the treatment of certain seizure disorders. While some animal studies have suggested that LEV may possess antiepileptogenic properties, confirmatory studies are needed (Brady et al., 2019; Klein et al., 2020; Klitgaard et al., 2003; Casillas-
For these reasons, EpiBios4Rx selected it as an early drug candidate and to use as a reference for comparison with potential other targeted drug therapies.

The objective of this single-center study was to characterize the PK and brain uptake of LEV in naïve and injured animals in two studies: 1.) after a single intraperitoneal dose and 2.) after (Loscher et al., 1998) an intraperitoneal loading dose followed by a 7-day subcutaneous infusion, i.e., the time period used for early post-TBI seizure prophylaxis. A sparse sampling population PK model approach was to minimize the number of animals used in the study. The single dose PK data were used for screening purposes as well as to guide dose selection for the longer term studies. Osmotic minipumps were used to deliver LEV subcutaneously so as to maintain target concentrations over 7 days.

Materials and Methods

Animal Study

Animals and injury induction: Approval was obtained through the Institutional Animal Care and Use Committee of the Albert Einstein College of Medicine prior to study initiation (IACUC #20170107). Male ~11-week old Sprague Dawley rats (Taconic Farms, Rensselaer, NY USA) were used as naïve controls or following LFPI induction. LFPI animals were submitted to a 5mm-diameter circular left parietal craniotomy (coordinates of the craniotomy center: -4.5 mm posterior to the bregma, 3 mm left of the sagittal suture (McIntosh et al., 1989). The craniotomy was performed keeping the dura matter intact and a female open end of a Luer lock of an 18G needle trimmed to 4 mm diameter was placed on it as an adaptor and fixed with 3M Vetbond (3M Animal Care Products, St Paul, MN) and dental cement. After withdrawal of the anesthesia and when the first toe pinch response was noted, the rat was connected with the Luer lock adaptor to the fluid percussion injury (FPI) device (AmScien Fluid Percussion Device model FP 302,
Richmond VA, USA). A pressure pulse was delivered by the FPI device at injury parameters optimized to induce moderate/severe TBI with a mortality of ~30%: 3.26 ± 0.1 atmospheres (atm) (Kharatishvili et al., 2006).

Levetiracetam formulation and administration: LEV was purchased from MedChemExpress (HY-B0106; NJ, USA). For the bolus injection, a 200mg/mL solution diluted in 0.9% sterile saline was prepared at the day of experiment. For the osmotic minipump (ALZET 2ML1, Durect, Cupertino CA, USA) preparation, the concentration of the solution was calculated according to manufacturer instructions based on the body weight of the animal to deliver 200mg/kg/day. The minipump was prepared in the previous day of the experiment and kept overnight at 37° C for priming.

Single dose intraperitoneal PK study: A single intraperitoneal bolus injection of 200 mg/kg LEV was administered in naïve rats (n=6). Blood samples were collected from the lateral tail vein prior to dosing and 0.5, 1, 2, 4 or 6 hrs following the administration, under isoflurane anesthesia. A 6 hr collection window was considered adequate to capture the elimination phase assuming a half-life of 1.5-2hrs. Three blood samples were collected from each rat at the designated time points to reduce the number of animals used for this study. Brain samples were collected at 2hrs or 6hrs after LEV bolus injection. Rats were anesthetized with isoflurane 5% in 100% oxygen prior to harvesting brain tissue. The results were collected and analyzed according to a preset plan with 3 blood samples/timepoint collected. This provided an adequate number of data points to characterize the PK while minimizing the number of animals used in the study.

Loading dose + 7-day continuous infusion PK study: A single intraperitoneal bolus injection of 200 mg/kg LEV was administered in naïve rats or immediately after LFPI (n=9). Subcutaneous (SC) ALZET 2ML1 minipump placement was done 1hr later, under isoflurane (Henry Schein, Melville, NY, USA) anesthesia (5% induction, 2% maintenance). LEV was given as a bolus of 200mg/kg IP followed by 200 mg/kg/day SC via minipump for 7 days, at which time
the minipump was removed. Blood samples (3/group/timepoint) were collected at baseline and 1, 2, 73, 121 hrs or 169 hrs (i.e., prior to minipump removal) following the bolus administration. Additional blood samples were collected 0.5, 2, or 4 hrs after the minipump removal on day 7. Right and left parietal cortical samples were collected at 2 or 121 hrs after the bolus LEV administration or 4 hrs after minipump removal on day 7. Rats were anesthetized with isoflurane 5% in 100% oxygen prior to harvesting brain tissue. The results were collected and analyzed according to a preset plan with 3 blood samples/timepoint collected in order to provide an adequate number of data points to characterize the PK while minimizing the number of animals used in the study.

Dose selection rational: A 200 mg/kg dose converted to human equivalent dose using the FDA guidance is equivalent to 32 mg/kg which is within the range of doses used for SE which range from 20-60 mg/kg (Chakravarthi et al., 2015; Gujjar et al., 2017; Mundlamuri et al., 2015; Nene et al., 2019; Sathe et al., 2019). The human equivalent daily dose of 32 mg/kg/day is on the high end of doses that have been used for prophylaxis after traumatic brain injury which range from <1000 to >3000 mg/day (Patanwala et al., 2016; Ohman et al., 2022).

Blood collection: Blood was collected from isoflurane anesthetized rats via lateral tail vein puncture into K$_2$-EDTA microtainer tubes (#365975, BD Microtainer, BD Biosciences). Blood was centrifuged at 3,000g for 10min at 4°C immediately after collection, the supernatant plasma was collected and stored at -20°C until analysis. Aliquots were kept in Eppendorf LoBind tubes (#022431064, Fisher Scientific) at -20°C until use.

Brain samples collection: Parietal cortical samples were harvested after removal of meninges and superficial vasculature in phosphate buffered saline on ice. The left (LCCX) and right cerebral cortices (RCCX) were dissected, flash frozen and stored at -80°C. Brain and plasma samples were analyzed for LEV concentrations as described below.
Measurement of LEV in brain and plasma samples: LEV was extracted from plasma and brain samples using acetonitrile. The rat brain tissue was homogenized in PBS using a bullet blender and zirconium beads and sonicated for three minutes. Two mL of acetonitrile were added to 0.1 mL of plasma or homogenate and vortexed for ~5 seconds. All samples were centrifuged for 10 min at 2000 g the supernatant was then collected in clean glass tubes and evaporated at 35 °C using nitrogen. The samples were reconstituted in 0.15 mL of mobile phase and filtered using 13 mm Pall Acrodisc® (Pall Corporation, MI, USA) syringe filters (0.2 micron) for LC-MS/MS analysis. Deuterated levetiracetam (Levetiracetam-D6, Sigma-Aldrich) was used as the internal standard.

Quality control samples were prepared at three concentrations: low (10 µg/mL), mid (100 µg/mL), and high (500 µg/mL) for brain and plasma samples. The quality control samples were mixed well, aliquoted into labeled micro-centrifuge tubes and stored at -80 °C. Ten calibration standards were prepared using serial dilutions of a standard, resulting in concentrations ranging from 1 to 1000 µg/mL of LEV. Stock solutions for quality control and calibration standards were prepared separately.

The samples were analyzed using a TSQ Quantum Access triple quad mass spectrometer (Thermo Scientific, CA, USA) with an electrospray and a Dionex Ultimate 3000 HPLC system (California, USA) that included an autosampler and pump. Reverse phase chromatographic separation was performed using an InfinityLab Poroshell 120 EC-C18 (Agilent, California, USA) column (2.1×100 mm, 2.7 µm) (Supp. fig. 1). The analytes were separated using isocratic mobile phase with a composition of 25% 10 mM ammonium acetate and 75% acetonitrile at a flow rate of 0.15 mL/min and run time of 5 min. Excalibur software (Thermo Scientific, CA, USA) was used for data acquisition and analysis. The conditions for LC-MS/MS included heated electrospray ionization (HESI) with a vaporizing temperature of 300 °C and capillary temperature of 350 °C. The spray voltage was set at 3500 V and collision gas pressure
of 1.5 mTorr for the Multiple Reaction Monitor (MRM). The detection of LEV was done using positive polarity. The m/z ratio for parent and product ions used for the multiple reaction monitoring method were 171 and 126.

Quality control samples were evaluated for precision and accuracy. Precision was determined using the percent coefficient of variation (% CV) and accuracy by the percentage of measured concentration relative to the nominal concentration. The limit of detection (LOD) was determined using a signal to noise ratio of 3.0 using a neat standard. The lower limit of quantitation (LLOQ) was determined to be the lowest concentration at which an analyte in the sample matrix was measured within accuracy (± 20%) and precision (< 20%) limits. The standard concentrations were linear from 1 to 1000 mg/L. Relative standard deviation for replicate measurements in plasma samples was less than 5%. Drug concentrations were calculated using the linear equation determined by the absorbance areas of the calibration standards.

Pharmacokinetic analysis: Using the LEV plasma concentration-time data following a single IP loading dose, PK parameters were calculated using non-compartmental analysis (Phoenix, V 8.1, Certara, NC, USA) with pooled naïve averaging. Maximum concentration (Cmax), area under the time-concentration curve (AUC), terminal phase half-life (t½), total body clearance (CL/F), and volume of distribution (Vd/F), were calculated. AUC was calculated using the linear-log trapezoidal method. Brain-to-plasma ratios were calculated by dividing the plasma concentration by the brain concentration at any given timepoint.

One- two- and three compartment PK models were also evaluated using a naïve-pooled population approach with Phoenix, NLME (V 8.1, Certara, NC, USA) (Supp. fig. 2). The best fit model was determined by the log-likelihood ratio, Akaike’s information, Schwarz criterion, visual observation of goodness of fit plots (including residual plots), and precision of model parameters. A first-order conditional estimation method was used. The final structural model was one-
compartment with a proportional error model. The best fit model was determined by successful minimization, the objective function value, visual observation of goodness of fit plots (including residual plots), and precision of model parameters. The compartmental PK model was used to simulate concentration-time profiles (n=100) for a single intraperitoneal loading dose followed by a subcutaneous constant infusion (assuming the same bioavailability for both routes of administration). The bioavailability was assumed similar for both routes of administration given that levetiracetam is completely absorbed with very little first-pass metabolism (F>90%), similar to humans (Benedetti et al, 2004).

A paired Student’s t-test was used to compare LEV concentrations in LCCX and RCCX. A p-value less that 0.05 was considered statistically significant.

Results

Single intraperitoneal loading dose PK: Figure 1 shows the LEV concentration-time profiles in plasma and brain in naïve rats following a single 200 mg/kg intraperitoneal bolus dose. Following dosing, maximum LEV concentrations in the plasma occurred at 1.5 hrs and then declined in a mono-exponential manner. The brain concentrations generally followed those in plasma which had a Tmax of 2 hrs. Brain concentrations at 2 hrs approached those in the plasma with mean brain-to-plasma ratios of 0.79 and 0.61 in the LCCX and RCCX, respectively. At 6 hrs, the mean brain-to-plasma ratios were 0.87 and 0.70 in the LCCX and RCCX, respectively. Although LCCX mean concentrations were greater than for the RCCX, these differences are not statistically significant.

Non-compartmental analysis resulted in a Tmax of 1 hr, Cmax of 326 (standard error=142) µg/mL and AUC of 1200 (standard error=210) µg*hr/mL. One-, two-, and three-compartment PK models were also evaluated using a naïve-pooled approach. LEV concentrations were best fit by a 1st-order absorption, 1-compartment PK model (Figure 1,
Supplemental Model Text). The typical value estimates of the PK parameters are provided in Table I. While the precision of the model parameters was adequate, the %RSE for the absorption rate constant, ka, was high (68%). This is likely due to the limited number of data points used to characterize the absorption phase. The proportional error model best described the residual unexplained variability of 30%. Goodness of fit plots (Predicted versus observed plasma concentrations and residual plots) are shown in Figure 2. The primary PK parameters correspond with an elimination half-life of 2 hrs which agrees with previously published literature (Löscher et al, 1998).

IP loading dose and 7-day SC continuous infusion PK: LEV concentrations in brain and plasma are shown in Figure 3. LEV concentrations following the loading dose were similar to those obtained in the single dose study with maximum concentrations ranging from \sim100-400 µg/mL at 2 hrs post-dosing. Further, LEV plasma concentrations were maintained \sim100 µg/mL during the SC minipump dosing. Brain-to-plasma ratios were higher in LFPI rat brains, especially in the left cortex (site of injury) (Table II). While mean LEV concentrations were consistently higher in the left than in the right cortex of LFPI rats, these differences were only statistically significant at the 7-day collection period, 4 hrs after minipump removal ($p=0.02$). LEV concentrations in the LCCX of the LFPI rats were also statistically greater than in the naïve rats, 4 hrs after minipump removal ($p=0.02$). Similar to brain concentrations, LEV brain to plasma ratios are generally greater in LFPI versus control rats suggesting greater uptake into and possibly slower clearance from the injured brain. Figure 4 shows the LEV concentrations predicted using the PK model and the actual concentrations. The observed values were similar to the predictions and the means were within the predicted 90% confidence interval.

LEV safety and tolerability: Animals did not have any alterations in motor activity and coordination after LEV administration, other than those typically observed following brain trauma.
Although in our study the loading dose was 200 mg/kg, followed by 200 mg/kg/day, LEV did not cause ataxia or sedation or any other adverse effects as previously observed (Glien et al., 2002).

Discussion

Administration of LEV using a subcutaneously-implanted minipump was well tolerated and resulted in maintained LEV plasma concentrations of ~100 µg/mL over the course of the 7-day study. Brain levels closely followed those in the plasma with brain-to-plasma ratios of 0.8-1. A PK model developed using data from a single intraperitoneal dose adequately predicted the drug concentrations attained after a single loading dose followed by 7-day subcutaneous infusion and can be used to simulate various doses/dosage regimens.

LEV PK reported here are consistent with findings by Loscher et al. (Loscher et al., 1998). In that study, single 54 mg/kg ip doses given to kindled and age-matched non-kindled rats resulted in maximum concentration of 54.8-60.3 ug/mL. Assuming linear pharmacokinetics, the dose-normalized concentrations would be in general agreement with our reported maximum concentration of ~300 ug/mL for a single 200 mg/kg ip doses in naïve rats. Elimination half-lives of 1.8 and 2.6 hrs were also similar for the two studies (Löscher et al, 1998) Click or tap here to enter text. In contrast, Glien et al. reported that a mean dose of 389 mg/kg/day via subcutaneous infusion resulted in a mean plasma concentrations of 43.6 ug/mL (Glien et al., 2002). Our daily dose of 200 mg/mg/day results in plasma concentrations of ~100ug/mL. This discrepancy might be explained by differences in the two animal models, drug delivery methodology and/or analytical assays. Further, Glien et al. used female Wistar rats whereas, our study was in male Sprague-Dawley rats. Sex-differences in both metabolic and absorption pathways in rodents have been reported (Waxman et al., 2009; Afonso-Pereira et al., 2018; Kutsukake et al., 2019). Nonetheless, our PK model developed using single dose data was validated using the concentration-time data from the longer-term study showing that similar concentrations were attained across the two studies. This observation also supports that LEV PK
is not substantially affected by TBI. Since LEV is currently available for both oral administration and injection for human use, there is substantial clinical information regarding drug exposure and safety.

There is substantial clinical information regarding drug exposure and safety. The peak concentrations measured in this study (108-470 µg/mL following a loading dose and 67-140 µg/mL during maintenance dosing) were similar to those that are attained in humans following 60 mg/kg LEV administered over 10 minute infusion, a dosing regimen that was safely and effectively used in a established status epilepticus (Sathe et al., 2020). In that study, concentrations measured ~60 minute after the start of infusion ranged from 80-160 µg/mL. Similarly, LEV concentrations of 60-189 µg/ml have also been reported in adults and children with epilepsy following a mean i.v. doses of 34 and 47 mg/kg (Wheless et al. 2009), In contrast, a study of LEV for prevention of PTE reported mean maximum concentrations of 60.2 µg/mL following 55 mg/kg/day dose administered orally, nasogastrically, or intravenously (Klein et al., 2012). In this study, intravenous dosing resulted in mean Cmax concentrations of 78.4 µg/mL, generally lower than our concentrations (67-140 µg/mL) measured during maintenance dosing. Nonetheless, based on these reports, doses which attain these concentrations in humans have been shown to be generally safe suggesting the ability to translate our preclinical research. A key property for CNS-acting drugs is reaching the site of action at a therapeutic concentration. The dosing regimen used in this study resulted in good brain uptake with drug concentrations that closely followed plasma. Accumulation in the brain was observed as the brain-to-plasma ratios increased over the course of the 7-day study. Tong et al. has also shown prolonged efflux from the brain, consistent with our observations which may extend its duration of action (Tong et al., 2001). While uptake is not instantaneous as demonstrated by a delay in achieving maximal brain concentrations, distribution into the brain remains rapid and appears sufficient for use following TBI. For example, even though LEV is less lipophilic and enters brain more slowly than
the antiseizure medications, fosphenytoin and valproic acid, it was found to be equally as
effective in the treatment of established status epilepticus (Chamberlain et al., 2020). We also
observed greater LEV concentrations in the left cerebral cortex, likely a result of increased
leakiness of the blood-brain-barrier in the ipsilateral cortex. While it is possible that multi-drug
transporters are altered in the at the blood-brain-barrier of LFPI rats, LEV is not considered a
substrate for these transporters suggesting that passive transport is increased upon injury.
Notably, these differences were rather modest and may not be a consideration for local toxicity.
It does present an avenue for more targeted drug delivery to the injured area.

Obtaining PK information early in the drug research and screening phase allows for PK
considerations to play a role in drug selection and dose optimization early in drug development.
We were able to 1) confirm that the dose used in our animal model produced clinically relevant
plasma concentrations, 2) characterize the brain permeability, and 3) verify that the dosing
regimen resulted in drug concentrations that were well tolerated in both naïve and LFPI animals.
Further, a PK model was built using early PK data, and utilized to design a study to attain target
steady-state concentrations for the longer-term studies. These data will subsequently be used to
confirm that target exposures are attained at multiple sites. Further, the lack of differences in the
pharmacokinetics between naïve and LFPI rats will allow us to use naïve animals to answer PK-
related questions reducing costs and study times. These models will be validated in future
studies utilizing LEV and used to inform design of human clinical studies. Specifically, the PK
model developed here will be to verify drug exposures from the longer-term efficacy studies,
refine the PK model, and link with PD models relating drug concentration with response. This will
allow for the prediction of response for various doses and dosing regimens. This approach may
reduce development time, help to reach go/no go decisions faster and ensure harmonization of
protocol across study sites.
Limitations include the relatively small number of doses and animals studied which hindered the ability to provide an accurate estimate for the absorption rate constant. Further given destructive sampling, the pharmacokinetic model did not include estimates of inter-individual variability. Despite these limitations, these models do provide insight into drug exposures at doses that have shown biological promise. These models will be validated in future antiepileptogenic studies and may be ultimately used to inform design of human clinical studies.

Acknowledgements:

AS Galanopoulou acknowledges grant support by NINDS RO1 NS091170, U54 NS100064, the US Department of Defense (W81XWH-18-1-0612), NICHD U54HD090260, the American Epilepsy society (seed grant), and research funding from the Heffer Family and the Segal Family Foundations and the Abbe Goldstein/Joshua Lurie and Laurie Marsh/Dan Levitz families. SL Moshé is the Charles Frost Chair in Neurosurgery and Neurology and acknowledges grant support by NIH U54 NS100064 and NS43209, U.S. Department of Defense (W81XWH-18-1-0612), the Heffer Family and the Segal Family Foundations, and the Abbe Goldstein/Joshua Lurie and Laurie Marsh/Dan Levitz families. PJ Casillas-Espinosa acknowledges funding from the NHMRC Early Career Fellowship (#APP1087172). His institution also has received funding from Eisai, Supernus, KaosKey and Praxis Pharmaceuticals. TM O’Brien acknowledges funding from an NHMRC Program APP1091593 and Investigator APP1176426 and NINDS RFA-NS-16-012: Centers Without Walls for Collaborative Research in the Epilepsies (EpiBios4Rx). His institution also has received consultancy and research funding from UCB Pharma, Eisai, ES Therapeutics, Zynerba, Praxis Pharmaceuticals and BioGen.

Authorship Contributions:

Participated in research design: L. Coles, P. Saletti, C. Lisgaras, P. Casillas-Espinosa, T. O’brien, S. Moshe, and A. Galanopoulou

Contributed analytic tools: U. Mishra

Performed data analysis and interpretation: L. Coles, P. Saletti, C. Lisgaras, P. Casillas-Espinosa, and A. Galanopoulou

Wrote or contributed to the writing of the manuscript: L. Coles, P. Saletti, P. Casillas-Espinosa, J. Cloyd, and A. Galanopoulou. All authors provided contributions to the review and revision of the manuscript.

References

Gorter JA, Aronica E, van Vliet EA. The Roof is Leaking and a Storm is Raging: Repairing the Blood–Brain Barrier in the Fight Against Epilepsy. *pilepsy Curr.* 2019 May-Jun;19(3):177-181

Footnotes:

Funding Information:

The study was supported by National Institutes of Health National Institute of Neurological Disorders and Stroke [Grant U54 NS100064] (EpiBioS4Rx) research grant.

AS Galanopoulou is Editor in Chief of Epilepsia Open and has received royalties for publications from Medlink, Elsevier and Morgan and Claypool publishers. SL Moshé is serving as Associate Editor of Neurobiology of Disease and is on the editorial board of Brain and Development, Pediatric Neurology and Physiological Research. He receives from Elsevier an annual compensation for his work as Associate Editor in Neurobiology of Disease and royalties from 2 books he co-edited. He has received consultant’s fees from UCB and Pfizer. T. O’Brien acknowledges that institution was received consultancy and research funding from UCB Pharma, Eisai, ES Therapeutics, Zynerba, Praxis Pharmaceuticals, and BioGen.
This work was presented as an abstract:

Reprint requests to:

Lisa Coles
Center for Orphan Drug Research
Experimental and Clinical Pharmacology
College of Pharmacy, University of Minnesota
4-214 McGuire Translational Research Facility
2001 6th St SE
Minneapolis, MN 55455
Email: durh0016@umn.edu telephone: 410-926-4788
Legend for Figures

Figure 1. Levetiracetam plasma and brain (LCCX and RCCX) concentrations following a single intraperitoneal dose (200mg/kg) in naïve rats. LCCX: left cerebral cortex; RCCX: right cerebral cortex

Figure 2. Goodness of fit plots for first order, one-compartment PK model. Panel a: predicted concentration versus observed concentration; Panel b: residual versus time; Panel c: residual versus concentration.

Figure 3. Levetiracetam plasma and brain concentrations following a single intraperitoneal (IP) dose of 200 mg/kg LEV administered in naïve rats or immediately after LFPI followed by a subcutaneous (SC) continuous infusion of 200 mg/kg/day LEV for 7 days. LCCX: left cerebral cortex; RCCX: right cerebral cortex

Figure 4. Comparison of predicted and observed plasma LEV concentrations following a single IP dose (200mg/kg) LEV administered in naïve rats or immediately after LFPI followed by SC continuous infusion of 200 mg/kg/day LEV for 7 days. Predicted concentration shown with line, 95% upper and lower confidence intervals with dotted lines, and observed concentrations shown with symbols.
Table I. Levetiracetam pharmacokinetic parameter estimates using a first-order, 1-compartment PK model.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>%RSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ka (1/hr)</td>
<td>0.46</td>
<td>66</td>
</tr>
<tr>
<td>V/F (mL)</td>
<td>73.3</td>
<td>41</td>
</tr>
<tr>
<td>CL/F (mL/hr)</td>
<td>28.0</td>
<td>18</td>
</tr>
<tr>
<td>RUV (%CV)</td>
<td>29%</td>
<td>29</td>
</tr>
<tr>
<td>$t_{1/2}$ (hr)</td>
<td>1.8</td>
<td></td>
</tr>
</tbody>
</table>

Estimates are for typical rat (250 g), %RSE: % relative standard error of the parameter estimate; % CV: % coefficient of variation; Ka, absorption rate constant; V, volume of distribution; CL, clearance; F, bioavailability; RUV, residual unexplained variability; $t_{1/2}$, plasma elimination half-life.
Table II. Mean (SD) levetiracetam brain concentrations and corresponding mean brain-to-plasma ratios in naïve and LFPI rats with continuous 7-day LEV SC treatment.

Time (hr)	Naïve		LFPI					
	RCCX	LCCX	RCCX	LCCX				
Conc (µg/mL)	Brain: Plasma							
1	161 (20.1)	0.54	131 (13.2)	0.63	109 (26.4)	0.72	138 (49.9)	0.90
120	110 (16.7)	0.76	106 (11.3)	0.79	109 (15.4)	1.06	124 (13.0)	1.2
172	12.0 (1.48)	0.72	9.91 (3.93)	0.95	9.55 (5.51)	0.85	18.5 (6.61)	1.4

n=3/group/time point

a: statistically significant difference between RCCX and LCCX of LFPI (p=0.02, Students t-test)
b: statistically significant difference in LCCX concentrations between naïve and LFPI rats (p=0.02, Students t-test)
Figure 1
Figure 2
Figure 3