Protein 14-3-3 Influences the Response of the Cardiac Sodium Channel Na\textsubscript{v}1.5 to Anti-Arrhythmic Drugs

Yang Zheng1,2, Isabelle Deschênes1

1. Department of Physiology and Cell Biology, Frick Center for Heart Failure and Arrhythmias, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
2. Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
Running title: 14-3-3 Influences Na\textsubscript{v}1.5’ Response to Anti-
Arrhythmic Drugs

Corresponding Author: Isabelle Deschênes

Address: 333 W 10th Ave, Columbus, OH, 43210

Tel: (+1) 614-685-0614

Email: Isabelle.deschenes@osumc.edu

Number of text pages: 29

Number of tables: 1

Number of figures: 9

Number of references: 41

Number of words in the Abstract: 228

Number of words in the Introduction: 543

Number of words in the Discussion: 1685

List of abbreviations:

AADs: antiarrhythmic drugs; difo: difopein; ICD: implantable cardioverter-defibrillator;

Na\textsubscript{v}1.5: voltage-gated cardiac sodium channel; SCD: sudden cardiac death

Recommended section assignment:

Cardiovascular
Abstract

The cardiac sodium channel Naᵥ1.5 is a key contributor to the cardiac action potential and dysregulations in Naᵥ1.5 can lead to cardiac arrhythmias. Naᵥ1.5 is a target of numerous anti-arrhythmic drugs (AADs). Previous studies identified the protein 14-3-3 as a regulator of Naᵥ1.5 biophysical coupling. Inhibition of 14-3-3 can remove the Naᵥ1.5 functional coupling and has been shown to inhibit the dominant-negative effect of Brugada Syndrome mutations. However, it is unknown whether the coupling regulation is involved with AADs’ modulation of Naᵥ1.5. Indeed, AADs could reveal important structural and functional information about Naᵥ1.5 coupling. Here we investigated the modulation of Naᵥ1.5 by four classical AADs, quinidine, lidocaine, mexiletine, and flecainide, in presence of 14-3-3 inhibition. The experiments were carried out by high-throughput patch-clamp experiments in an HEK293 Naᵥ1.5 stable cell line. We found that 14-3-3 inhibition can enhance acute block by quinidine, while the block by other drugs was not affected. We also saw changes in the use- and dose-dependency of quinidine, lidocaine, and mexiletine when inhibiting 14-3-3. Inhibiting 14-3-3 also shifted the channel activation toward hyperpolarized voltages in presence of the four drugs studied and slowed the recovery of inactivation in presence of quinidine. Our results demonstrated that the protein 14-3-3 and Naᵥ1.5 coupling could impact the effects of AADs. Therefore, 14-3-3 and Naᵥ1.5 coupling are new mechanisms to consider in the development of drugs targeting Naᵥ1.5.
Significance Statement

The cardiac sodium channel Na_v1.5 is a target of commonly used anti-arrhythmic drugs, and Na_v1.5 function is regulated by the protein 14-3-3. The present study demonstrated that the regulation of Na_v1.5 by 14-3-3 influences Na_v1.5’s response to anti-arrhythmic drugs. We provide detailed information about how 14-3-3 differentially regulated Na_v1.5 functions under the influence of different drug subtypes. Our findings will guide future molecular studies investigating Na_v1.5 and anti-arrhythmic drugs outcomes.
Introduction

Sudden cardiac death (SCD) associated with cardiac arrhythmia is the most common cause of death and remains a public health issue. SCD accounts for 15-20% of all death worldwide, and in the US alone, there are about 180,000-300,000 SCD cases annually. (Srinivasan and Schilling, 2018; Kim et al., 2021; Tan et al., 2021) Treatments for cardiac arrhythmias include cardiac ablation, implantable cardioverter-defibrillator (ICD), and anti-arrhythmic drugs (AADs). (Fu, 2015) AADs can treat cardiac arrhythmic conditions without surgical procedures and can be used as a preventive treatment. Therefore, AADs have great significance in clinical practice. Although the efficiency and safety of AADs have been tested by numerous experiments and clinical trials, not all aspects of the AADs’ functions on their targets are fully understood, and the missing information can be essential in reducing side effects, improving efficacy, developing new drugs, and gaining knowledge of the target proteins.

The cardiac sodium channel Na\textsubscript{v}1.5 is the predominant voltage-gated sodium channel in the human heart. It generates the cardiac sodium current (I\textsubscript{Na}) that initiates the cardiac action potential, and dysregulation of I\textsubscript{Na} can lead to arrhythmic phenotypes. (Fonseca and Vaz da Silva, 2018) Na\textsubscript{v}1.5 is tightly regulated by interacting protein complexes. (Gavillet et al., 2006; Abriel, 2010) Dysfunction in Na\textsubscript{v}1.5 regulatory proteins can also lead to cardiac arrhythmias. (Adsit et al., 2013; Xiong et al., 2022) As for many cardiac ion channels, Na\textsubscript{v}1.5 is an essential target of AADs. AADs are categorized into five classes according to the Vaughan-Williams classification system. Class I AADs are sodium channel blockers. They block the sodium current to decrease the action potential’s amplitude and slow conduction velocity, thus interrupting or preventing reentrant arrhythmias. (Pott et al., 2010) Considering that Na\textsubscript{v}1.5 interacting proteins can
regulate the channel function, it is highly possible that certain Na,1.5 regulatory proteins could affect the channel’s response to AADs, thus influencing the AAD’s outcome or side effects. However, there are limited studies that have investigated how the different Na,1.5 regulatory proteins influence the action of AADs on Na,1.5.

14-3-3 is one of Na,1.5’s interacting proteins. It prevalently exists in all eukaryotic cells and regulates Na,1.5’s function in the heart. (Allouis et al., 2006) Notably, other than the direct modulation of Na,1.5 biophysical function, 14-3-3 was found to regulate Na,1.5 coupling, a novel mechanism that can contribute to arrhythmic phenotypes. (Clatot et al., 2018; Zheng et al., 2021) Studies also suggested that modulating the action of 14-3-3 on Na,1.5 could potentially bring therapeutic effects. This was also observed in other voltage-gated sodium channel isoforms related to neuronal disorders, therefore suggesting that 14-3-3 has a conserved role in regulating voltage-gated sodium channels. (Ruhlmann et al., 2020) However, the underlying mechanism of how 14-3-3 regulates Na,1.5 coupling is not fully understood which limits its potential use as a therapeutic strategy. Additionally, it is unknown if the biophysical coupling regulated by 14-3-3 is involved in AADs action on Na,1.5. Thus in this paper, we proposed to study the influence of protein 14-3-3 on Class I AADs’ effects on the cardiac sodium channel. Cardiac sodium currents were studied by high-throughput automated patch-clamping using an HEK293 Na,1.5 stable cell line. The specific 14-3-3 inhibitor difopein was used to determine if 14-3-3 and the sodium channel coupling impact the effects of AADs on Na,1.5.
Materials and Methods

Materials

Quinidine (Q3625), flecainide (F6777), lidocaine (PHR1257), and mexiletine (M2727) were obtained from Sigma (St.Louis, MO). Drugs were diluted into a 100mM stock solution in water, methanol, or ethanol according to the manufacturer’s instruction. Working concentrations of 20 (quinidine), 30 (flecainide), and 100μM (lidocaine and mexiletine) were freshly prepared in the electrophysiology extracellular solution.

Electroporation

The 14-3-3 inhibitor difopein (pEYFP-C1-difopein) (Clatot et al., 2017), (Masters and Fu, 2001) and negative control (pcDNA3.1) were transiently transfected into HEK293 cells by electroporation using ATx from MaxCyte (Gaithersburg, MD). HEK293 cells were plated 24 hours before electroporation and harvested on the day of electroporation at 70-80% confluency. Cells were collected by centrifugation at 1.1 rpm for 5min followed by washing with electroporation buffer (MaxCyte, Gaithersburg, MD). The cells were then resuspended to the concentration of 10^6 cells/μl, and mixed with the plasmid of interest at the concentration of 200ng/μl. The cells were electroporated and then incubated at 37°C for 20 min. Following incubation, the cells were transferred to 10cm dishes and grown for 48 h until patch-clamp experiments. Difopein expression level was confirmed before each patch-clamp experiment by observing the YFP signal under a fluorescent microscope.

Cell Culture and Expression of Na,1.5
HEK293 Na\textsubscript{v}1.5 stable cell line was maintained in DMEM (Gibco, Waltham, MA) supplemented with 10% FBS (Gibco, Waltham, MA) until used for transfection and electrophysiological recordings; 400 μg/ml G418 (Sigma, St.Louis, MO) was added to the medium for selection of Na\textsubscript{v}1.5-HEK293 cells. All cells were grown at 37°C in 5% CO\textsubscript{2}.

Electrophysiology Measurement

Sodium currents were measured by patch-clamping in the whole-cell configuration 48h after transfection. The recordings were obtained using the high-throughput automated patch clamp system Syncroptach 384i (Nanion, Germany). The patch-clamp experiments were conducted with high-throughput automated patch-clamp system Syncropatch 384i (Nanion, Germany). Compared with the traditional manual patch-clamp technology, the automated patch-clamp greatly increased the efficiency while eliminating operators’ bias. The high number of cells being recorded all at the same time greatly reduced variability compared to manual patch-clamp and is particularly beneficial when studying pharmacological effects since it allows for all the cells to be exposed to the drugs for the exact same time. But most importantly, in our hands, the automated patch-clamp yield a highly consistent current profile compared with the manual patch-clamp in parallel (data not shown) illustrating that the data fully compare with manual patch-clamp. This observation is similar to the previous recordings of Nav1.7 channel with the high-throughput patch-clamp system previously reported. (Li et al., 2017) The intracellular solution contained (in mM): 10 NaCl, 110 CsF, 10 CsCl, 10 EGTA, 10 HEPES, pH 7.4. The extracellular solution contained (in mM): 30 NaCl, 4 KCl, 2 CaCl\textsubscript{2}, 1 MgCl\textsubscript{2}, 5 glucose, 10 HEPES, 110 NMDG, pH7.4. Since sodium current density was high, low sodium concentration was used in the external solution and NMDG was used to balance the osmolarity. The current-
voltage relationships of the sodium currents were recorded by holding the resting membrane potential at -120mV and stepping from -80mV to +60mV in a 5mV interval (each step held for 30ms). For activation, the G/V curve was determined by fitting the linear part before the peak of the current-voltage curve with a Boltzmann function:

\[G(V) = G_{max} / (1 + e^{-V_{half}/k}) \]

Recovery from inactivation was recorded with a two-pulse protocol. The pre-pulse and the test-pulse duration are 30ms, stepping from -30mV to -120mV. The interval between the two pulses ranges from 1.8ms to 250ms. Currents of the recovery from inactivation were fitted to the following equation:

\[I_{test}/I_{pre-pulse} = A_{rec}(1 - e^{-t/t_{rec}}) + i_{rec} \]

The steady-state inactivation was studied with a 500ms pre-pulse ranging from -140mV to -30mV, followed by a 30ms test pulse stepping from -120mV to -30mV. The currents for the steady-state inactivation were fit to a Boltzmann distribution using the following equation:

\[I/I_{max} = (1 + e^{(V-V_{1/2})/k_{v}})^{-1} \]

The dose-dependency was studied with a single pulse from -120 to -10mV for 30ms. Cells harvested from the same dish were separated into different groups by the container of the automated patch-clamp system, the system then applied varied concentration of the drugs of interest to different groups and the sodium currents were recorded simultaneously from each group. I/V curves were recorded to confirm voltage control. Dose-dependency curves were fitted by the dose-response fitting with the following equation:

\[I/I_{max} = A1 + \frac{A2 - A1}{1 + 10^{(logx0-x)p}} \]

Use-dependency was studied with train pulses at 1, 5, and 10Hz. The holding potential was -120mV and the test pulses were -10mV. The use-dependency curves were fitted with an
exponential function. All fitting curves were generated with Origin 10.1.1 software (OriginLab Corporation, Northampton, MA). The leak subtraction protocol was used for all recording protocols. Cells with I_{Na} amplitude over 700pA/pF or with incomplete space-clamp were excluded from data analysis. (Montnach et al., 2021)

Statistical Analysis

Statistical analyses were performed using the standard statistical package in origin 10.1.1 (OriginLab Corporation, Northampton, MA). The student’s t-test was performed at a significance level of $p=0.05$ for a single comparison. One-way ANOVA with post-hoc Tukey tests were performed for comparison among three or more groups, and p values less than 0.05 were considered statistically significant. Results were presented as mean ± SEM.
Results

Protein 14-3-3 is a family of highly conserved regulatory proteins. They were shown to bind with Na,1.5 on the channel’s intracellular loop and regulate Na,1.5 function. 14-3-3 protein-protein interaction can be inhibited by a specific 14-3-3 inhibitor difopein (dimeric fourteen-three-three peptide inhibitor). As indicated by the name, difopein contains two repeats of the R18 peptide which occupied with high affinity the 14-3-3 groove supposed to bind to its target proteins. (Wang et al., 1999) The dimeric version of R18 (difopein) further improves the efficiency of 14-3-3-inhibitor binding, thereby disrupting 14-3-3 interacting with other proteins. (Stevers et al., 2018) Previous studies found that inhibiting 14-3-3 could remove the functional coupling of the voltage-gated sodium channel. (Clatot et al., 2017) Uncoupling the wildtype Na,1.5 with Brugada Syndrome (BrS) mutations or splice variant associated with heart failure can restore the sodium current impaired by the mutation. (Clatot et al., 2018; Zheng et al., 2021) Thus, these previous findings suggested that 14-3-3 inhibitors could be a potential therapeutic strategy for arrhythmias linked to sodium channel dysfunction. However, since the molecular mechanism of the regulation of Na,1.5 by 14-3-3 is still not completely understood and importantly, since 14-3-3 regulates the function of numerous proteins in the human body, additional investigations are needed in order to eventually develop therapeutic strategies targeting 14-3-3 for cardiac arrhythmias.

14-3-3 Inhibition Aggravated Na,1.5 Block by Quinidine

In order to account for the impact of electroporation transfection effects, HEK293 cells transfected with 14-3-3 inhibitor difopein were compared with those transfected with pcDNA3.1. For simplicity, the groups transfected with control plasmid (pcDNA3.1) and recorded in the
absence of AADs were labeled ‘control’, the groups transfected with control plasmid and treated with the AAD were labeled by the AAD’s name (i.e. ‘quinidine’), and the groups transfected with difopein and treated with the AAD were labeled by the AAD’s name_difo (i.e. ‘quinidine_difo’). Cardiac sodium currents with and without 14-3-3 inhibition were recorded from HEK293 Na,1.5 stable cell line in the presence of quinidine (class Ia), lidocaine (class Ib), mexiletine (class Ib), and flecainide (class Ic). The I/V curves were plotted to show the voltage-dependency in presence of AADs and 14-3-3 modulation. As expected, all four drugs blocked sodium currents. 14-3-3 inhibition and AADs’ block did not change the current-voltage relationship of the sodium channel. However, 14-3-3 inhibition significantly aggravated the block by quinidine, while the current reductions for the other drugs remained unchanged in presence of 14-3-3 inhibition. Figure 1A shows representative examples of the sodium currents reduction caused by quinidine with and without 14-3-3 inhibition. The I/V relationships are illustrated in Figure 1B. The peak current was reduced from -233.14±18.96 pA/pF (n=36) to -185.10±13.66 pA/pF (n=33) in presence of quinidine in the control group and from -248.68±18.97 pA/pF (n=31) to -125.63±12.47 pA/pF (n=35) in the difopein (14-3-3 inhibitor) group. However, 14-3-3 inhibition did not modify the block in sodium currents by lidocaine, mexiletine, and flecainide (Figure 1C). I/V curves for lidocaine, mexiletine, and flecainide are shown in Supplemental Figure 1. We also obtained Na,1.5 conductance curves from the current-voltage relationship. We found that when the AADS were applied in presence of 14-3-3 inhibition, all the activation curves were shifted toward hyperpolarizing voltages compared to the response to AADs alone (Figure 2). Interestingly, with 14-3-3 inhibitor difopein, the resulted G/V curves for lidocaine+difopein and mexiletine+difopein behave similarly to the control
groups in which the corresponding drugs were absent (Figure 2B-C). This suggests that 14-3-3 is involved in the regulation of the conductance by class Ib AADs.

14-3-3 Inhibition Altered Na$_v$1.5 Steady-State Inactivation and Recovery from Inactivation in Response to AADs

To elucidate the influence of 14-3-3 on AADs’ effects on channel kinetics, we examined Na$_v$1.5 steady-state inactivation (SSI) and recovery from inactivation in presence of AADs with and without 14-3-3 inhibition. While quinidine shifted the channel SSI toward depolarized voltages, interestingly this shift was absent with 14-3-3 inhibition (Figure 3A). No change in SSI was observed when lidocaine and flecainide were applied; however, when the drugs were applied in presence of difopein, SSI was shifted toward hyperpolarized voltages (Figure 3B, 3D). For mexiletine, we saw no effect on SSI with or without difopein (Figure 3C). We then assessed recovery from inactivation. We found that both Class Ib AADs, lidocaine and mexiletine, induced a profound slowing in the recovery from inactivation; however, this slowing in the recovery was still present with 14-3-3 inhibition (Figure 4B-C) suggesting that 14-3-3 is not involved with this AADs effect on I$_{Na}$. In presence of quinidine, we did not see a change in the recovery from inactivation; however, when the drug was applied in presence of 14-3-3 inhibition, recovery from inactivation was slowed (Figure 4A). No obvious changes were seen in recovery from inactivation for flecainide with or without 14-3-3 inhibition. (Figure 4D) A summary of the biophysical parameters is shown in Table 1.

Impact of 14-3-3 on AADs’ Dose-dependent Block
AADs’ effects on Na,1.5 depend on the concentration of drugs applied which is referred to as the dose-dependency of the inhibition. To study whether 14-3-3 affects the AADs’ dose-dependent block, we recorded sodium currents at different drug concentrations with or without 14-3-3 inhibition. The normalized sodium currents were plotted and dose-dependency curves were generated by curve fitting. The results showed that 14-3-3 inhibition significantly changed the dose-dependency for quinidine, a class Ia anti-arrhythmic drug (Figure 5A). The calculated IC50s without and with 14-3-3 inhibition were 102.1 μM and 7.4 μM respectively. This suggests that a much smaller quinidine concentration is needed to have the same level of sodium currents block. On the other hand, 14-3-3 inhibition tended to move the dose-dependent curve of flecainide in the opposite direction (Figure 5D). The IC50s for flecainide were 84.3 μM and 141.3 μM with and without 14-3-3 inhibition respectively. For the Class Ib AADs, lidocaine and mexiletine, there were no obvious changes in the dose-dependency curves and the changes in IC50s were not statistically significant (Figure 5). The IC50 for lidocaine were 198.6 μM and 192.0 μM, and for mexiletine were 285.9 μM and 208.3 μM before and after 14-3-3 inhibition respectively.

14-3-3 Altered Use-dependency of Na,1.5 on Lidocaine

The sodium currents blocked by a drug reflect the rate of binding and releasing of the drug to or from the sodium channel. This rate can be altered by high-frequency stimulation, known as a use-dependent or frequency-dependent block. All AADs (quinidine, lidocaine, mexiletine, and flecainide) studied in this paper are known to block Na,1.5 in a use-dependent manner, meaning that the channel’s availability would decrease progressively with a train of stimulation. (Hondegem and Matsubara, 1988; Sunami et al., 1993; Zhu et al., 2006; Cummins, 2007) To
test whether 14-3-3 influences the use-dependent block by AADs, we applied depolarization trains to the channel with varied frequencies (1, 5, and 10 Hz). At 1Hz, which correlates with physiological heart rate, we applied 50 pulses and 30 pulses were applied for higher frequencies (5 and 10 Hz). All AADs exhibited use-dependent block with or without 14-3-3 inhibition (Figure 6-8). There was no significant effect of 14-3-3 inhibition on the use-dependency of quinidine at any tested frequency (Figure 9A). At 1Hz, 14-3-3 inhibition increased the use-dependent inhibition of the Class Ib drug lidocaine (Figures 6B and 9B). However, at higher frequencies, 14-3-3 inhibition significantly reduced the use-dependent block by lidocaine and mexiletine (Figures 7B-C, 8B-C, 9B-C). In the flecainide group, 14-3-3 inhibition had no effect on the use-dependent block at 1Hz (Figures 6D and 9D) but significantly attenuated the use-dependent block at 5Hz (Figures 7D and 9D). In summary, 14-3-3 inhibition changed the use-dependent block of lidocaine, mexiletine and flecainide, and exerted the most drastic effects at 5Hz suggesting the involvement of 14-3-3 in use-dependent blocks of Class Ib and Class Ic AADs.

Discussion

In this study, we examined the influence of protein 14-3-3 on the cardiac sodium channel’s response to four commonly used antiarrhythmic drugs. These drugs are often applied as control compounds to study the sodium channel or novel pharmaceutical agents. (Hondegem and Matsubara, 1988; Ramos and O’Leary M, 2004; Zhu et al., 2006; Cummins, 2007; Heath et al., 2011; Huang et al., 2013; Galleano et al., 2021; Li et al., 2021) Thus they were selected here to study the influence of 14-3-3 on Na,1.5’s pharmaceutical response. Our results demonstrated that 14-3-3 could affect the pharmacological sensitivity of Na,1.5 towards clinically used drugs,
providing further mechanistic insights into the action of anti-arrhythmic drugs on the cardiac sodium channel.

14-3-3’s Effects on Quinidine Block

Quinidine is a Class Ia AAD known to block Na\textsubscript{v}1.5 in a voltage- and use-dependent manner. In the current study, we found that inhibiting 14-3-3 brought a more potent block by quinidine of the peak sodium current. With 20\textmu M quinidine, the peak sodium current was blocked by 21% in the control group and by 50% when 14-3-3 was inhibited. This result suggested that 14-3-3 inhibition might strengthen quinidine’s effect on prolonging the cardiac action potential phase 0. (Salata and Wasserstrom, 1988) However, this enhancement is unlikely to be through modulation of the channel inactivation based on our observation that 14-3-3 inhibition removed the depolarizing shift caused by quinidine on SSI (Figure 3A). Recent structural studies found that quinidine binds with the channel in the channel lumen as well as a fenestration between Domain II (DII) and Domain III (DIII). (Li et al., 2021) Since the fenestration is likely to be reshaped during channel gating and the accompanying conformational changes, it is plausible that 14-3-3’s interaction with Na\textsubscript{v}1.5 would affect this fenestration, thus changing quinidine’s accessibility. Interestingly, sodium channel mutations near the 14-3-3 binding sites were also shown to alter the channel’s response to quinidine, (Itoh et al., 2005; Shuraih et al., 2007) further suggesting the possible involvement or influence of 14-3-3 in quinidine binding.

14-3-3’s Influence on the Channel Activation

The protein 14-3-3 was first identified as a regulator of Na\textsubscript{v}1.5 by yeast two-hybrid screening and functional studies in COS-7 cells. (Allouis et al., 2006) The study also showed that Na\textsubscript{v}1.5
activation was not influenced by 14-3-3. (Allouis et al., 2006) Here in the present study, we focused on the impact of 14-3-3 on AADs’ effects instead of the direct regulation of 14-3-3 on the channel. We found that 14-3-3 inhibition consistently shifted the channel’s activation toward hyperpolarized voltages under the influence of all AADs studied. It is possible that the AADs’ block could unmask the effects of 14-3-3 on channel activation. Alternatively, this might be explained by the fact that 14-3-3 might promote the channel activation under the influence of Class I blockers. The influence of 14-3-3 inhibition on Na\textsubscript{v}1.5 activation in the presence of AADs’ is reminiscent of our previous observation that Na\textsubscript{v}1.5 coupling presumably took a role in the channel activation. (Clatot et al., 2017) The ubiquity of the 14-3-3 effects on channel activation under AADs’ influences indicated that the channel coupling could impact channel activation. On the other hand, these results also suggest that Na\textsubscript{v}1.5 coupling most likely alters the channel’s pharmaceutical response.

Among the four tested AADs, we found that class Ib AADs lidocaine and mexiletine shifted the activation curves toward depolarized voltages. Interestingly, the curves were shifted back toward the control with 14-3-3 inhibition (Figure 2B-C). This indicated that while class Ib AADs could delay Na\textsubscript{v}1.5 activation, protein 14-3-3 is necessary for this regulation.

Regulation of Use-Dependent Block by 14-3-3

The voltage-gated sodium channel’s responses to high-frequency stimulation can be blocked more readily than responses to low-frequency, known as use-dependent blocking. This enhanced blocking potency during rapid stimulation can be explained by a varied equilibrium with the “reactivity” of the channel-drug interaction. (Starmer et al., 1984) Based on our finding that 14-3-3 inhibition increased the acute quinidine block of the peak sodium current, one might expect
to see effects of 14-3-3 inhibition on the quinidine’s use-dependent block. However, use-dependent represents the accumulated effect of a drug during high-frequency repetitive stimulations. It reflects the rate of binding and release of the drug to and from the channel which might not require the modified channel kinetics. (Starmer et al., 1984) It is therefore feasible to observe a more potent block of peak current but no effect on use-dependency. Indeed, we observed that the use-dependent block by quinidine was not affected by 14-3-3 inhibition (Figure 9A).

We reported in this study that 14-3-3 inhibition significantly changed the use-dependent inhibition of class Ib AADs lidocaine and mexiletine. We observed that the use-dependent inhibition is not as significant for lidocaine and mexiletine at 1Hz compared to other drugs (Figure 6). This is consistent with previous findings and with the knowledge that class Ib AADs have relatively fast dissociation kinetics, thus being less affected by use-dependent block at low frequency. (Wang et al., 2015; Shenasa et al., 2020) Here in our study, the 14-3-3 inhibition had the tendency to increase the use-dependent block induced by lidocaine and mexiletine at 1Hz. However, 14-3-3 impacted the use-dependent block of these two drugs at 5 and 10 Hz impairing the use-dependent block (Figure 9). This indicates that 14-3-3 could regulate Na\textsubscript{v}1.5 and its interaction with AADs differentially with increased heart rate. Importantly, the effects on use-dependent block and the 14-3-3 inhibition showed similar patterns for the two class Ib drugs but different patterns for class Ia and Ic AADs, suggesting that the 14-3-3 regulation is in line with the mode of action of varied AAD subclasses.

Different Impact of 14-3-3 Regulation on Different AAD Subtypes
In the dose-dependent block experiments, we observed that 14-3-3 inhibition significantly lowered the IC50 of quinidine, meaning that 14-3-3 increased Na\textsubscript{v}1.5’s sensitivity towards quinidine. Meanwhile, there was little effect on the dose-dependence of other tested drugs. This is consistent with the other results shown by the I/V curve where 14-3-3 inhibition aggravated sodium current block by quinidine while the block by other drugs was not significantly changed (Figure 1). In our experiments, the IC50 of class Ic (flecainide), Ia (quinidine), and Ib (lidocaine and mexiletine) AADs were 84, 102, 198, and 286 μM respectively. These results reproduced the order of sodium channel block by these drugs in clinical practice and previous investigations, which was class Ic > Ia > Ib. (Kecskemeti, 1991)

We also found that the 14-3-3 inhibition did not influence the dose-dependence of the class Ib AADs lidocaine and mexiletine. As discussed earlier, we observed a similar pattern for 14-3-3 inhibition effects on activation and use-dependent block with the two class Ib AADs. The two class Ib AADs acted similarly in response to 14-3-3 inhibition throughout our study, and this is consistent with AADs’ mode of action and the molecular interaction between the channel and the drugs. Previous investigations demonstrated that only class Ib AADs bind with the channel via a strong electrostatic cation-pi interaction, which could significantly influence the binding mode and affinity of a compound. (Ragsdale et al., 1996; Liu et al., 2003; Pless et al., 2011; Tikhonov and Zhorov, 2017) It is possible that this interaction also led to the differential response of class Ib AADs to 14-3-3 inhibition. This specific and similar impact of 14-3-3 inhibition on the action of the two class Ib drugs might also suggest that the electrostatic cation-pi interaction of the drugs with the channel is dependent on the biophysical coupling modulated by 14-3-3.
Structural and functional studies showed that the DIV S6 of Na\textsubscript{v}1.5 is the key site for drug binding. (Ragsdale et al., 1994; Ragsdale et al., 1996) However, the Na\textsubscript{v}1.5 dimerization, as well as the 14-3-3 regulation depend more on the DI-DII linker. (Allouis et al., 2006; Clatot et al., 2017) Although further investigations on the 3D structure are needed, the current understanding of the spatial relationship between the DI-DII linker and DIV S6 suggest that protein 14-3-3 is unlikely to influence the AAD’s effects by direct interaction with the AADs molecule or the binding sites. Our results showed that 14-3-3 inhibition has different effects on different drugs, and different tendencies to promote or subdue the channel gating functions (i.e. activation, recovery, and SSI). This divergence further indicated that the 14-3-3 regulation of AADs effect is likely not through 14-3-3 directly binding with drug, masking or revealing the binding sites. Instead, it is likely linked to the role 14-3-3 plays in biophysical coupling of the sodium channel. 14-3-3 could also be involved through modulation of the sodium channel conformation in a steady state or changes in conformation during the channel gating. Thus, the DI-DII linker, due to the involvement of 14-3-3, could be another important site for the sodium channel’s pharmaceutical effects due to its modulation of the biophysical coupling.

The results that difopein can diminish the use-dependent effect are particularly interesting as it is a direction that industry is looking for in drug development. Our findings suggest that a strategy targeting the specific inhibition of 14-3-3 action on the cardiac sodium channel could increase the efficacy of class I anti-arrhythmics. However, a broad inhibition of 14-3-3 is not a viable option in the clinical setting due to the promiscuous roles of 14-3-3 in human physiology. We believe that 14-3-3 has a fundamental role in cardiac electrophysiology and could be developed into a therapeutic target itself or shed light for expansion of novel therapeutics. Therefore, this
study provided new information about how 14-3-3 influences the Na\textsubscript{v}1.5 pharmaceutical responses, and built the foundation for novel therapeutic strategies targeting 14-3-3 as it relates to arrhythmias.

In conclusion, we demonstrated that inhibiting protein 14-3-3 could greatly influence the cardiac sodium channel’s response to AADs, including altered AAD block on the peak current, biophysical kinetics, use- and dose-dependent block. Our observations reinforced the significance of Na\textsubscript{v}1.5 coupling, and indicated that this channel characteristic needs to be considered carefully in the study of Na\textsubscript{v}1.5-related therapeutics. It also highlighted the necessity of future studies to reveal more structural information regarding the Na\textsubscript{v}1.5 coupling and interacting proteins and how it relates to the action of AADs.

Authorship Contributions

Participated in research design: Y Zheng, I Deschenes

Conducted experiments: Y Zheng

Performed data analysis: Y Zheng

Wrote or contributed to the writing of the manuscript: Y Zheng, I Deschenes
Reference

Figure Legends

Figure 1. 14-3-3 inhibition increased Naᵥ1.5 block by quinidine. The sodium currents were recorded in HEK293 cells by high throughput automated patch-clamp in whole-cell configuration. 14-3-3 was inhibited by difopein (difo). A. Representative current traces for each conditions. B. Current-voltage (I/V) relationship. Voltage protocol is included. C. Quantification of the sodium current block by all four AADs. Statistical analysis was done by two-tailed paired t-test.

Figure 2. 14-3-3 inhibition shifted the conductance curves under the influence of AADs. The voltage-dependent conductance curves for quinidine (A), lidocaine (B), mexiletine (C), and flecainide (D) were derived from the I/V curves as described in “Material and Method”. Quinidine (A) and flecainide (D) did not exert significant effect on the activation, while lidocaine (B) and mexiletine (C) shifted the activation curves toward depolarizing voltages. Compared with the drug only effects, 14-3-3 inhibition shifted all the activation curves toward hyperpolarizing voltages.

Figure 3. 14-3-3 impact on steady-state inactivation (SSI) curves of the sodium current under the influence of AADs. The sodium currents were recorded from HEK293 cells in whole-cell configuration. SSI curves for quinidine (A), lidocaine (B), mexiletine (C), and flecainide (D) and the voltage protocol are shown in the figure. 14-3-3 inhibition removed the quinidine effect on SSI, and shifted the SSI of lidocaine (B) and flecainide (D) toward hyperpolarizing voltages.
Figure 4. Impact of 14-3-3 on sodium channel’s recovery from inactivation under the influence of AADs. The sodium currents were recorded from HEK293 cells in whole-cell configuration. Recovery curves for quinidine (A), lidocaine (B), mexiletine (C), and flecainide (D) and the voltage protocol are shown in the figure. Lidocaine (B) and mexiletine (C) slowed the channel recovery from inactivation without the involvement of 14-3-3, while 14-3-3 inhibition further slowed the channel recovery for the quinidine (A) and flecainide (D).

Figure 5. 14-3-3 impacts quinidine’s dose-dependent block. The dose-dependency of quinidine (A), lidocaine (B), mexiletine (C), and flecainide (D) are shown in the figure. 14-3-3 inhibition lowered the IC50 of quinidine (A).

Figure 6. Impact of 14-3-3 inhibition on the use-dependent block at 1Hz stimulation. A train of 50 pulses was applied to the channel. The holding potential was -120mV and the test pulses were -30mV for 10ms. 14-3-3 inhibition had not impact on the use-dependent block of the four drugs tested at 1Hz.

Figure 7. Impact of 14-3-3 inhibition on the use-dependent block at 5Hz stimulation. A train of 30 pulses was applied to the HEK293 cells. 14-3-3 inhibition diminished use-dependent block of lidocaine (B), mexiletine (C), and flecainide (D) but not quinidine (A).

Figure 8. Impact of 14-3-3 inhibition on the use-dependent block at 10Hz stimulation. A train of 30 pulses was applied to the HEK293 cells. 14-3-3 inhibition diminished use-dependent block of lidocaine (B) and mexiletine (C) without affecting quinidine (A) and flecainide (D).
Figure 9. Summary of the 14-3-3 effects on the use-dependent block of A. quinidine, B. lidocaine, C. mexiletine, and D. flecaïnide.
Table 1. Na\(_{1.5}\) Biophysical Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Conditions</th>
<th>Activation (V_{1/2}) (mV)</th>
<th>n</th>
<th>SSI (V_{1/2}) (mV)</th>
<th>n</th>
<th>(A_{\text{rec}})</th>
<th>(i_{\text{rec}})</th>
<th>(\tau_{\text{rec}}) (ms)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>-50.50 ±0.11</td>
<td>33</td>
<td>-98.06 ±0.12</td>
<td>44</td>
<td>0.96 ±0.0018</td>
<td>0.98 ±0.0085</td>
<td>17.47 ±1.32</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Quinidine</td>
<td>-49.32 ±0.08</td>
<td>29</td>
<td>-93.89 ±0.42*</td>
<td>35</td>
<td>0.94 ±0.0029*</td>
<td>0.91 ±0.018*</td>
<td>15.05 ±1.08</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Quinidine_difopein</td>
<td>-52.77 ±0.14**</td>
<td>31</td>
<td>-99.21 ±0.38*</td>
<td>30</td>
<td>0.94 ±0.0081*</td>
<td>0.81 ±0.024**</td>
<td>28.53 ±3.22**</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Lidocaine</td>
<td>-45.34 ±0.14*</td>
<td>36</td>
<td>-95.57 ±0.24*</td>
<td>46</td>
<td>0.79 ±0.0044*</td>
<td>0.77 ±0.014*</td>
<td>16.71 ±1.24</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Lidocaine_difopein</td>
<td>-49.68 ±0.11†</td>
<td>31</td>
<td>-102.96 ±0.26†</td>
<td>32</td>
<td>0.77 ±0.0057*</td>
<td>0.71 ±0.013**</td>
<td>25.54 ±2.39**</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Mexiletine</td>
<td>-45.08 ±0.19*</td>
<td>31</td>
<td>-96.11 ±0.27</td>
<td>33</td>
<td>0.76 ±0.0060*</td>
<td>0.70 ±0.014*</td>
<td>16.18 ±1.35</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Mexiletine_difopein</td>
<td>-48.39 ±0.14†</td>
<td>28</td>
<td>-98.82 ±0.25</td>
<td>28</td>
<td>0.77 ±0.0073*</td>
<td>0.66 ±0.027**</td>
<td>19.18 ±2.85</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Flecainide</td>
<td>-49.08 ±0.23</td>
<td>24</td>
<td>-96.36 ±0.41</td>
<td>12</td>
<td>0.92 ±0.023*</td>
<td>0.89 ±0.03*</td>
<td>12.11 ±5.24</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Flecainide_difopein</td>
<td>-52.27±0.08**</td>
<td>29</td>
<td>-102.81 ±0.38**</td>
<td>24</td>
<td>0.91 ±0.022*</td>
<td>0.80 ±0.049</td>
<td>20.34 ±8.33</td>
<td>5</td>
</tr>
</tbody>
</table>

*: significantly different from control (p<0.05)

†: significantly different from the corresponding drug group (p<0.05)

**: significantly different from control and the corresponding drug group (p<0.05)
No author has an actual or perceived conflict of interest with the contents of this article.

This work was supported by the National Institutes of Health [Grant R01HL094450, R01HL096962 to ID].
Figure 1

A. Control Quinidine Difopein Quinidine + Difopein

B.

C.

This article has not been copyedited and formatted. The final version may differ from this version.
Figure 3

A.

B.

C.

D.
Figure 5

A. Normalized Current
 - Drug Concentration (mM)
 - Model: DoseResp
 - Equation: \(y = A_1 + \frac{A_2 - A_1}{1 + 10^{\left(\log x_0 - x\right)p}} \)

B. Normalized Current
 - Drug Concentration (mM)
 - Model: DoseResp

C. Normalized Current
 - Drug Concentration (mM)
 - Model: DoseResp

D. Normalized Current
 - Drug Concentration (mM)
 - Model: DoseResp
Figure 6

A. quinidine (n=42) vs quinidine_difo (n=38)

B. lidocaine (n=26) vs lidocaine_difo (n=46)

C. mexiletine (n=40) vs mexiletine_difo (n=39)

D. flecainide (n=57) vs flecainide_difo (n=60)
Figure 7

A.

B.

C.

D.

Legend:
- quinidine (n=43)
- quinidine_difo (n=41)
- lidocaine (n=30)
- lidocaine_difo (n=47)
- mexiletine (n=42)
- mexiletine_difo (n=39)
- flecainide (n=41)
- flecainide_difo (n=36)
Figure 8

A.

Normalized Current vs. Pulse number for quinidine (n=18) and quinidine_difo (n=47).

B.

Normalized Current vs. Pulse number for lidocaine (n=43) and lidocaine_difo (n=57).

C.

Normalized Current vs. Pulse number for mexiletine (n=53) and mexiletine_difo (n=43).

D.

Normalized Current vs. Pulse number for flecainide (n=12) and flecainide_difo (n=11).