Delta opioid receptor-mediated antidepressant-like effects of diprenorphine in mice

Keith M. Olson¹*, Todd M. Hillhouse¹, 2*, Gwendolyn E. Burgess¹, Joshua L. West¹, James E. Hallahan¹, Isaac J. Dripps¹, Allison G. Ladetto¹, Kenner C. Rice³, Emily M. Jutkiewicz¹, and John R. Traynor¹, 4

¹Department of Pharmacology and Edward F Domino Research Center, University of Michigan, Ann Arbor, MI 48109 USA

²Department of Psychology, University of Wisconsin Green Bay, Green Bay, WI, USA

³Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892, USA

⁴Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109 USA

*These authors contributed equally.
ABSTRACT

Major depressive disorder is a highly common disorder, with a lifetime prevalence in the USA of approximately 21%. Traditional antidepressant treatments are limited by a delayed onset of action and minimal efficacy in some patients. Ketamine is effective and fast-acting, but there are concerns over its abuse liability. Thus, there is a need for safe, fast acting antidepressant drugs. The opioid buprenorphine shows promise but also has abuse liability due to its mu-agonist component. Preclinical evidence indicates that the delta-opioid system contributes to mood disorders and delta opioid agonists are effective in preclinical models of depression- and anxiety-like states. In this study we test the hypothesis that the mu-opioid antagonist diprenorphine by virtue of its partial delta opioid agonist activity may offer a beneficial profile for an antidepressant medication without abuse liability. Diprenorphine was confirmed to bind with high affinity to all three opioid receptors, and functional experiments for G protein activation verified diprenorphine to be a partial agonist at delta- and kappa-opioid receptors and a mu-antagonist. Studies in C57BL/6 mice demonstrated that an acute dose of diprenorphine produced antidepressant-like effects in the tail suspension test and the novelty-induced hypophagia test that were inhibited in the presence of the delta-selective antagonist, naltrindole. Diprenorphine did not produce convulsions, a side-effect of many delta agonists, but rather inhibited convulsions caused by the full delta agonist SNC80; however, diprenorphine did potentiate pentylenetetrazole-induced convulsions. Diprenorphine, and compounds with a similar pharmacological profile, may provide for efficient and safe rapidly acting antidepressants.
SIGNIFICANCE STATEMENT

The management of major depressive disorder, particularly treatment-resistant depression, is a significant unmet medical need. Here we show that the opioid diprenorphine, a compound with mu-opioid receptor antagonist activity and delta and kappa opioid receptor partial agonist activities has rapid onset antidepressant-like activity in animal models. Diprenorphine and compounds with a similar pharmacological profile to diprenorphine should be explored as novel antidepressant drugs.

Keywords: Antidepressants, convulsants, opioids, opioid receptors, preclinical animal model.
INTRODUCTION

Major depressive disorder is a common mood disorder worldwide. Approximately 21 million adults in the USA (8.4% of the population) had one or more major depressive episode in 2020 (NIMH, 2020) with a lifetime prevalence of approximately 20.6% (Hasin et al., 2018). Major depressive disorder is typically treated with serotonin or serotonin/norepinephrine reuptake inhibitors (SSRIs/SNRIs). Unfortunately, these drugs are ineffective in approximately 50% of major depressive disorder patients and require 4-12 weeks of treatment before symptom relief in patients that show a response (Warden et al., 2007); such drugs can also produce significant monoamine-mediated side-effects (Wang et al., 2018). The discovery of the rapid onset of antidepressant action of ketamine was a major breakthrough in the management of depression (Browne and Lucki, 2013) and led to the FDA approval in 2019 of esketamine, the S(+) enantiomer of ketamine, as a nasal spray for treatment-resistant depression. The drug acts rapidly, but there are concerns over its abuse liability and potential for misuse (Hillhouse and Porter, 2015; Witkin et al., 2019) such that it can only be administered in a certified medical office. Consequently, there remains a significant unmet medical need to identify rapid-onset and effective and safe antidepressants.

The delta opioid receptor (DOPr) is a member of the opioid peptide receptor family of 7-transmembrane G-protein coupled receptors and a target for the development of novel antidepressant drugs. Mice lacking DOPr show increased depressive- and anxiogenic–like behaviors in preclinical models, including the forced-swim test, dark-light box test and elevated plus-maze (Filliol et al., 2000). In support of this, DOPr agonists work in preclinical models used to evaluate novel antidepressant drugs (Broom et al., 2002b; Broom et al., 2002c; Hudzik et al., 2011) without producing significant gastrointestinal (Porreca et al., 1984), respiratory (Negus et al., 1994; Su et al., 1998), or abuse liability (Do Carmo et al., 2009; Hudzik et al., 2014; Negus et al., 1994) associated with mu-opioid receptor
(MOPr) agonists or dysphoria associated with kappa opioid receptor (KOPr) agonists (Chavkin and Koob, 2016). Many DOPr agonists produce convulsions which limits their clinical potential (Hong et al., 1998, (Broom et al., 2002d), although DOPr agonist-mediated antidepressant-like effects and convulsive activity can be separated (Jutkiewicz et al., 2005). Furthermore, the convulsive activity of DOPr agonists is not required to observe antidepressant-like actions (Broom et al., 2002a). In support of this, several non-convulsive selective DOPr agonists have been reported including JNJ-20788560, KNT127, ADL5859, ARM390 and several AZD compounds (Le Bourdonnec et al., 2008; Le Bourdonnec et al., 2009; Nozaki et al., 2012; Pradhan and Clarke, 2005; Saitoh et al., 2011) and at least one of these (AZD2327) was evaluated in phase II clinical trials for antidepressant and anxiolytic activity (Richards et al., 2016).

Diprenorphine has traditionally been recognized as a non-selective opioid antagonist, although it is reported to exhibit partial agonist activity at DOPr as well as KOPr (Szekeres and Traynor, 1997; Traynor et al., 1987), in addition to potent MOPr antagonism (Lee et al., 1999). Here, we test the hypothesis that diprenorphine will produce antidepressant-like effects through a DOPr-mediated mechanism. We confirm the opioid receptor profile of diprenorphine as a DOPr and KOPr partial agonist and MOPr antagonist. Further, we show that in mice, diprenorphine produces potent antidepressant-like activity when measured using the tail suspension test (TST), and rapid onset antidepressant-like effects in the novelty-induced hypophagia (NIH) test, which requires chronic treatment with traditional antidepressant drugs. The antidepressant-like activity of diprenorphine is fully reversed by the DOPr selective antagonist naltrindole. Additionally, diprenorphine alone did not produce typical DOPr-mediated convulsions, but rather inhibited convulsions caused by the full DOPr agonist SNC80.
MATERIALS AND METHODS

In vitro assays

Cell Culture and membrane preparation. Chinese Hamster Ovary (CHO) expressing human (h) DOPr, MOPr, or KOPr, were cultured in DMEM medium containing 10% FBS and 1% Penicillin-Streptomycin to 80% confluency. Cells were harvested and membrane homogenates prepared as described (Nastase et al., 2018) and stored at -80 °C at a protein concentration of 0.5-1.5 mg/ml

Saturation Binding. Cell membranes (10 µg protein) were incubated for 60 min at 30°C in 50 mM Tris-HCl (pH 7.4) with various concentrations of [3H]-diprenorphine with or without 10 µM naloxone to determine the degree of non-specific binding (NSB) or total binding respectively (Hillhouse et al., 2021). Assays were stopped by filtration through glass microfiber GF/B filters (Whatman), filters washed 3-times with ice-cold assay buffer, dried, treated with EcoLume liquid scintillation fluid (MP Biomedicals), and radioactivity retained on the filters determined using a Wallac 1450 MicroBeta2 counter (PerkinElmer).

[^35S]GTPγS Binding. Agonist stimulation of[^35S]GTPγS binding was measured as previously described (Hillhouse et al., 2021; Traynor and Nahorski, 1995). Briefly, cell membranes (15-20 µg/well) were incubated in GTPγS buffer (50 mM Tris-HCl, 100 mM NaCl, 5mM MgCl2, pH 7.4) containing 0.1 nM[^35S]GTPγS, 30 µM guanosine diphosphate (GDP) and varying concentrations of diprenorphine for 60 min in a shaking water bath at 30°C. SNC80, DAMGO, and U69,593 were used as standards for DOPr, MOPr, and KOPr, respectively. Reactions were terminated and radioactivity measured as above.

β-arrestin2 Recruitment. The PathHunter® β-galactosidase enzyme-complementation assay (DiscoverRx, Fremont, CA) was employed to determine β-arrestin2 recruitment to MOPr and DOPr in CHO cells (Burford et al., 2013) Cells were incubated with various concentrations of drugs
(diprenorphine or DAMGO and SNC80 as positive controls) for 60 min. β-galactosidase activity was detected by luminescence measured with a Synergy 2 plate reader (Biotech, Winooski, VT).

DOPr Internalization. Human embryonic kidney (HEK) cells stably expressing N-terminal FLAG-tagged hDOPr (Bradbury et al., 2009), were plated in 24-well plates coated with poly-D-Lysine. When cells reached 80% confluency they were treated with vehicle (1% DMSO), 10µM SNC80, or 10µM diprenorphine for 1 h at room temperature. Cells were fixed with formaldehyde, then washed with Tris-buffered saline (TBS) and blocked for 1 h with 1% BSA. After washing cells were incubated with FLAG M2 alkaline phosphatase antibody at a 1:625 dilution for 60 min and absorption read at 405 nm on VERSAmax tunable microplate reader (Molecular Devices, Sunnyvale, CA). Precent internalization was measured by loss of surface receptors using \[1 - \frac{(O.D. \text{ drug} - O.D. \text{ background})}{(O.D. \text{ vehicle} - O.D. \text{ background})}\] X 100, where O.D. is optical density. The absorbance of wild-type HEK293 cells without transfected receptor was used as the backgound value.

In vivo assays

Animals. Adult male and female C57BL/6 mice (8-16 weeks of age) were employed for all experiments unless otherwise stated. Mice were bred at the University of Michigan; breeder mice were from Envigo (Indianapolis, IN, USA). All mice were maintained on a 12 h light/dark cycle; experiments were performed during the light phase. Mice were group-housed (five animals per cage according to sex, unless stated otherwise) in clear polypropylene cages with corncob bedding and had free access to food and water as well as enrichment in their home cage. All experiments were performed in accordance with the Guide for the Care and Use of Laboratory Animals and were approved by the University of Michigan Committee on the Institutional Animal Care and Use Committee.
Tail Suspension Test (TST). Experiments were conducted in male mice as previously described (Casal-Dominguez et al., 2013; Steru et al., 1985; Talbot et al., 2010) using a 6 min test session. A trained observer blind to the treatment conditions scored immobility time (secs). Immobility was defined as hanging motionless with no escape-related behaviors, defined as running-like movements with paws and forelimbs, strong shakes of the body, and attempts to reach the suspension bar. Drugs were administered intraperitoneally (i.p.) 30 min before test sessions. For the antagonist experiments, naltrindole was administered subcutaneously (s.c.) 30 min prior to diprenorphine.

Novelty-Induced Hypophagia (NIH). Procedures previously described in (Talbot et al., 2010), were followed. Male and female mice were group-housed (4 per cage, according to sex) and acclimated to sipper tubes (Med Associates Inc; supply number PHM-127-15) by providing overnight access to water on days 1 and 2. On days 3 and 4, mice were allowed access to a sweetened solution (Vanilla Ensure® at a water:Ensure ratio of 1:2) for 2-4 hours. Mice were singly housed at the end of day 4 for the remainder of the study. During days 5-7 inclusive, mice had 30 min access to the sweetened solution in their home cage. On day 8, a home cage test session was conducted, and day 9 a novel cage test session in which mice were placed into a test cage (42 x 22 x 16 cm) of the same material and color as the home cage (28 x 17 x 13 cm), but without bedding. The home cage and novel cage test sessions were 30 min in duration, and the latency to drink and volume of sweetened solution consumed were recorded. A trained, blinded observer scored test sessions. Diprenorphine or SNC80 were administered i.p. 30 min prior to novel cage test sessions. For the antagonist experiments, naltrindole (s.c.) was administered 30 min before diprenorphine or SNC80.

Locomotor Activity. Male and female C57BL/6 mice bred in-house were used at 8-10 weeks of age with 4 mice per sex per treatment condition (8 mice total per condition). Mice were removed from their home cage and administered an intraperitoneal injection of saline, 10 mg/kg diprenorphine (DPN), 10
mg/kg morphine, or 32 mg/kg morphine, and then placed immediately into Plexiglass chambers (44.5 cm width X 44.5 cm depth X 20.5 cm height) with an XY grid of infrared light beams spaced 1 inch apart and 2-2.5 cm from the floor of the chamber (Columbus Instruments, Columbus, OH). Data were collected for 60 min in 5 min bins. Mice were not habituated to locomotor chambers prior to these measurements, consistent with the behavioral measures collected in the tail suspension test or novel environment in the NIH test.

Convulsive activity. Experiments were conducted as described (Hong et al., 1998; (Dripps et al., 2020). Mice (male and female) were used for most experiments, although certain experiments used only male mice as noted in the results and figure legends. Mice were placed in clear, clean cages with bedding immediately following s.c. diprenorphine, SNC80, or vehicle administration. Mice were observed for 60 min. A trained, blinded observer measured the latency to convulse, percent of mice convulsing and severity of convulsions by use of a modified Racine score as follows: 1) teeth chattering/face twitching; 2) head bobbing/twitching; 3) tonic extension and/or repeated clonic contractions lasting < 3 seconds; 4) tonic extension and/or repeated clonic contractions lasting > 3 seconds; 5) tonic extension and/or repeated clonic contractions (convulsion) lasting > 3 seconds with loss of balance. Racine scores of 4 or 5 were considered a full convulsion while Racine scores of 1-3 were considered pre-convulsive behavior. To examine the effect of diprenorphine or naltrindole on SNC80-induced convulsions, mice were pretreated with the antagonists (s.c.) 30 min prior to SNC80 administration. To examine the ability of diprenorphine or SNC80 to potentiate PTZ-induced convulsions, mice were pretreated with either drug or vehicle (s.c.) 30 min before 32 mg/kg PTZ (s.c.).

Drugs and Materials
[3H]-diprenorphine and [35S]GTPγS were purchased from Perkin Elmer Life Sciences (Cambridge, MA USA). Diprenorphine HCl was from the National Institute on Drug Abuse Research Resource Drug Supply Program (Bethesda, MD, USA). SNC80 ((+)-4-[(αR)-α-((2S,5R)-4-allyl-2,5-di-methyl-1-piperazinyl)-3-methoxybenzyl]-N, N-diethylbenzamide) was synthesized as described (Calderon et al., 1994). Morphine sulfate solution was from Hospira, Inc (Lake Forest, IL). Naltrindole HCl was from Tocris (Minneapolis, MN USA) and desipramine, FLAG M2 Alkaline Phosphatase Antibody and all other chemicals from Sigma-Aldrich (St. Louis, MO, USA). For behavioral experiments, desipramine, diprenorphine, and morphine were dissolved in physiological saline, naltrindole HCl was dissolved in sterile water, and SNC80 was dissolved in 1 M HCl then diluted in sterile water to a concentration of 3-5% HCl. All drugs were administered at a volume of 10.0 mL/kg.

Data Analysis

Results were analyzed in GraphPad Prism 7.0 (La Jolla, CA) and expressed as mean ± standard error (SEM). For saturation binding experiments, one-site saturation binding analysis was used to determine affinity (K_D) values and maximal binding. For the [35S]GTPγS assays, potency (EC50) and degree of stimulation were determined using non-linear regression analysis. Comparison of internalization was made by t-test. For the TST experiments, immobility time (sec) was analyzed using either a t-test (desipramine) or a between-subjects, one-way analysis of variance (ANOVA) (diprenorphine). For the NIH experiments, volume consumed (mL) and latency to drink (sec) were analyzed by mixed factor two-way ANOVA with “environment” (home or novel cage) as the within-subject factor and “drug treatment” as the between-subjects factor. For the locomotor measurements, total X and Y beam breaks for each 5 min interval over 60 min measurement are averaged per treatment group. Locomotor activity data are also shown as the total X and Y beam breaks for 60 min per treatment group. Locomotor activity time course data were analyzed by repeated measures, two-way ANOVA with Tukey’s post-hoc
test (with treatment as the between-subjects factor and time as the within-subjects factor), and total beam breaks were analyzed by one-way ANOVA with Tukey’s post-hoc test. For the convulsion experiments, data are the percent of mice that convulsed, latency to convulse, and severity of convulsion for each treatment group. Significant ANOVAs were followed by Tukey post-hoc test. The criterion for significance was at P< 0.05.

RESULTS

In vitro Assays

Affinity and functional activity of diprenorphine at opioid receptors.

Diprenorphine displayed high (nM) affinity at all three receptors expressed in CHO cell membranes in the rank order MOPr = KOPr > DOPr (Table 1). Diprenorphine was seen to be a partial agonist of high potency at DOPr in the [35S]GTPγS assay in membranes from CHO cells compared to the standard full agonist SNC80 and a more potent partial agonist at KOPr when compared to the standard agonist U69,593 (Table 1). In contrast, at MOPr diprenorphine did not stimulate [35S]GTPγS binding, but acted as a potent antagonist of the MOPr full agonist DAMGO (Table 1), with an antagonist affinity constant (0.18 nM) that matches its ligand binding affinity (0.3nM). To further characterize activity at MOPr and DOPr, we tested the ability of diprenorphine to recruit β-arrestin2 and to drive DOPr internalization. Diprenorphine did not recruit β-arrestin2 at any detectable levels to MOPr or DOPr expressed in CHO cells (Table 1), despite its partial agonist activity at DOPr in the [35S]GTPγS assay. In accord with its inability to recruit β-arrestin2, diprenorphine did not cause internalization of DOPr tagged with a FLAG epitope expressed in HEK 293 cells (not shown).

Behavioral Assays
Antidepressant-like Activity in the tail-suspension test (TST).

Diprenorphine significantly reduced immobility time in the TST ($F(4,25) = 6.30, P=0.0012$; Figure 1A). Specifically, 10.0 mg/kg reduced the immobility time compared to saline ($P<0.05$). The positive control desipramine (32mg/kg) significantly decreased the time spent immobile as compared to the saline control ($t(10) = 4.63, P=0.0009$ Figure 1B) as did the selective DOPr agonist SNC80 ($F(3, 21) = 4.56, P=0.013$); SNC80 at 3.2 mg/kg lowered immobility time compared to vehicle ($P<0.01$). The effects of diprenorphine were observed to occur after 30 mins, similar to desipramine and SNC80. To examine if the observed effect of diprenorphine was DOPr-mediated, mice were treated with the DOPr selective antagonist naltrindole 30 min before diprenorphine administration. When pretreated with vehicle, 10.0 mg/kg diprenorphine significantly decreased time spent immobile ($F (4,39) = 10.87 P=0.0006$; Figure 1D). Pretreatment with either 3.2 or 10.0 mg/kg naltrindole significantly lessened the antidepressant-like effects of 10mg/kg diprenorphine ($P<0.05$). Naltrindole (3.2 mg/kg) alone had no effect on immobility time (Figure 1D).

Antidepressant-like Activity in the Novelty-Induced Hypophagia (NIH) test.

Diprenorphine reduced the latency to drink with a significant main effect of treatment ($F(3,34) = 10.22, P<0.0001$), environment, ($F(1,34) = 264.9, P<0.0001$), and a significant interaction ($F(3, 34) = 11.79, P<0.0001$). Posthoc analysis revealed that diprenorphine dose-dependently decreased latency to drink in the novel environment with significant decreases at 3.2 mg/kg ($P<0.01$) and 10 mg/kg ($P<0.001$) (Figure 2A). Diprenorphine increased the volume consumed with a significant main effect of treatment ($F(3,34) = 6.49, P=0.0021$), environment ($F (1, 34) = 18.29, P=0.0002$), but not a significant interaction ($F(3,34) = 0.64, P=0.67$) (Figure 2 B). Overall, treatment with 10mg/kg diprenorphine,
regardless of test environment, significantly increased the volume consumed (P<0.01). The positive control, SNC80, also reduced latency to drink with a significant main effect of treatment (F(1,16) = 3.74, P=0.032), environment (F(1,16) = 50.85, P<0.0001), and a significant interaction (F(2,16) = 3.45, P=0.043); SNC80 at 10mg/kg significantly reduced the latency to drink in the novel environment (P<0.01; Figure 2C), but, unlike diprenorphine, SNC80 did not significantly alter the volume consumed in the home cage or novel environment (main effect of treatment (F(1,16) = 0.72, P=0.77; Figure 2D).

The action of diprenorphine to increase the amount of sweetened solution ingested in both the novel and home cages was unexpected. However, effects of opioids on food intake are complex (Bodnar, 2019), such that any aspect of the multifaceted pharmacology of diprenorphine could be responsible.

To evaluate whether the action of diprenorphine in the NIH test required activation of DOPr, mice were pretreated with naltrindole or vehicle (Figure 3). There was a significant main effect of treatment (F(3, 33) = 6.02, P=0.0022), environment (F(1, 33) = 185.4, P<0.0001), and a significant interaction (F(3, 33) = 6.40, P=0.0015), such that the ability of 10 mg/kg diprenorphine to decrease latency to drink in the novel cage was completely blocked by 3.2 mg/kg naltrindole (Figure 3A; P<0.001). For volume consumed there was a significant main effect of treatment (F(3,33) = 3.19, P=0.03) and environment (F(1,33) = 31.03, P<0.0001), but no significant interaction (F(3,33) = 1.42, P=0.26) such that more liquid was taken in the home cage as compared to the novel environment (Figure 3B). Naltrindole (3.2 mg/kg) did not affect either latency to drink or volume of sweetened solution consumed in the vehicle control mice. Tables S1 and S2 provide a breakdown of the NIH results by sex.

Locomotor activity

To evaluate diprenorphine-induced locomotor activity, mice were placed into chambers with infrared beams immediately following intraperitoneal injections of saline, 10 mg/kg diprenorphine, 10 mg/kg
morphine, or 32 mg/kg morphine. There was a significant effect of locomotor activity over time (Figure 4A, time X treatment interaction, F(33, 308) = 5.15, P<0.0001); however, diprenorphine and 10 mg/kg morphine failed to significantly increase locomotor activity over saline control at any time interval. However, 32 mg/kg significant increased locomotor activity as compared with saline, 10 mg/kg diprenorphine, and 10 mg/kg morphine at 20-60 min post injection (p<0.05 for all time points vs the 3 other treatments). Consistently, there was a significant effect of total beam breaks over 60 min (Figure 4B, F(3,28)=8.44, P=0.004); only 32 mg/kg morphine (p<0.001), but not 10 mg/kg diprenorphine or 10 mg/kg morphine, significantly increased beam breaks as compared with saline control. Interestingly, there were no observable sex differences (○ females, ● males) at saline, 10 mg/kg diprenorphine, or 10 mg/kg morphine treatments, but 32 mg/kg morphine appear to induce higher levels of beam breaks in female than male mice (Table S3).

Convulsive activity

The propensity of diprenorphine to cause convulsive behavior in mice is shown in Figure 5. As expected, SNC80 (10 and 32 mg/kg) produced convulsions in every mouse (Figure 5A). In contrast, diprenorphine did not produce overt convulsions at any dose tested up to 32 mg/kg (Figure 5A). Tables S4 and S5 provide a breakdown of these results by sex. In fact, using male mice we saw that pretreatment with 10 mg/kg diprenorphine blocked the convulsions produced by 32mg/kg SNC80 (Figure 5B). To further explore the potential convulsive activity of diprenorphine, we examined whether the convulsive agent pentylenetetrazole (PTZ) lowers the threshold for diprenorphine-mediated-convulsive activity, since PTZ does enhance DOPr agonist-mediated convulsive activity (Hudzik et al., 2011), including partial agonists (Dripps et al., 2020). As a control we confirmed in male mice that SNC80- mediated convulsions were potentiated in the presence of a sub-convulsive dose (32mg/kg) of
PTZ, as seen by the leftward shift in the SNC80 dose-effect curve (EC$_{50}$ = 12 mg/kg in the absence of PTZ but 0.5 mg/kg in the presence of PTZ; Figure 6A). This effect was completely prevented following pretreatment with 3.2 mg/kg naltrindole (Figure 6B; t(10)=17, P<0.0001). In the presence of the 32mg/kg PTZ, diprenorphine produced convulsions that occurred 10-15 min after PTZ administration (Figure 6C, D), with a dose-dependent increase in the severity of convulsions as determined by Racine scores (Figure 6C; significant interaction: F(5,66)= 3.8, P=0.0047. It is noticeable that PTZ afforded a greater increase in the potency of diprenorphine versus SNC80. Pretreatment with naltrindole (3.2 mg/kg) fully inhibited the convulsive behavior induced by 0.01mg/kg diprenorphine in the presence of 32mg/kg PTZ and partially inhibited the effect of 10mg/kg diprenorphine in the presence of 32mg/kg PTZ (Figure 6D; t(10)=3, P=0.011).

DISCUSSION

This study has identified diprenorphine as a potential rapid-acting antidepressant medication via a DOPr-mediated mechanism. Diprenorphine is effective following a single dose in the NIH assay which requires chronic dosing with traditional antidepressants and can therefore detect rapidly acting antidepressants (Dulawa et al., 2004; Saavedra et al., 2020), including ketamine (Louderback et al., 2013). Moreover, unlike many DOPr agonists and did not produce overt convulsions in mice, even at three-times the dose that produced antidepressant-like effects. Diprenorphine is not approved for human use although it has been employed for PET imaging in humans (Dougherty et al., 2008; Frost et al., 1990; Jones et al., 1988) and is approved for the reversal of opioid immobilization in large animals (Alford et al., 1974; Ducker and Boyd, 1972; Meyer et al., 2018).

In vitro diprenorphine acts as a MOPr antagonist but a partial agonist at DOPr and KOPr and is likely to exert similar properties *in vivo* although this will depend on the levels of receptor reserve and
the partial agonist activity will manifest as antagonism of higher efficacy agonists. The antidepressant-like activity of diprenorphine was fully blocked in the TST and NIH assays by the DOPr selective antagonist naltrindole, demonstrating the DOPr partial agonist component of diprenorphine’s complex pharmacology is an absolute requirement for this effect. Then again, we cannot discount a supporting role for KOPr partial agonism, based on the effectiveness of the KOPr partial agonist nalbuphine in the forced swim test (Browne et al., 2020) or MOPr antagonism based on data showing involvement of MOPr antagonism by buprenorphine in the anxiolytic component of the NIH test (Robinson et al., 2017). Indeed, it is feasible that MOPr antagonist activity of diprenorphine may contribute to its higher potency in the NIH test.

The observed actions of diprenorphine in both tests resemble the antidepressant-like effects of selective DOPr agonists (Broom et al., 2002b; Jutkiewicz et al., 2005). Diprenorphine is a low efficacy DOPr agonist but produced effects equivalent to the full DOPr agonist SNC80 showing only a low level of efficacy is sufficient to afford antidepressant-like activity. This is supported by data with the DOPr partial agonist BU48 (Dripps et al., 2020). Drug-induced increases in locomotor activity can make interpretation of effects in the TST problematic and previous studies found that diprenorphine can increase locomotor activity in mice (DeRossett and Holtzman, 1982; Parker, 1974). However, in the current study using C57BL/6 mice, diprenorphine did not stimulate locomotor activity (Figure 4). Additionally it is important to note that (a) not all drugs that stimulate locomotor activity in mice, for example morphine (Anand et al., 2018; Berrocoso et al., 2013; Ostadhadi et al., 2016; Rosa et al., 2017), but see (Steru et al., 1985), have antidepressant-like effects in the TST and (b) drugs with locomotor stimulating properties typically increase latencies to consume a sweetened solution in the NIH assay. Overall, these data suggest that diprenorphine produces rapid antidepressant-like effects independent of locomotor-stimulating properties.
The clinical utility of DOPr agonists as antidepressants has been limited by their propensity to cause convulsions in rodents (Hong et al., 1998)(Broom et al., 2002a; Jutkiewicz et al., 2005) and non-human primates (Danielsson et al., 2006). Diprenorphine did not produce convulsions in mice and furthermore inhibited the convulsive effects of the full DOPr agonist SNC80 yet was more potent at enhancing the convulsive activity PTZ than SNC80. The reasons for this are not clear but the effect is DOPr-mediated since it was fully inhibited by 3.2 mg/kg naltrindole. Nonetheless, this activity of diprenorphine might not limit its clinical utility as the FDA approved antidepressant, bupropion produces seizures in 0.4 – 2.8% of patients (Hill et al., 2007).

The reasons why diprenorphine and several other DOPr agonists (Le Bourdonnec et al., 2008; Le Bourdonnec et al., 2009; Nozaki et al., 2012; Pradhan and Clarke, 2005; Saitoh et al., 2011) do not produce convulsions in preclinical models are unclear. Like DOPr-mediated antidepressant-like activity, DOPr-mediated convulsive behavior is a low efficacy requiring response (Broom et al., 2002d; Dripps et al., 2020), thus it is unlikely that the partial agonist activity of diprenorphine at DOPr explains its lack of convulsive activity. The potency of SNC80 to generate convulsions is greater in β-arrestin-1 (arrestin 2) knockout mice indicating a protective role for this arrestin (Dripps et al., 2018). We did not measure the ability of diprenorphine to recruit β-arrestin-1 but this is unlikely given the low efficacy of diprenorphine, plus our finding that it did not cause recruitment of β-arrestin-2. This is in line with studies indicating the higher efficacy requirement for arrestin recruitment (Gillis et al., 2020). Speed of delivery to the brain may be the determining factor in whether DOPr agonists cause convulsions (Jutkiewicz et al., 2005). However, diprenorphine has rapid brain penetration and, as mentioned earlier, is used to reverse opioid overdose/immobilization of large animals in veterinary medicine (Alford et al., 1974; Ducker and Boyd, 1972; Meyer et al., 2018) and reverses fentanyl-mediated respiratory depression in the mouse (Hill et al., 2020). It is possible the reasons why diprenorphine and several
selective DOPr agonists do not produce convulsions are different and the polypharmacology of
diprenorphine explains both its effectiveness and its preclinical safety, since MOPr antagonists are not
seizurogenic (Tortella et al., 1987) and the partial agonist activity of diprenorphine at KOPr may reduce
or limit the risk of convulsions (Loacker et al., 2007; Tortella et al., 1986). KOPr agonists are known to
cause dysphoria in rodents and humans (Lalanne et al., 2014; Mysels and Sullivan, 2009) so partial
KOPr agonist activity may limit the clinical utility of diprenorphine. Although the low KOPr efficacy of
diprenorphine in vitro may indicate the compound would function as a KOPr antagonist in vivo, and not
all KOPr agonist cause dysphoria (Brust et al., 2016), for example, the KOPr agonist nalfurafine
produced only a low incidence of dysphoria during clinical trials (Kumagai et al., 2010; Wikstrom et al.,
2005). Future investigations will examine diprenorphine for KOPr-mediated dysphoric activity, but even
if observed this could be ameliorated with a KOPr antagonist, which may provide additional
antidepressant action (Reed et al., 2022).

Buprenorphine, a close analogue of diprenorphine exhibits antidepressant-like activity in animal
models and humans by virtue of its KOPr antagonist activity (Falcon et al., 2016). No convulsive
activity has been reported with buprenorphine, presumably because it is a DOPr antagonist in vitro and
in vivo (Lee et al., 1999; Negus et al., 2002). However, since it is a MOPr partial agonist buprenorphine
is open to abuse and diversion (Chilcoat et al., 2019; Han et al., 2021; Lavonas et al., 2014; Lofwall and
Walsh, 2014). To combat this, buprenorphine has been packaged with samidorphan, a selective potent
MOPr antagonist (Chaudhary et al., 2019) as the combination medication ALK-5461(Zajecka et al.,
2019). ALK-5461 has shown antidepressant activity across several trials (Fava et al., 2016; Fava et al.,
2020; Thase et al., 2019), but to date FDA approval has not been obtained due to concerns regarding the
drug’s benefit-risk profile including potential for misuse and abuse (Reuters, 2019). Diprenorphine
offers the potential therapeutic benefit of the buprenorphine-samidorphan combination (Bidlack et al., 2018) by a different mechanism, and without the abuse liability associated with buprenorphine.

Because of its MOPr antagonist action diprenorphine would not be suitable for people currently taking opioids, or those requiring opioid medication for pain. In addition, major depressive disorder is associated with increased coupling efficiency of MOPr in the anterior insular cortex together with evidence for increased opioid peptide release (Lutz et al., 2021; Nummenmaa et al., 2020) and so chronic inhibition of MOPr might mitigate successful treatment if these effects are compensatory, rather than causative, responses. On the other hand, there is evidence that the MOPr antagonist component of diprenorphine may not be problematic. For example, 52-week administration of the buprenorphine-samidorphan combination together with antidepressant therapy, to patients with major depressive disorder did not report any problems and a favorable profile of suicidal thoughts and behavior (Thase et al., 2019). Similarly, a 24-week pilot study of a bupropion-naltrexone combination which is FDA-approved for weight loss showed improvement in depressive symptoms in overweight and/or obese women with major depression (McElroy et al., 2013). Chronic naltrexone is generally well tolerated in patients with alcohol use disorder (Anton, 2008) and in a randomized controlled trial in opioid dependent subjects naltrexone-treated patients tended to exhibit an improvement in their depressive symptoms over time compared with the control group (Dean et al., 2006).

The present study identifies diprenorphine as a prospective antidepressant treatment with several key advantages, rapid onset, minimal concerns regarding convulsive side-effects, and as a MOPr antagonist diprenorphine would not be expected to have abuse liability thus providing a potentially improved therapeutic window over other available and preclinical rapidly acting antidepressant drugs. Although shown to be a MOPr antagonist in many studies, diprenorphine is a DEA schedule II
compound subject to special procedures (DEA, 2021). However, given there are no reports of MOPr agonist activity with diprenorphine, this scheduling could be changed.

Acknowledgments: CHO-hDOPr cells (Dr. Laurence Toll) and hMOPr and hKOPr cells (Dr. John Streicher) were generous gifts.

Author Contributions

Participated in research design: Traynor, Jutkiewicz, Hillhouse, and Olson.

Conducted experiments: Olson, Hillhouse, Burgess, West, Hallahan, Dripps, and Ladetto.

Contributed new reagents or analytic tools: Rice.

Performed data analysis: Olson, Hillhouse, Burgess, Jutkiewicz, and Traynor

Wrote or contributed to the writing of the manuscript: Olson, Hillhouse, Jutkiewicz, and Traynor

Footnotes

This work was supported by National Institute on Drug Abuse Grants R37 DA039997 (to JRT) and R21 DA041565 (to EMJ). TMH and KMO were supported by T32 DA007268 (to JRT) and GEB by T32 DA007281 and a Dr. Benedict & Diana Lucchesi Fellowship. The work of the Drug Design and Synthesis Section (KCR) was supported by the NIH Intramural Research Programs of the National Institute on Drug Abuse and the National Institute of Alcohol Abuse and Alcoholism.

Financial Disclosure

No author has an actual or perceived conflict of interest with the contents of this article.
References

FIGURE LEGENDS

Figure 1. Effects of diprenorphine on immobility time in the tail suspension test. Reduction in immobility time by (A) diprenorphine, (B) desipramine or (C) SNC80. (D) Shows inhibition of the effect of diprenorphine following pretreatment with 3.2 or 10 mg/kg naltrindole (NTI). All points shown represent means ± SEM for 6-8 male mice for each treatment condition and 15 male mice for the control group (D). Data were analyzed by ANOVA followed by a Tukey post hoc test. *P<0.05, ** P<0.01, *** P<0.001 vs. Vehicle/Saline/Control Group; + P<0.05, +++ P<0.001 vs. 0 NTI + 10 mg/kg diprenorphine (DPN).
Figure 2. Effects of Diprenorphine and SNC80 on latency to drink and volume consumed in the Novelty-Induce Hypophagia test. Diprenorphine dose-dependently decreased the latency to drink in the novel cage (A) and increased volume consumed in both home the cage and the novel environment. (B). SCN80 decreased latency to drink (C), but not volume consumed (D). Measurements were analyzed by ANOVA followed by a Tukey post hoc test and the data shown represent means ± SEM for 7-9 male or female mice for each treatment condition, with 12 control animals. ** P<0.01, *** P<0.001 vs. Vehicle/Saline; ††p < 0.01 main effect of treatment vs. saline.

Figure 3. Naltrindole inhibits the action of diprenorphine in the Novelty-Induce Hypophagia test. (A) Pretreatment with 3.2 mg/kg naltrindole (NTI) blocked the decrease in latency to drink produced by 10 mg/kg diprenorphine in a novel environment, and (B) the volume consumed in the home cage. Significant ANOVAs were followed by a Tukey post hoc test. All data are means ± SEM for 8 male or female mice for each treatment condition (data for 3.2 mg/kg naltrindole was obtained using female mice only) and 13 control animals. *** P<0.001 vs. H2O + Saline; +++ P<0.001 vs. H2O + 10 mg/kg diprenorphine; †p < 0.05 main effect of treatment vs. novel cage.

Figure 4. Diprenorphine does not stimulate locomotor activity. (A) Treatment with 10 mg/kg diprenorphine (DPN; i.p.) and 10 mg/kg morphine (i.p.) did not increase locomotor activity over the course of the 60 min recording period as compared with saline; however, 32 mg/kg morphine increased activity as compared with either saline, 10 mg/kg diprenorphine, or 10 mg/kg morphine at 20-60 min post-injection (p<0.01). (B) Treatment with 10 mg/kg diprenorphine (DPN) and 10 mg/kg morphine (10M) did not increase the total locomotor activity (as measured in beam breaks) measured, and there did not appear to be any sex differences (○ shows data points from female mice, ● shows data points...
from male mice). Consistent with the time course data, 32 mg/kg morphine (32M) increased total activity measured in 60 min as compared with either saline (p<0.001); this effect appears to be larger in magnitude in female than in male mice.

Figure 5. Diprenorphine does not cause overt convulsions in mice. (A) Treatment with 10 or 32 mg/kg SNC80 produced convulsions in >80% of mice. Diprenorphine (1-32 mg/kg) did not produce convulsion in mice. (B) Pretreatment with 10 mg/kg diprenorphine prevented SNC80-induced convulsions. Data are means ± SEM for 6-8 male or female mice per condition (A) or 6 male mice (B).

Figure 6. Diprenorphine shows convulsive behavior in the presence of pentylenetetrazole (PTZ). The convulsive effects of SNC80 or diprenorphine alone or in combination with a sub-convulsive dose (32 mg/kg) of PTZ in male mice. Severity of convulsive behaviors as Racine score is displayed on the y-axes in (A) and (C) and presented as the average score across all mice per each treatment condition or as individual scores in (B) and (D). The gray, dotted line highlights the Racine score assigned for overt clonic and/or tonic contractions lasting > 3 sec in duration, and the number of mice with a Racine score > 4 as a fraction of the total mice tested per condition is shown in the ratio above each data point or bar. (A) Dose-response for SNC80 alone or in combination with PTZ. (B) Effect of pretreatment with 3.2 mg/kg naltrindole (NTI) or vehicle (0 NTI) on the convulsive effect induced by 3.2 mg/kg SNC80 in combination with 32 mg/kg PTZ. (C) Dose-response for diprenorphine alone or in combination with 32 mg/kg PTZ. (D) Inhibition by 3.2 mg/kg naltrindole (NTI) of the convulsive effects produced by 10 mg mg/kg diprenorphine in combination with 32 mg/kg PTZ following pretreatment with 3.2 mg/kg naltrindole (NTI).
Table 1. **In vitro profile of diprenorphine at opioid receptors.** Experiments were performed in CHO cells (β-arrestin) or CHO cell membranes (saturation binding and [35S]-GTPγS binding) expressing either hMOPr, hDOPr or hKOPr. Saturation binding experiments were performed with 3H-diprenorphine. Naloxone was used to define non-specific binding. In the [35S]-GTPγS assay and β-arrestin assays standard agonists were used to define the maximum response (100%). The K_B value for diprenorphine at MOPr was determined against the agonist DAMGO. Potency values for the standard agonists are as follows. In the [35S]-GTPγS assay: (MOPr: DAMGO $EC_{50} = 26 \pm 2.4$ nM; DOPr: SNC80 $EC_{50} = 2.2 \pm 0.6$ nM; KOPr: U69593 $EC_{50} = 9.6 \pm 3.8$ nM. In the β-arrestin assay: MOPr: DAMGO $EC_{50} = 120 \pm 2.4$ nM; DOPr: SNC80 $EC_{50} = 84 \pm 17$ nM. Values are means of three experiments ± SEM each performed in duplicate. NR = no response; NT = not tested.

<table>
<thead>
<tr>
<th>Receptor</th>
<th>K_D (nM)</th>
<th>B_{Max} (fmols/mg protein)</th>
<th>[35S]-GTPγS binding</th>
<th>β-arrestin2 recruitment</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOPr</td>
<td>0.31 ± 0.04</td>
<td>4.0 ± 0.2</td>
<td>K_B: 0.18 ± 0.05</td>
<td>NR</td>
</tr>
<tr>
<td>DOPr</td>
<td>1.1 ± 0.06</td>
<td>2.2 ± 0.5</td>
<td>5.0 ± 1.1</td>
<td>55 ± 5</td>
</tr>
<tr>
<td>KOPr</td>
<td>0.35 ± 0.09</td>
<td>1.3 ± 0.1</td>
<td>0.71 ± 0.21</td>
<td>31 ± 5</td>
</tr>
</tbody>
</table>
Fig. 1

(A) Diprenorphine

(B) Desipramine

(C) SNC80

(D) Naltrindole + Diprenorphine
Fig. 2

(A) Diprenorphine

(B) SNC80

(C) Vehicle

(D) 3.2 mg/kg SNC80

(E) 10 mg/kg SNC80

(latency to drink (sec))

(home cage) (novel cage)

(volume consumed (ml))

(home cage) (novel cage)
Fig. 3

Naltrindole + Diprenorphine

(A) Latency to drink (sec)
- H20 + Saline
- 3.2 mg/kg NTI + Saline
- H20 + 10.0 mg/kg DPN
- 3.2 mg/kg NTI + 10 mg/kg DPN

(B) Volume consumed (ml)
- H20 + Saline
- 3.2 mg/kg NTI + Saline
- H20 + 10.0 mg/kg DPN
- 3.2 mg/kg NTI + 10 mg/kg DPN
Fig. 5

(A) % Convulse vs Dose (mg/kg)

- SNC80
- Diprenorphine

(B) % Convulse

- Saline
- 10.0 mg/kg DPN
- 32.0 mg/kg SNC80
Fig. 6

(A) Racine Score ± SEM

- PTZ
+ 32 PTZ

1/6 6/6 4/6 7/7

SNC80 (mg/kg, s.c.)

(B) Racine Score ± SEM

+ 0 NTI + 3.2 NTI

3.2 SNC80 + 32 PTZ

(C) Racine Score ± SEM

- PTZ
+ 32 PTZ

1/6 3/7 3/8 4/7 2/7

DPN (mg/kg; s.c.)

(D) Racine Score ± SEM

- PTZ
+ 32 PTZ

0.01 10 0.01 10

DPN

+ 0 NTI + 3.2 NTI
Delta opioid receptor-mediated antidepressant-like effects of diprenorphine in mice

Keith M. Olson, Todd M. Hillhouse, Gwendolyn E. Burgess, Joshua L. West, James E. Hallahan, Isaac J. Dripps, Allison G. Ladetto, Kenner C. Rice, Emily M. Jutkiewicz, and John R. Traynor

SUPPLEMENTARY MATERIAL
Novelty Induced Hypophagia: Separation of Data by Sex

Table S1. Data for diprenorphine from Figure 2. Data are expressed as mean ± standard error of the mean (n ≥ 3) or range (n = 2).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Sex</th>
<th>NOVEL CAGE</th>
<th></th>
<th>HOME CAGE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Latency to Drink (s)</td>
<td>Volume Consumed (ml)</td>
<td>Latency to Drink (s)</td>
<td>Volume Consumed (ml)</td>
</tr>
<tr>
<td>Saline</td>
<td>M (n=7)</td>
<td>521 ± 242</td>
<td>0.50 ± 0.33</td>
<td>19 ± 8</td>
<td>0.94 ± 0.54</td>
</tr>
<tr>
<td></td>
<td>F (n=5)</td>
<td>480 ± 131</td>
<td>0.52 ± 0.19</td>
<td>24 ± 15</td>
<td>0.54 ± 0.38</td>
</tr>
<tr>
<td>1.0 mg/kg</td>
<td>M (n=3)</td>
<td>407 ± 124</td>
<td>0.33 ± 0.06</td>
<td>21 ± 4</td>
<td>0.67 ± 0.90</td>
</tr>
<tr>
<td></td>
<td>F (n=5)</td>
<td>540 ± 84</td>
<td>0.28 ± 0.13</td>
<td>28 ± 19</td>
<td>0.52 ± 0.51</td>
</tr>
<tr>
<td>3.2 mg/kg</td>
<td>M (n=2)</td>
<td>236 ± 20</td>
<td>0.85 ± 0.07</td>
<td>14 ± 8</td>
<td>1.0 ± 0.07</td>
</tr>
<tr>
<td></td>
<td>F (n=5)</td>
<td>374 ± 39</td>
<td>0.34 ± 0.22</td>
<td>21 ± 16</td>
<td>0.70 ± 0.40</td>
</tr>
<tr>
<td>10 mg/kg</td>
<td>M (n=3)</td>
<td>130 ± 51</td>
<td>1.0 ± 0.50</td>
<td>15 ± 2</td>
<td>2.0 ± 0.49</td>
</tr>
<tr>
<td></td>
<td>F (n=6)</td>
<td>233 ± 53</td>
<td>0.72 ± 0.35</td>
<td>32 ± 14</td>
<td>1.0 ± 1.0</td>
</tr>
</tbody>
</table>

Table S2. Data for the naltrindole (NTI) + diprenorphine (DPN) from Figure 3. Data are expressed as mean ± SEM

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Sex</th>
<th>NOVEL CAGE</th>
<th></th>
<th>HOME CAGE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Latency to Drink (s)</td>
<td>Volume Consumed (ml)</td>
<td>Latency to Drink (s)</td>
<td>Volume Consumed (ml)</td>
</tr>
<tr>
<td>H20 + Saline</td>
<td>M (n=9)</td>
<td>531 ± 216</td>
<td>0.24 ± 0.18</td>
<td>22 ± 17</td>
<td>0.53 ± 0.28</td>
</tr>
<tr>
<td></td>
<td>F (n=4)</td>
<td>498 ± 129</td>
<td>0.20 ± 0.14</td>
<td>25 ± 8</td>
<td>0.93 ± 0.54</td>
</tr>
<tr>
<td>3.2 mg/kg NTI + Saline</td>
<td>M (n=0)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>F (n=8)</td>
<td>626 ± 202</td>
<td>0.20 ± 0.21</td>
<td>16 ± 6</td>
<td>0.51 ± 0.52</td>
</tr>
<tr>
<td>H20 + 10 mg/kg DPN</td>
<td>M (n=4)</td>
<td>187 ± 70</td>
<td>0.9 ± 0.50</td>
<td>29 ± 27</td>
<td>2.0 ± 0.69</td>
</tr>
<tr>
<td></td>
<td>F (n=4)</td>
<td>255 ± 44</td>
<td>0.30 ± 0.18</td>
<td>12 ± 5</td>
<td>0.85 ± 0.65</td>
</tr>
<tr>
<td>3.2 mg/kg NTI + 10 mg/kg DPN</td>
<td>M (n=4)</td>
<td>483 ± 375</td>
<td>0.7 ± 0.39</td>
<td>20 ± 21</td>
<td>1.0 ± 0.90</td>
</tr>
<tr>
<td></td>
<td>F (n=4)</td>
<td>621 ± 185</td>
<td>0.25 ± 0.06</td>
<td>85 ± 132</td>
<td>0.28 ± 0.21</td>
</tr>
</tbody>
</table>
Locomotor Activity: Separation of Data by Sex

Table S3. Locomotor Activity data for Diprenorphine (DPN) and Morphine from Figure 4B. Data are expressed as ± standard error of the mean (n = 4 for each sex).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Sex</th>
<th>Total number of beam breaks in 60 mins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saline</td>
<td>M</td>
<td>10046 ± 2103</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>11393 ± 2531</td>
</tr>
<tr>
<td>10mg/kg DPN</td>
<td>M</td>
<td>12924 ± 3443</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>13915 ± 2315</td>
</tr>
<tr>
<td>10 mg/kg Morphine</td>
<td>M</td>
<td>10669 ± 1667</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>14452 ± 1780</td>
</tr>
<tr>
<td>32 mg/kg Morphine</td>
<td>M</td>
<td>18010 ± 3975</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>33013 ± 3188</td>
</tr>
</tbody>
</table>
Convulsive Activity: Separation of Data by Sex

Table S4. Data for diprenorphine (DPN) from Figure 5A. DNC = did not convulse

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Sex</th>
<th>Time of Onset</th>
<th>Duration (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2 mg/kg DPN</td>
<td>M (n=2)</td>
<td>DNC</td>
<td>DNC</td>
</tr>
<tr>
<td></td>
<td>F (n=4)</td>
<td>DNC</td>
<td>DNC</td>
</tr>
<tr>
<td>10 mg/kg DPN</td>
<td>M (n=4)</td>
<td>DNC</td>
<td>DNC</td>
</tr>
<tr>
<td></td>
<td>F (n=2)</td>
<td>DNC</td>
<td>DNC</td>
</tr>
<tr>
<td>32 mg/kg DPN</td>
<td>M (n=4)</td>
<td>DNC</td>
<td>DNC</td>
</tr>
<tr>
<td></td>
<td>F (n=2)</td>
<td>DNC</td>
<td>DNC</td>
</tr>
</tbody>
</table>

Table S5. Data for SNC80 from Figure 5A. Data are expressed as ± standard error of the mean (n ≥ 3) or range (n = 2). DNC = did not convulse

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Sex</th>
<th>Time of Onset</th>
<th>Duration (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 mg/kg SNC80</td>
<td>M (n=3)</td>
<td>DNC</td>
<td>DNC</td>
</tr>
<tr>
<td></td>
<td>F (n=3)</td>
<td>DNC</td>
<td>DNC</td>
</tr>
<tr>
<td>3.2 mg/kg SNC80</td>
<td>M (n=2)</td>
<td>DNC</td>
<td>DNC</td>
</tr>
<tr>
<td></td>
<td>F (n=4)</td>
<td>DNC</td>
<td>DNC</td>
</tr>
<tr>
<td>10 mg/kg SNC80</td>
<td>M (n=2)</td>
<td>471 ± 144</td>
<td>8 ± 0</td>
</tr>
<tr>
<td></td>
<td>F (n=4)</td>
<td>604 ± 248</td>
<td>8 ± 2</td>
</tr>
<tr>
<td>32 mg/kg SNC80</td>
<td>M (n=4)</td>
<td>366 ± 82</td>
<td>8 ± 1</td>
</tr>
<tr>
<td></td>
<td>F (n=4)</td>
<td>328 ± 138</td>
<td>7 ± 2</td>
</tr>
</tbody>
</table>