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Abstract: Type 2 diabetes (T2D) is a rising pandemic worldwide. Diet and lifestyle changes are 

typically the first intervention for T2D. When this intervention fails, the biguanide, metformin, is the 

most common pharmaceutical therapy. Yet, it’s full mechanisms of action remain unknown. In this 

work, we applied an ultrahigh resolution, mass spectrometry-based platform for untargeted plasma 

metabolomics to human plasma samples from a case-control observational study of non-diabetic and 

well-controlled T2D subjects, the latter treated conservatively with metformin or diet and lifestyle 

changes only. No statistically significant differences existed in baseline demographic parameters, 

glucose control, or clinical markers of cardiovascular disease risk between the two T2D groups, which 

we hypothesized would allow the identification of circulating metabolites independently associated 

with treatment modality. Over 3000 blank-reduced metabolic features were detected, with the majority 

of annotated features being lipids or lipid-like molecules. Altered abundance of multiple fatty acids and 

phospholipids were found in T2D subjects treated with diet and lifestyle changes as compared to non-

diabetic subjects: changes that were often reversed by metformin. Our findings provide direct evidence 

that metformin monotherapy alters the human plasma lipidome independent of T2D disease control and 

support a potential cardioprotective effect of metformin worthy of future study. 

Significance Statement: This work provides important new information on the systemic effects of 

metformin in type 2 diabetic subjects. We observed significant changes in the plasma lipidome with 

metformin therapy, with metabolite classes previously associated with cardiovascular disease risk 

significantly reduced as compared to diet and lifestyle changes. While cardiovascular disease risk was 

not a primary outcome of our study, our results provide a jumping-off point for future work into the 

cardioprotective effects of metformin, even in well-controlled type 2 diabetes. 

1. Introduction 

Type 2 diabetes (T2D), often associated with obesity, is a rising pandemic world-wide, with 9.3% of 

adults estimated to have T2D globally: a number that is predicted to rise to 10.9% (700 million 

individuals) by 2045 (International Diabetes Federation, 2020).  T2D comes at a high cost, both in 

terms of human life and economic damage due to loss of productivity and global health expenditures 
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(Ng et al., 2014; International Diabetes Federation, 2017). In 2020, diabetes was the 8th leading cause 

of death in the US (Ahmad and Anderson, 2021). Individuals with diabetes also suffer from a host of 

co-morbidities whose severity increases the longer blood glucose remains inadequately controlled, 

including neuropathy, nephropathy, retinopathy, and microvascular and macrovascular complications 

(Nathan, 1993). Identifying ways to more effectively treat diabetes and its complications are of critical 

importance. 

T2D is exemplified by chronically elevated blood glucose levels caused both by insufficient insulin 

release from the pancreatic β-cells and resistance of the body’s tissues to the effects of insulin. 

Hemoglobin A1c (HbA1c) is a clinical test that quantifies the glycemic state over the previous 2-3 

months. For T2D individuals, current HbA1c targets for vary from 6.5 – 8%, depending on age and 

comorbidities (Qaseem et al., 2018; Garber et al., 2020; American Diabetes Association Professional 

Practice Committee, 2021). T2D disease management typically focuses first on diet and lifestyle 

changes, progressing to pharmaceutical interventions once those fail. Diet and lifestyle management 

focuses on five principles: improving diet, increasing exercise, reducing smoking, reducing alcohol 

consumption, and reducing body weight (Schlesinger et al., 2020). Yet, in a vast majority of individuals, 

diet and lifestyle modifications are insufficiently effective in achieving blood glucose targets, 

particularly long term (Khunti et al., 2013; American Diabetes Association Professional Practice 

Committee, 2021).  

Once pharmaceutical intervention is called for, the biguanide, metformin, is nearly always the first-line 

therapeutic (American Diabetes Association Professional Practice Committee, 2021). Metformin is 

generally accepted as a medication with few severe complications, and, besides initial gastrointestinal 

side effects, is usually well-tolerated (American Diabetes Association Professional Practice Committee, 

2021). Metformin has also been suggested to have cardioprotective benefits in individuals with T2D 

(Eurich et al., 2005; Evans et al., 2006; Holman et al., 2008). With increasing evidence achieving 

HbA1c targets alone is insufficient to prevent adverse outcomes (The NICE-SUGAR Study 

Investigators, 2009), particularly with regards to cardiovascular events (Herman et al., 2005; Skyler et 
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al., 2009; Giorgino et al., 2016), there has been a push for advancing pharmaceutical interventions in 

concert with diet and lifestyle changes (Altaf et al., 2015; Padhi et al., 2020). With nearly 70 years of 

clinical use and a well-established safety profile, metformin is a logical candidate (Holman et al., 2008; 

2021). 

Although there is still some debate in the field, metformin’s primary blood glucose-lowering 

mechanisms are thought to be reduced glucose production and release by the liver and increased lactate 

production in the small intestine (Pernicova and Korbonits, 2014; McCreight et al., 2016; Song, 2016). 

Both of these mechanisms have been linked with alterations in circulating metabolites (Wang-Sattler et 

al., 2012; Floegel et al., 2013; Walford et al., 2014; Guasch-Ferre et al., 2016; Lu et al., 2016; Pallares-

Méndez et al., 2016; Yu et al., 2016; Lai et al., 2020; Zhao et al., 2020). Metabolomics, the endpoint of 

the ‘omics cascade, is well suited to study metabolic disorders like T2D (Dunn and Hankemeier, 2013; 

Guasch-Ferre et al., 2016; Pallares-Méndez et al., 2016). As high throughput and high 

sensitivity/specificity techniques are continually being developed, metabolomics has emerged as an 

approach well-suited to provide coverage of the changes that occur in clinical biosamples because of 

disease status and intervention.  

In this study, we applied a high-throughput, ultrahigh resolution Flow Injection Electrospray (FIE) 

Fourier Transform Ion Cyclotron Resonance (FTICR) mass spectrometry (MS) workflow to plasma 

samples from three groups—non-diabetic subjects, T2D subjects treated with diet and lifestyle 

modifications, and T2D subjects on metformin monotherapy—quantifying the relevant abundance of 

metabolic features among groups using an untargeted approach. Notably, all T2D subjects had good-

to-excellent glucose control, and subjects were well-matched for potential confounders such as age and 

body mass index (BMI). Over 3000 discrete metabolic features were significantly expressed per group, 

with over 2000 being annotated by chemical name or structure. Family and pathway analyses revealed 

key changes in the lipidome, particularly with regards to fatty acids and related molecules, were strongly 

associated with metformin monotherapy, independent of commonly used measurements of T2D disease 

control and cardiovascular disease (CVD) risk. 
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2. Materials and Methods 

2.1. Human Subjects 

All human subjects research was conducted in accordance with the standards set out by the World 

Medical Association (WMA) Declaration of Helsinki “Ethical Principles for Medical Research 

Involving Human Subjects” as approved by the University of Wisconsin (UW) Health Sciences 

Institutional Review Board (IRB) protocol number UW 2013-1082. Study design and participant 

recruitment has been previously described (Truchan et al., 2021). Briefly, potentially eligible subjects 

were UW Hospitals and Clinics (UWHC) Endocrinology or Internal Medicine patients who met 

baseline inclusion and exclusion criteria by consent-waived electronic medical record (EMR) search. 

Briefly, inclusion criteria included age 18-74 years old, not pregnant or lactating, no anemia or grossly 

abnormal kidney or liver function tests, no known autoimmune diseases or inflammatory disorders, and, 

for T2D subjects, no diagnosis of diabetes besides T2D. Potentially-eligible subjects were contacted by 

phone. Those interested in participating provided written informed consent, and a fasting plasma sample 

was collected. The full clinical cohort comprised 35 non-diabetic and 132 T2D subjects, as described 

previously (Truchan et al., 2021; Fenske et al., 2022). For this work, plasma samples from 15 T2D 

subjects treated conservatively with diet/lifestyle modifications or metformin monotherapy and 14 ND 

controls matched for age and BMI were selected for downstream untargeted metabolomics.  

 

2.2. Metabolite extraction  

The extraction was performed as previously described (Zhu et al., 2021). In brief, a 30 µL aliquot was 

taken from thawed plasma samples, mixed with 60 µL of chilled liquid chromatography (LC)-MS grade 

methanol. The samples were then vortexed, mixed with a nutating mixer, and centrifuged. 50 µL of 

supernatant was mixed with 50 µL of water for flow injection electrospray FTICR MS analysis.  

 

2.3. FTICR MS metabolomics analysis 

FIE-FTICR MS experiments were performed using a Waters nanoACQUITY UPLC (Waters 

Corporation, Milford, MA, USA) coupled to a Bruker solariX 12 T FTICR mass spectrometer (Bruker 
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Daltonics, Bremen, Germany) without an LC column. 5 µL of each metabolite extract was directly 

injected in triplicate from the Waters nanoACQUITY UPLC into the FTICR MS via 100 µm x 40 cm 

PEEK tubing. The mobile phase was 50:50 methanol:water with 0.1% formic acid or 10 mM ammonium 

acetate added for positive or negative modes, respectively, with a flow rate of 20 µl/min. Ions were 

accumulated for 0.1 s, and an 8 M transient size applied, with 50 scans collected. The m/z (mass/charge 

ratio) range was set to 40-1500, with 50 m/z Q1 mass. 50 scans were collected for each mass spectrum. 

Dry gas flow was set to 4 L/min at 150 ºC. Largest frequency values for octopole (5 MHz), quadrupole 

(2 MHz), and transfer hexapole (6 MHz) were used to improve ion transition. Time of flight was set to 

0.8 ms. Sweep excitation power was set to 27%. The estimated resolving power at 400 m/z was 190,000. 

The FTICR MS was calibrated with 1 mM Sodium trifluoroacetate (NaTFA) in both positive and 

negative modes before experiments.  

 

2.4. Data Analysis 

Mass spectra were processed and analyzed using DataAnalysis 4.3 (Bruker Daltonics, Bremen, 

Germany). Bucket (mass) lists in positive and negative ion modes were generated using the T-ReX 2D 

workflow in MetaboScape 4.0. The maximum Δm/z was set to 0.50 mDa. The maximum charge state 

was set to 3, and the intensity threshold was set to 0. The minimum number of features for the result 

was set to 5. Bucket lists in positive and negative ion modes were merged into one bucket list with 1.0 

ppm m/z tolerance. Features with a ratio of sample average:blank average < 10 were deleted. The 

merged bucket list was annotated with the SmartFormula function in MetaboScape 4.0 (Bruker 

Daltonics, Bremen, Germany) with 2.0 ppm as the narrow Δm/z cutoff, 5.0 ppm as the wide Δm/z 

cutoff, 20 as the narrow mSigma cutoff, and 50 as the wide mSigma cutoff. Elements were set to 

CHNOPS, and element ratio filters were applied with common element ratio presets in MetaboScape 

4.0, including 0.2-3.1 H/C ratio, 0-1.3 N/C ratio, 0-1.2 O/C ratio, 0-0.3 P/C ratio, 0-0.34 P/O ratio, and 

0-0.8 S/C ratio. Electron configuration was set to Even. Heuristic element count probability check was 

applied. The putative metabolites were annotated by METLIN with a 2 ppm mass error cutoff. In most 

cases, the isomer with the lowest METLIN number was reported. Lipids and lipid-like molecules were 
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reported as a combined general chemical name with total fatty acid carbon number:number of double 

bonds. In a few cases, more than one isomer with similar structures and chemical properties were 

reported for one mass. SmartFormula and Metlin annotations provide information on the chemical 

formulas and chemical names, respectively (Smith et al., 2005; Guijas et al., 2018). InChI keys, HMDB 

IDs, and KEGG IDs were acquired using CTS servers from the METLIN name. InChI keys were used 

to classify the METLIN annotations using “ClassyFire,” and annotated metabolites categorized 

according to their class information (Djoumbou Feunang et al., 2016). PubChem IDs were gathered 

using the PubChem server translator. Statistical analysis was performed using MetaboScape 4.0 and the 

online software MetaboAnalyst (Chong et al., 2018). MetaboScape was used for PCA analysis. 

MetaboAnalyst was used for pathway analysis, enrichment analysis, and statistical analyses (e.g., heat 

map, significant features). All p-values are reported as false discovery rate (FDR)-corrected. ChemRich 

plots were made using the database information from CTS, PubChem IDs and p-values from 

MetaboAnalyst to generate a plot of chemical similarity and significance. 

3. Results 

3.1. Validation of the Patient Cohort to Detect Treatment-specific Changes in the Metabolome. 

Biobanked plasma samples from seven T2D individuals treated with diet and lifestyle modifications 

(T2D-DL), eight T2D individuals treated with metformin monotherapy (T2D-M) and 14 non-diabetic 

(ND) subjects, well-matched for age and BMI, were selected from a larger clinical cohort described in 

Truchan and colleagues and Fenske and colleagues (Truchan et al., 2021; Fenske et al., 2022). The 

mean duration of disease was nearly identical between T2D-DL and T2D-M groups (~3 years). As 

expected, HbA1c and fasting blood glucose were both elevated in T2D subjects as compared to ND, 

with no statistically significant differences between the T2D groups, and no T2D individuals had 

HbA1c levels above 8.1%, indicating good-to-excellent glucose control (Table 1). Fasting glucose and 

fasting insulin were used to calculate insulin resistance using the Homeostatic Model Assessment for 

Insulin Resistance (HOMA-IR) (Matthews et al., 1985). Neither fasting insulin nor HOMA-IR were 

significantly different among the groups (Table 1). Common CVD risk factors, including systolic blood 

pressure, diastolic blood pressure, total cholesterol, HDL, LDL, triglycerides levels, were also similar 
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(Table 1). As these values can be influenced by supplements or pharmaceuticals commonly prescribed 

to T2D patients, the rates of daily omega-3/fish oil supplement, statin, and prophylactic (i.e., low-dose) 

aspirin use were recorded, and none were significantly different among the T2D groups, although more 

T2D subjects were using prophylactic aspirin than ND (Table 1). Significantly more T2D subjects had 

been prescribed an angiotensin-converting enzyme inhibitor (ACEi), angiotensin receptor blocker 

(ARB), or beta-blocker (BB) for high blood pressure than ND subjects, with no difference between the 

T2D groups (Table 1). Lipoprotein-associated phospholipase A2 (Lp-PLA2) is a marker of arterial 

inflammation associated with CVD risk (Dada et al., 2002), and there was a trend (p=0.06) towards 

elevated Lp-PLA2 in the T2D groups as compared to ND, with no difference between the T2D groups 

(Table 1). No subjects had clinically elevated erythrocyte sedimentation rate (ESR) or C-reactive 

protein (CRP), indicating the absence of acute inflammation or infection (Table 1). Taken together, 

both T2D groups had nearly identical diabetes control and CVD risk as measured by well-accepted 

clinical markers. 

 

3.2. “Lipids and Lipid-like Molecules” are the Largest Superclass of Plasma Metabolites Detected by 

an Untargeted FIE-FTICR MS Approach. 

We employed a FIE-FTICR MS workflow previously developed and validated for high-throughput, 

ultrahigh resolution untargeted metabolomics analysis of pre-clinical plasma samples (Schaid et al., 

2021; Zhu et al., 2021). Using MetaboScape, over 3840 discrete metabolic features, as defined by 

unique m/z, were detected above background, with most being shared among groups (Figure 1A, 

hatched bars). Of these features, 2925 could be annotated by chemical formula, again, with most 

(1956) being shared among groups (Figure 1A, solid bars, and Figure 1B). 251 were limited to the 

ND group, 11 limited to the T2D-DL group, and 10 limited to the T2D-M group (Figure 1B). 

Performing a PCA analysis, samples from the T2D-DL group clustered the most strongly together, with 

significant overlap between the ND and T2D-M groups, with only the ND group having samples outside 

of the 95% confidence limit (Figure 1C). A schematic of the analysis workflow can be found in Figure 
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S1, and a full list of significantly expressed metabolic features with can be found in Supplementary 

File 1. 

 

Based on the chemical ontology of annotated metabolites, the “Lipids and lipid-like molecules” 

superclass comprised over 67% of annotated metabolites, with the combined “glycerophospholipids” 

and “fatty acyls” classes accounting for two-thirds (Figure 1D). Of the polar metabolites, “Organic 

acids and derivatives” was the second most abundant superclass, with 48 annotations, and was primarily 

composed of the subclass “amino acids, peptides, and analogues” (Figure 1D). Unsupervised 

hierarchical clustering of the MetaboScape-annotated features revealed ND samples strongly segregated 

from the T2D groups, with some overlap between the two T2D groups (Figure 1E).  

 

3.3. A Broad Shift to Steroidogenesis T2D groups 

A wide range of metabolite sets were enriched in the combined T2D groups vs. ND group. The 

metabolite set with the highest fold enrichment was “Sphingolipid metabolism,” while “Purine 

metabolism” had the highest statistical significance (Figure 2A): both components in steroidogenesis, 

which was also significantly enriched. In agreement with the metabolite set analysis, the purine 

metabolism pathway was the most significantly altered, while changes to the linoleic acid metabolism 

pathway were the most highly affected by T2D status (Figure 2B). A ChemRich analysis, which 

clusters based on chemical similarity, highlights the broad differences between the combined T2D 

group and ND (Figure 2C). Among these differences were increases in fatty acid abundance, including 

both saturated and unsaturated fatty acids. Important to note is the observed increase in hexoses, as 

would be expected in plasma samples from T2D subjects. There were also changes to multiple lipid 

classes, including phosphatidylethanolamines (PEs), phosphatidylcholines (PCs), and sphingomyelins 

(SMs), with most of them being increased (Figure 2C).  

 

Separate pairwise analyses were also performed among the ND, T2D-DL, and T2D-M groups. 

Similarly, to the combined T2D analysis, “Sphingolipid Metabolism” was the most highly enriched and 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on March 14, 2023 as DOI: 10.1124/jpet.122.001493

 at A
SPE

T
 Journals on A

pril 18, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


 

  12

most significantly impacted metabolite set in the T2D-DL vs. ND group (Figure S2A), purine 

metabolism the most significantly altered pathway (Figure S2B), and linoleic acid metabolism was the 

most highly impacted pathway (Figure S2B). The T2D-DL group showed a broad shift in metabolism, 

with numerous fatty acid classes increased, including saturated, unsaturated, and hydroxy fatty acids 

(Figure S2C). PCs, PSs and amino acids were increased, while cholesterol esters and unsaturated 

triglycerides were decreased (Figure S2C). Similar results for metabolite set and pathway impact 

analyses when comparing the T2D-M vs. ND groups (Figures S3A, S3B). Interestingly, the ChemRich 

analysis showed far fewer differences in chemical similarity between the T2D-M and ND as compared 

to either the combined T2D or T2D-DL analyses (Figure S3C). PEs, unsaturated triglycerides, and 

cholesterol ethers as compared to the ND group (Figure S3C). As compared to the ND group, the T2D-

M group had SM and PC lipid species that were increased, while others were decreased. Complete lists 

of significantly altered metabolites from each analysis can be found in Supplementary Tables S1 and 

S2.   

 

3.4. Changes in Fatty Acid Metabolism by T2D Treatment  

Based on the significant differences observed in the abundance of fatty acids, their conjugates, and 

related metabolite groups such as phospholipids (Table 2 and Supplementary Tables S1 and S2), we 

honed in on a subset of these metabolites for a more detailed analysis. Even though there were no 

significant differences between the two T2D groups with regards to T2D control and other important 

biometric and clinical parameters, there was a clear alteration in fatty acid metabolism in the T2D-DL 

group as compared to the ND group, with many of these changes being ameliorated with metformin 

treatment. The longer chain acylcarnitines, octanoylcarnitine and palmitoylcarnitine, were increased in 

the T2D-DL group, with no difference between the ND and the T2D-M groups (Figure 3A). The 

building block, carnitine, was lowest in the T2D-M group, albeit not with statistical significance. Higher 

levels of palmitoyl carnitine have been linked to disorders of fatty acid oxidation (Bjørndal et al., 2018), 

and an analysis of fatty acid abundance among groups also showed increased levels in the T2D-DL 

group, with a return to ND levels in the T2D-M group (Figure 3B). This trend held true for both 
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saturated fatty acids, including palmitic and stearic acid, as well as unsaturated fatty acids, including 

oleic, linoleic, and arachidonic acid. Saturated hydroxy fatty acids were not altered among the groups, 

including the precursor to fatty acid esters of hydroxy fatty acids (FAHFAs), 2-hydroxy stearic acid 

(Figure 3C). Unsaturated hydroxy fatty acids did not follow this trend, with ricinoleic acid being 

increased in both T2D groups as compared to ND (albeit with statistical significance only for T2D-DL), 

while the abundance of dimorphecolic acid and α-kamlolenic acid decreased (Figure 3C). Finally, 

FAHFA abundance was increased across the board in the T2D-DL group as compared to ND, with a 

normalization in plasma from individuals treated with metformin (Figure 3D). 

 

3.5. Changes in Phospholipid Abundance with Metformin Therapy 

A volcano plot analysis revealed several metabolic features had a statistically significant fold change 

of > 2 between the two groups (Figure 4A). In exploring the metabolites that were altered, we observed 

decreases in unsaturated fatty acids and phospholipids composed of these fatty acids, including PCs, 

PEs, and SMs, in the T2D-M group compared to T2D-DL group (Figure 4B). In the pro-inflammatory 

state, Lp-PLA2 cleaves oxidized fatty acids from the sn2 position of phospholipids (Rosenson and 

Stafforini, 2012), and increased levels of Lp-PLA2 are associated with increased risk of CVD (Garza et 

al., 2007). While no differences in Lp-PLA2 levels were observed between the two T2D groups, the 

levels of oxidized PCs were significantly increased levels in the T2D-DL group as compared to ND and 

were normalized by metformin treatment (Figure 4C). The trend of increased lipid abundance in the 

T2D-DL group was particularly strong for lipids with higher peak intensity, including SM (d34:1) and 

PC (38:6) (Figure 4D). For lower intensity lipids, such as SM(d36:2) and PC(36:5), we also observed 

the same trend, indicating a global shift independent of any effect of lipid species abundance (Figure 

4E). 

4. Discussion 

4.1. Summary of results 

In this work, we compared the abundance of plasma metabolites in patients with well-controlled 

T2D treated conservatively with diet and lifestyle interventions or metformin monotherapy, thereby 
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excluding any global effects of uncontrolled T2D on our results. Within the T2D groups, subjects had 

similar BMI, HOMA-IR, and fasting insulin levels, thereby excluding global effects of obesity and 

insulin resistance. Significant changes in a number of lipids and lipid-like molecules, including 

carnitines, FFAs, hydroxy fatty acids, FAHFAs, and phospholipids were found, with patients in the 

T2D-M group often having levels similar to ND controls.  

 

4.2. Metabolites associated with CVD risk are reduced with metformin monotherapy 

With recent studies debating the therapeutic benefits of intensive glycemic control in T2D 

(Rodriguez-Gutierrez et al., 2019), it is important to understand what mechanisms outside of glucose 

control may contribute to the benefits of T2D therapeutics. Previous studies have shown changes the 

levels of branched chain amino acids (BCAAs), phospholipids, fatty acids, triglycerides, acylcarnitines, 

and small molecular weight compounds in individuals with T2D (Wang-Sattler et al., 2012; Floegel et 

al., 2013; Walford et al., 2014; Guasch-Ferre et al., 2016; Lu et al., 2016; Pallares-Méndez et al., 2016; 

Yu et al., 2016; Lai et al., 2020; Zhao et al., 2020; Truchan et al., 2021). These shifts can occur prior to 

the development of hyperglycemia, highlighting the global changes of the disease (Tabák et al., 2009). 

Metformin has multiple known potential modes of action, including the inhibition of the mitochondrial 

enzymes, glycerol-3-phosphate dehydrogenase and complex 1 of the electron transport chain (Minamii 

et al., 2018). Inhibiting these enzymes results in a reduction of substrate utilization and manifests 

systemically as reducing hepatic gluconeogenesis (Minamii et al., 2018).  

The first lipid class we investigated was acylcarnitines, which function in transporting fatty acids 

into the mitochondria. The T2D-DL group had the highest levels of acylcarnitines, with subjects in the 

T2D-M group having similar levels to those in the ND group. Acylcarnitines have previously been 

reported as a proxy for fatty acid metabolism, with increased levels in circulation indicating β-oxidation 

dysfunction (Strand et al., 2017; Flam et al., 2022). This result is consistent with previous studies 

indicating that individuals with T2D have increased levels of short, medium, and long-chain 

acylcarnitines (Sun et al., 2016; Strand et al., 2017), which are reflective of cardiac metabolism 

(Makrecka-Kuka et al., 2017). However, our results differ from these previous studies, as the T2D-M 
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group had similar levels of acylcarnitines to the ND group. Some hypothesize that medium chain 

acylcarnitines are increased early in T2D pathogenesis, with an increase in long-chain at later time 

points as fatty acid oxidation is further disrupted (Schooneman et al., 2013). As all of our subjects had 

well-controlled and conservatively treated T2D, though, changes in acylcarnitines were specific to 

metformin treatment. Circulating acylcarnitines have been identified as correlating with CVD morbidity 

and mortality (Hosseinkhani et al., 2022; Paulin Beske et al., 2022; Storesund et al., 2022). Our results 

suggest metformin has beneficial effects on these outcomes independent of T2D disease status. 

In the T2D state, a change in the abundance of fuel substrates exists, with a shift towards greater 

utilization of FFAs (Herman et al., 2005). FFAs and their metabolites are known to play a role in 

inhibiting insulin secretion and signaling, making them a crucial link between metabolic disorder and 

disease manifestation (Boden and Shulman, 2002; Bosma et al., 2022). Recently, higher circulating 

FFAs have also been linked with elevated risk of cardiovascular events, independent of T2D status and 

glycemic control (Yu et al., 2021; Hu et al., 2022; Lluesa et al., 2022; Thirumathyam et al., 2022). In 

the context of these previous studies, a reduction in circulating FFAs with metformin further support 

beneficial effects of metformin even in well-controlled T2D patients. 

FAHFAs were first reported to correlate with insulin sensitivity, with evidence they are reduced 

in insulin-resistant individuals (Yore et al., 2014). Yet, circulating FAHFA levels were also found to 

correlate with several markers of cardiovascular function in healthy human subjects (Dongoran et al., 

2020). In our study, individuals in the T2D-DL group had higher mean FAHFA abundance than those 

treated with metformin. As HOMA-IR was not statistically different between the T2D-DL and T2D-M 

groups, our data support an association of FAHFA levels with CVD risk independent of T2D status. 

Yet, few of our subjects had clinically-significant HOMA-IR values, and, in Yore and colleagues, the 

change in circulating palmitic acid esthers of hydroxystearic acid (PAHSA) levels occurred at a later 

time point in T2D disease progression than our cohort (Yore et al., 2014). Additionally, only some 

PAHSA isomers have been shown to elicit an anti-inflammatory response in mice. In this work, we 

measured total PAHSAs and not isomer-specific, which requires a targeted method (Moraes-Vieira et 

al., 2016; Kolar et al., 2018). An additional factor to consider is PAHSA has also been shown to increase 
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with exercise (Brezinova et al., 2020), and we do not have exercise data for our clinical cohort. Taken 

together, these differences could explain some of the discrepancies in our data compared to previous 

reports and caveats of our study that will require additional investigation to deconvolute. 

In our study, phospholipid abundance decreased with metformin treatment, indicating a change 

in nutritional overload. The acyl chains of phospholipids with higher degrees of unsaturation have 

previously reported to increase in diabetic patients by 45-64% compared to nondiabetic patients 

(Chuang et al., 2012). This is consistent with our findings of increased phospholipid levels in the T2D-

DL group. However, we also observed these phospholipids decreased in the T2D-M group, indicating 

the potential that phospholipids are sensitive to overall energy state. Further, in T2D-M subjects, 

phospholipid levels were more similar to the ND group than the T2D-DL groups, demonstrating the 

effects of metformin on energy balance.  

Oxidized phospholipids have previously been shown to increase in insulin resistant individuals 

and be associated with the pathogenesis of oxidative stress-related diseases, including CVD (Fruhwirth 

et al., 2007; Sun et al., 2016; Que et al., 2018). Yet, in previous work, increased circulating oxidized 

phospholipids correlated with Lp-PLA2 levels (Pantazi et al., 2022). In our study, we found oxidized 

phospholipids were specifically elevated in the T2D-DL group, even though there was no statistically 

significant difference between the number of subjects in the T2D-DL and T2D-M groups who had 

clinically elevated Lp-PLA2 levels. Taken together with the increased levels of hydroxy fatty acids, this 

finding indicates metformin improves the oxidized lipid profile independent of this common clinical 

marker of CVD risk. 

Hydroxy fatty acids have been linked to a variety of diseases, including cancer, inflammatory 

bowel disease, and neurodegenerative diseases (Li et al., 2020). Additionally, a link has been 

demonstrated between insulin resistant states and increased vascular risk via hydroxy fatty acids and 

increased secretion of plasminogen activator inhibitor type 1 (PAI-1) (Marx et al., 1999; Vangaveti et 

al., 2010). Our data shows the two T2D groups displayed similar trends in hydroxy fatty acids as 

compared to the ND group. As hydroxy fatty acids can be a proxy for reactive oxygen species (Wang 

et al., 2009), this indicates a potential underlying mechanism of T2D that is not controlled by metformin 
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treatment. Yet, in our study, we found reduced levels of oxidized fatty acids, suggesting further study 

with a more comprehensive, targeted panel of hydroxy fatty acids is warranted. 

 

4.3. Improved pancreatic β-cell function may occur with metformin therapy.  

Prostaglandin E2 (PGE2), an arachidonic acid metabolite, is elevated in pancreatic islets from T2D mice 

and human organ donors, actively contributing to the β-cell dysfunction of the disease (Kimple et al., 

2013; Neuman et al., 2017; Schaid et al., 2021; Zhu et al., 2021; Bosma et al., 2022). Circulating PGE2 

is rapidly degraded, and a targeted lipidomics approach is required to detect arachidonic acid 

metabolites. Yet, in previous work, the abundance of arachidonic acid in membrane phospholipids was 

significantly elevated in pancreatic islets from T2D mice as compared to ND, correlating directly with 

the concentration of PGE2 produced (Kimple et al., 2013; Neuman et al., 2017), and incubating islets 

from T2D mice with eicosapentaenoic acid (EPA), which competes with arachidonic acid for the same 

site in membrane phospholipids, significantly improved T2D β-cell dysfunction (Neuman et al., 2017). 

In this work, we found elevated levels of arachidonic acid and its precursor, linoleic acid, in T2D 

subjects treated with diet and lifestyle modifications as compared to ND controls, with metformin 

therapy reversing these changes. While we did not directly measure β-cell function in our study, others 

have found metformin augments insulin secretion, even in the context of reduced insulin demand 

(Vazquez Arreola et al., 2022). Therefore, it is possible decreased β-cell PGE2 is at least partially 

responsible for metformin’s effects.   

 

4.5. Limitations and conclusions. 

Our results demonstrate in a small population of well-controlled T2D patients, metformin treatment 

significantly improved the circulating profiles of a number of lipids and lipid-like molecules, some of 

which have been independently correlated with CVD risk. Yet, as these metabolites are not clinically 

validated, we are unable to unequivocally conclude metformin reduces CVD risk independent of T2D 

control. Another limitation of our study is its design did not include longitudinal sample collection or 

long-term follow-up: a design required in order to confirm a reduced CVD risk with metformin therapy. 
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Even so, our findings suggest an untargeted plasma metabolomics approach may provide a much richer 

set of biomarkers to quantify CVD risk. Future studies with larger populations and targeted approaches 

will be necessary to validate and advance our results into improved clinical care. 
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Figure Legends: 

 

Figure 1. Overview of Metabolic Features, Distribution, and Classes Among Groups. A. Bar chart 

displaying the total number of accurate mass features (hatched bars) and features annotated by chemical 

formula in MetaboScape (solid bars). B. Venn diagram showing the number of shared and unique 

MetaboScape-annotated features among the three groups. C. PCA plot of MetaboScape-annotated 

features among the three groups. D. Chemical classification of Metlin-annotated metabolic features 

separated into nonpolar (yellow) and polar (blue) metabolites. E. Heat map of MetaboScape-annotated 

features generated by unsupervised hierarchical clustering. 

 

Figure 2. Comparison of enriched metabolic pathways for the ND group versus the combined 

T2D groups. A. Pathway enrichment analysis showing pathways that are significantly altered at p =0.05 

level. B. Pathway analysis with significantly altered metabolite groups highlighted. C. ChemRich 

analysis using chemical similarity to show the trend in features that are modified. In C, Blue is 

downregulated compared to control, red is up-regulated, and purple is mixed. 

 

Figure 3. Fatty acid metabolism shifts in response to T2D and metformin treatment. A. 

Acylcarnitines are upregulated in T2D-DL group and return to baseline in the T2D-M group. B. Fatty 

acids, both saturated (left) and unsaturated (right) are increased in T2D-DL and similar between ND 

and T2D-M. C. Hydroxy fatty acids are similar between the groups with saturated (left) showing no 

difference and unsaturated (right) showing changes in the T2D groups compared to ND. D. FAHFAs 

are all upregulated in T2D-DL and significantly decrease in the T2D-M group. * p-value < 0.05, ** p-

value < 0.01, *** p-value < 0.001. 

 

Figure 4. Metformin impacts lipid metabolism in T2D. A. Volcano plot of T2D-DT2D-M/T2D-DL 

with 11 features increased in the T2D-M group and 39 decreased at cutoff of 2-fold change and p-

value<0.05. B. ChemRich plot highlighting lipophilic compounds (Xlog P) values are greater than 7. 
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C. Selected oxidized lipids. D. Selected highly abundant lipids. E. Lower abundant lipids. * p-value < 

0.05, ** p-value < 0.01, *** p-value < 0.001. 
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Table 1. Demographic and clinical parameters of patient cohort. Unless otherwise indicated, data 

is presented as average ± standard deviation. BMI, body mass index; HbA1c, glycated hemoglobin; 

HOMA-IR, Homeostatic Model Assessment for Insulin Resistance; HDL, high-density lipoprotein; 

LDL, low-density lipoprotein; ACEi, Angiotensin-converting enzyme inhibitor; ARB, angiotensin 

receptor blocker; BB, beta-blocker; ESR, erythrocyte sedimentation rate; Lp-PLA2, lipoprotein-

associated phospholipase A2.  

Demographic and 

Clinical Data 

ND (n = 14) T2D-DL (n=7) T2D-M (N=8) p, ND vs. T2D p, T2D-DL vs. 

T2D-M 

Race = White, 

non-Hispanic, n 

(%) 

14 (100) 7 (100) 6 (75) 0.157 0.155 

Female, n (%) 10 (71.4) 6 (85.7) 4 (50) 0.782 0.143 

Age, y (Range) 48.4  ± 10.9 (31 

– 70) 

57 ± 8.7 (43 – 

67) 

54 ± 9.2 (41 – 

64) 

0.067 0.530 

BMI, kg/m2 

(Range) 

30.9 ± 5.3 (24.7 

– 42.3) 

35.0 ± 8.9 (23.4 

– 47.3) 

33.7 ± 5.0 (25.6 

– 40.8) 

0.149 0.744 

Duration of 

Disease, y (Range) 

- 2.9 ± 2.7 (0.5 – 

7) 

3.1 ± 4.0 (0.5 – 

10) 

- 0.884 

HbA1c, % 

(Range) 

5.27 ± 0.19 (4.8 

– 5.5) 

6.50 ± 0.80 (5.9 

– 8.1) 

6.64 ± 0.48 (6.1 

– 7.5) 

p < 0.0001* 0.688 

Fasting Glucose, 

mg/dl (Range) 

91.9 ± 7.1 (83 – 

107) 

115.1 ± 22.9 (91 

– 194) 

135.0 ± 55.0 (96 

– 263) 

0.012* 0.433 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on March 14, 2023 as DOI: 10.1124/jpet.122.001493

 at A
SPE

T
 Journals on A

pril 18, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


 

  35

Fasting Insulin, 

μIU/ml (Range) 

3.92 ± 2.39 (0.64 

– 7.96) 

4.04 ± 1.53 (1.55 

– 6.51) 

8.32 ± 11.5 (1.38 

– 35.87) 

0.316 0.349 

HOMA-IR > 2, n 

(%) 

0 (0) 1 (14.3) 2 (25) 0.077 0.522 

Total Cholesterol, 

mg/dl (Range) 

179.6 ± 31.8 

(124 – 225) 

179.7 ± 43.0 

(118 – 256) 

178.6 ± 44.6 

(110 – 223) 

0.971 0.962 

HDL, mg/dl 

(Range) 

58.2 ± 8.5 (26 – 

101) 

54.3 ± 6.1 (37 – 

85) 

49.4 ± 6.7 (27 – 

75) 

0.323 0.602 

LDL, mg/dl 

(Range) 

93.9 ± 31.2 (40 – 

153) 

99.9 ± 10.2 (53 – 

145) 

86.3 ± 14.4 (32 – 

154) 

0.920 0.468 

Triglycerides, 

mg/dl (Range) 

91.9 ± 8.5 (56 – 

523) 

126.9 ± 22.7 (68 

– 254) 

209.4 ± 36.9 (82 

– 396) 

0.407 0.089 

On Statin, n (%) 2 (14.2) 2 (28.6) 4 (50) 0.130 0.435 

On Omega-3/Fish 

Oil, n (%) 

0 (0) 2 (28.6) 1 (12.5) 0.082 0.474 

BP, Systolic, 

mm/Hg 

120.2 ± 12.6 

(106 – 152) 

121.6 ± 23.4 (90 

– 159) 

113.6 ± 10.6 

(101 – 132) 

0.283 0.874 

BP, Diastolic, 

mm/Hg 

76.4 ± 7.5 (62 – 

90) 

72.4 ± 13.0 (60 – 

95) 

73.3 ± 5.9 (65 – 

84) 

0.283 0.874 
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On 

ACEi/ARB/BB, n 

(%) 

1 (7.1) 3 (42.9) 5 (62.5) 0.006* 0.483 

On Aspirin, n (%) 1 (7.1) 3 (42.9) 6 (75.0) 0.002* 0.234 

CRP > 2, n (%) 0 (0) 0 (0) 0 (0) 1.000 1.000 

ESR > 20, male, 

or > 30, female, n 

0 (0) 0 (0) 0 (0) 1.000 1.000 

Lp-PLA2 > 200, n 2 (14.3) 4 (57.1) 3 (37.5) 0.060 0.447 

 

*, difference in means is statistically significant. 
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Table 2. Significantly altered metabolites between diet and lifestyle (T2D-DL) versus metformin 

(T2D-M) in diabetic patients. 

Class/Pathway and Metabolites InChI Key p(FDR) 

Ratio T2D-

DL vs. T2D-

M 

Amino acids, peptides, and analogues  

4-Methylene-glutamate RCCMXKJGURLWPB-BYPYZUCNSA-N 0.0390 1.30 

Carbohydrates and carbohydrate conjugates  

Dulcitol FBPFZTCFMRRESA-GUCUJZIJSA-N 0.0440 0.34 

Cholestane steroids  

Cholesterol HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.0312 0.80 

Diterpenoids  

Phytenic acid WDWBNNBRPVEEOD-PFXVRADUSA-N 0.0499 0.77 

Fatty acid esters  

Palmitoylcarnitine XOMRRQXKHMYMOC-OAQYLSRUSA-N 0.0111 0.64 

Fatty acids and conjugates  

10,13-nonadecadienoic acid FLYBGKXSHCVONZ-HZJYTTRNSA-N 0.0312 0.34 

17-methyl-6-octadecenoic acid QWCJNFBLSZGETP-CLFYSBASSA-N 0.0313 0.67 

2-heptadecylenic acid GEHPRJRWZDWFBJ-FOCLMDBBSA-N 0.0076 0.63 

Eicosanedioic acid JJOJFIHJIRWASH-UHFFFAOYSA-N 0.0044 0.56 

Gaidic acid ZVRMGCSSSYZGSM-CCEZHUSRSA-N 0.0124 1.69 
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Myristoleic acid YWWVWXASSLXJHU-WAYWQWQTSA-N 0.0141 0.51 

OAHSA OCHJVQODRYVDAA-YPKPFQOOSA-N 0.0218 0.71 

Oleic Acid ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.0003 1.63 

Oleic Acid ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.0201 0.71 

SAHSA NQJLCZWOOVLQNP-UHFFFAOYSA-N 0.0146 0.76 

Fatty alcohols  

Artemoin A KKUONIIRIFHWJC-UHFFFAOYSA-N 0.0026 0.41 

Glycerophosphocholines  

PC (34:2) JLPULHDHAOZNQI-ZTIMHPMXSA-N 0.0013 0.67 

PC (34:4) PWFGSGJBCRORHV-DVHMRFIGSA-N 0.0055 3.28 

PC (36:2) ZRTZULWIAWDUBY-UXSLIEDSSA-N 0.0348 0.81 

PC (36:5) KLTHQSWIRFFBRI-CPFPVJFHSA-N 0.0440 0.59 

PC (38:6) IESVDEZGAHUQJU-ZLBXKVHBSA-N 0.0001 0.76 

PC (40:6) YYWYJAHZRFSIIU-MRFSEBLPSA-N 0.0113 0.75 

PC (o-38:4) IRWRFKUTKSUFST-MDYGELLQSA-N 0.0408 0.78 

PC (o-38:5) VJNPDLZENXBRLB-MQEDXBOASA-N 0.0313 0.57 

PC (o-38:6) QQQQNYAHSSIZBU-HIQXTUQZSA-N 0.0026 0.29 

Glycerophosphoethanolamines  

PE (40:4) MHUZXLUKTLNHIX-GUNPMBPGSA-N 0.0055 0.73 

PE (p-36:4) KDMBUUZGCXQNBE-XBICFDGKSA-N 0.0312 0.29 
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PE (p-38:5) VWNWYWMBTKYEEL-SXDACRMGSA-N 0.0119 0.30 

PE (p-38:6) WVGALBKSWOUIEZ-XNHMFJFDSA-N 0.0248 0.39 

Glycerophosphoserines  

PS (o-36:0) YPXDUVWMKVFZDW-RGULYWFUSA-N 0.0397 0.43 

PS (o-36:1) NHFUOLYNPLVMLN-BFCPHGQOSA-N 0.0440 0.40 

Class/Pathway and Metabolites InChI Key p(FDR) 

Ratio (T2D-

DL/T2D-M) 

Lineolic acids and derivatives  

Linoleic acid OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.0296 0.73 

Linolenic acid DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.0194 0.72 

Monoacylglycerols  

MG (14:0) TVIMZSOUQXNWHO-UHFFFAOYSA-N 0.0440 0.77 

MG (16:0) QHZLMUACJMDIAE-SFHVURJKSA-N 0.0125 0.75 

MG (16:1) CXUXMSACCLYMBI-FPLPWBNLSA-N 0.0026 0.63 

Phosphosphingolipids  

SM (d32:1) KYICBZWZQPCUMO-PSALXKTOSA-N 0.0055 0.75 

SM (d34:1) RWKUXQNLWDTSLO-GWQJGLRPSA-N 0.0001 0.72 

SM (d36:2) NBEADXWAAWCCDG-QDDWGVBQSA-N 0.0000 0.70 

SM (d42:3) TXFLWJQVQCDUDZ-BRUGZULGSA-N 0.0373 0.75 

Pregnane steroids  
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Allopregnanolone AURFZBICLPNKBZ-SYBPFIFISA-N 0.0440 0.41 

Stilbenes  

Dihydroresveratrol HITJFUSPLYBJPE-UHFFFAOYSA-N 0.0440 0.39 
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