Chlorogenic acid inhibits epithelial-mesenchymal transition and invasion of breast cancer by down-regulating LRP6

Wei Xue1,2,3#, Jie Hao1,2#, Qiuping Zhang1,2,4#, Ronghua Jin1, Zhuo Luo1, Xin Yang2, Yanying Liu1, Qinpei Lu1*, Yiqiang Ouyang5*, Hongwei Guo1,2*

1 Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, Nanning 530021, China
2 Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning 530021, China
3 Department of Pharmacy, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530011, China
4 The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
5 Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China

* Correspondence: hongweiguo@gxmu.edu.cn, ouyangyiqiang@stu.gxmu.edu.cn, luqinpei@gxmu.edu.cn

These authors have contributed equally to this work.
a) Running Title: Chlorogenic acid inhibits breast cancer metastasis

b) Corresponding author

Hongwei Guo, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning 530021, China. Telephone: +86 771 5605911, Email: hongweiguo@gxmu.edu.cn

Yiqiang Ouyang, Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China. Telephone: +86 771 5338319, Email: ouyangyiqiang@stu.gxmu.edu.cn

Qinpei Lu, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, Nanning 530021, China. Telephone: +86 771 5605911, Email: luqinpei@gxmu.edu.cn

c) The number of text page: 36

The number of figures: 8

The number of references: 34

The number of words in the Abstract: 221

The number of words in the Introduction: 422

The number of words in the Discussion: 885

d) Nonstandard abbreviations: CA: chlorogenic acid; CDCQ: 4-dihydrocaffeoylquinic acid; ICAC: isochlorogenic acid C.

e) Recommended section: Cellular and Molecular; others
Abstract

Epithelial-mesenchymal transition (EMT) is a crucial biological process for breast cancer metastasis and inhibition of EMT could be an effective approach to suppress metastatic potential of mammary cancer. High LRP6 expression is usually observed in breast carcinoma and predicts poor prognosis. In present study, we investigated whether chlorogenic acid (CA) can inhibit the EMT of breast cancer cells and underlying molecular mechanism. We found that CA treatment transformed MCF-7 cell morphology from spindle shape (mesenchymal phenotype) to spherical shape (epithelial phenotype). CA clearly increased epithelial biomarkers’ expression (E-cadherin and ZO-1) but decreased mesenchymal proteins’ expression (ZEB1, N-cadherin, Vimentin, Snail and Slug). In addition, CA attenuated MMP-2 and MMP-9 activities and inhibited cell migration and invasion. CA also down-regulated LRP6 expression, knockdown LRP6 with siRNA repressed cell mobility and invasion while overexpression of LRP6 promoted EMT and antagonized the EMT inhibitory effect of CA on MCF-7 cells. Furthermore, CA directly interacted with Wnt/β-catenin signaling coreceptor LRP6, reduced LRP6, p-LRP6, and β-catenin expression levels in MCF-7 cells. In vivo study revealed that CA notably reduced tumor volume and tumor weight. CA suppressed EMT of breast tumors with LRP6, N-cadherin, ZEB1, Vimentin, MMP2, MMP9 decreased, E-cadherin and ZO-1 increased. In conclusion, CA targeted LRP6 restrained EMT and invasion of breast cancer. CA may be developed as an EMT inhibitor for breast cancer treatment.

Keywords Chlorogenic acid, epithelial-mesenchymal transition, LRP6, breast cancer
Significance Statement

chlorogenic acid (CA), the familiar polyphenol compound in traditional Chinese medicine, repressed EMT and weakened cellular mobility and invasion in MCF-7 cells. The mechanism studies demonstrated that CA inhibits MCF-7 cell EMT and invasion via targeting LRP6. Additionally, CA can restrain tumor growth and xenograft tumor EMT \textit{in vivo}. The EMT inhibitory property of CA warrants further studies of CA as a drug candidate for the therapy of metastatic breast carcinoma.
Introduction

Breast cancer is the most common cancer in women and has transcended lung cancer as the most frequently diagnosed tumor, with 2.3 million new case (11.7%) and 684,996 (6.9%) mammary tumor-related mortalities globally in 2020 (Sung et al., 2021). While the 5-year relative survival rate for localized breast cancer is relatively high (80-92%), the 5-year relative survival rate for metastatic breast cancer decreases significantly to <25% (Desantis et al., 2015). Therefore, identification of new treatment of the breast tumor is important.

Epithelial-mesenchymal transition (EMT) is very important in embryonic development (Si et al., 2009). Increasing evidence has shown that EMT also facilitates cancer progression. During the progression of epithelial tumors, EMT participates in the process of seeding metastasis by increasing cell migrated and invasive capacity (Kalluri and Weinberg, 2009). EMT is induced with an increase of mesenchymal proteins, such as ZEB1, N-cadherin, Vimentin, Snail and Slug, and decrease of epithelial proteins, including E-cadherin and ZO-1 (Zeisberg and Neilson, 2009). Besides, up-regulation of matrix metalloproteinases (MMPs) and fibronectin expression is observed during EMT, which increases cell mobility and invasion (Lee et al., 2006). Since E-cadherin is one of the major constituents of the epithelial cell junction system and exerts a potent invasion inhibiting role in cancer cells, down-regulation of E-cadherin occurs in cancer metastasis and always indicates poor prognosis (Comijn et al., 2001). Transcriptional factors, such as ZEB1, Snail and Slug, play pivotal roles in EMT process induction by suppressing E-cadherin expression.
and promoting mesenchymal markers’ expression (Baritaki et al., 2009; Sun et al., 2012). These biomarkers-mediated EMT are also associated with the mechanism underlying chemoresistance in various kinds of tumors (Gravdal et al., 2007). Thus, developing EMT inhibitors may be effective way to restrain cancer metastasis.

Chlorogenic acid (CA) is the primary active component of many traditional Chinese herbal compound and highly contented in honeysuckle and *Eucommia ulmoides* Oliv (Miao and Xiang, 2020). Previous studies have shown that CA possesses various pharmacological properties, such as anti-inflammatory (Jung et al., 2013), antioxidant (Singh et al., 2018), antibiotic (Ren et al., 2015) and anti-cancer activities (Yang et al., 2020). For instance, Bandyopadhyay et al. (Bandyopadhyay et al., 2013) have found that CA represses Bcr-Abl tyrosine kinase and induces p38 MAPK-dependent apoptosis in chronic myelogenous leukemia cells. Yamagata et al. (Yamagata et al., 2018) have reported that CA triggers apoptosis and down-regulates stem cell-associated markers’ expression in A549 human lung cancer cells. Study by Refolo et al. has shown that CA enhances regorafenib-mediated cell growth, apoptosis and cell mobility inhibition in human hepatocellular carcinoma cells (Refolo et al., 2018). Besides these bioactivities, CA also has a potential inhibitory effect on cancer invasion and metastasis. In hepatoma, CA suppressed the expression of MMP-2 and MMP-9 in HepG2 xenograft tissue (Yan et al., 2017). In prostate cancer, CA significantly lower the expression of HIF-1, which is associated with cancer metastasis, in hypoxia-induced DU145 cells (Lee et al., 2017). However, whether CA can restrain EMT in breast cancer cell lines is unclear. In this study, we
focused on metastatic breast cancer to explore the inhibitory effect and molecular mechanism of CA on EMT.
Materials and methods

Drug virtual screening

The ligands set is created based on the natural-products subset of ZINC15 (https://zinc15.docking.org/). The 3D structure of receptor (LRP6) is from Uniprot (https://www.uniprot.org/). The interaction domains are predicted by ProDomain with Hmmer domain identification algorithm and IntercDome Ligand-Protein Binding Scoring Algorithm to make the grid setting. Then, the ligand – receptor docking is achieved with Vina. Each ligand has 10 poses binding to the receptor and docking scores (affinity). The sorting rule is based on the affinity. The top 10 small molecules are selected after docking process.

Cell culture

MCF-7 and MDA-MB-231 cells were purchased from Stem Cell Bank, Chinese Academy of Sciences. Cells were maintained in F-12K medium (Invitrogen, Carlsbad, CA, USA) supplemented with 10% (v/v) fetal bovine serum (FBS) (Gibco, Carlsbad, CA, USA) and kept in a 5% CO2 incubator at 37°C.

CCK-8 assay

MCF-7 cells were seeded into 96-well plates and cultured overnight. Next, cells were incubated with multiple concentration of CA (25, 12.5, 6.25, 3.125, 1.5625, 0 μM) for 48 h. After that, cell growth rate was detected with CCK-8 reagent (Beyotime Biotechnology, Shanghai, China) in accordance with the manufacture’s protocol.
Immunofluorescence assay

MCF-7 cells were seeded into confocal dishes and incubated with 2.5 μM of CA for 48 h. Then, cells were fixed with 4% paraformaldehyde for 10 min, incubated with 5% bull serum albumin for 1 h at room temperature and incubated with primary antibodies against Vimentin and E-cadherin (Cell Signaling Technology, Danvers, MA, USA) respectively overnight at 4°C. The following day, cells were rinsed with PBS and incubated with Alexa Fluor 488 Donkey anti-Rabbit IgG for 1 h and stained with diamamidine phenylindole for 5 min at room temperature. Images of fluorescence was acquired by a laser scanning confocal microscope (LSM 880, ZEISS) and the quantification of fluorescence intensity was processed by using Image-Pro Plus 6.0 software.

qRT-PCR assay

Total RNA was extracted from MCF-7 cells with Trizol reagent on the basis of the manufacture’s description (Thermo Fisher Scientific, Waltham, MA, USA). cDNA was produced with Transcriptor First Strand cDNA Synthesis Kit (Roche, Mannheim, Germany). Relative expression level of specific gene was determined by using SYBR Green I Master Mix (Roche) on the Lightcycler 480 real-time PCR system (Roche). GAPDH was regarded as an internal reference. Primers were displayed in Supp.Table 1.
Western blot

Cell pellets were collected and resuspended in RIPA buffer. BCA protein assay kit (Thermo Fisher Scientific) was used to measure the concentration of total protein. 40 μg of total protein was separated by 8% or 12% SDS-PAGE followed by transferred to PVDF membranes. Then, the PVDF membrane was blocked with 5% skim milk for 1 h at room temperature and incubated with primary antibodies overnight at 4°C. After the membrane was probed with indicated secondary antibodies for 1 h at room temperature, membrane images were developed with the enhanced chemiluminescence system (Bio-Rad Clarity Western ECL). β-actin was the loading control. All antibodies were supplied by Cell Signaling Technology (MA, USA), including EMT Antibody Sampler Kit, MMP-2, MMP-9, LRP6, p-LRP6, β-catenin, β-actin and HRP-conjugated secondary antibodies.

Gelatin zymography for detection of matrix-metalloproteinase-2 and -9

After cells were treated with 2.5 μM of CA for 48 h, collected and resuspended cells in a sample buffer with a concentration of 4×. Then, 20 μL of sample was loaded into SDS-PAGE gel supplemented with 0.1 mg/mL gelatin. The detection of MMP-2 and MMP-9 was performed with Gelatin zymography kit (Wanleibio, Shenyang, China).

Wound-healing assay

A scratch-wound was generated with a pipette tip, and the degree of wound
healing was recorded after 0 and 48 hours, respectively. Images were obtained to evaluate the migratory potential of cells.

Migration and invasion assay

Cells were incubated with 2.5 μM of CA for 48 h and resuspended in no-serum F-12K medium. For migration assay, 2×10^4 cells/100 μL were cultured in transwell inserts (8-μm pore size, Corning Costar, NY, USA). For invasion assay, 2×10^4 cells/100 μL were seeded into transwell inserts coated with Matrigel (BD Biosciences). The lower chamber was added with 600 μL of F-12K medium containing 10% FBS. 48 h later, the upper chambers were taken out and immersed in 4% polyformaldehyde for 30 min to fix the cells. Cellular morphology was visualized through staining with 0.1% crystal violet for 30 min at room temperature. Cells on the upper membrane of the upper chamber were removed with a cotton bud and cells that migrated or invaded to the lower surface of the upper chamber were counted under a microscope. The average number of migrating or invasive cells per field was calculated five random fields per membrane.

Cell transfection

LRP6 siRNA and negative control siRNA were obtained from Beijing Ruibo Xingke Biotechnology Co., Ltd. (Beijing, China). pCMV6-LRP6 and vector pCMV6-Entry were purchased from Origene Technologies Inc. (Rockville, MD, USA). Cells were plated in 6-well plates. When the cell density reached to 80%,
indicated plasmids were transfected into cells by using Lipofectamine 3000 (Thermo Fisher Scientific, MA, USA) in the light of the manufacturer's protocol. 24 h later, medium containing Lipofectamine 3000 was replaced with fresh medium containing 2.5 μM of CA and cells were maintained for another 48 h.

Micro Scale Thermophoresis (MST)

MST was performed to study CA-LRP6 interaction using Monolith NT.115 Microscale Thermophoresis instrument (Nano Temper Technologies, Germany). In brief, LRP6 was labbled with Monolith NT.115 protein labeling Kit RED-NHS according to the manufacturer's instructions. CA was serially diluted in PBS with 0.05% tween-20, to obtain varying concentrations. The binding study was carried using NT.115 premium capillaries, and the assay was performed in triplicates. Data analysis were performed using NTAnalysis software.

Animals and tumor formation in nude mice

4- to 6-week-old nu/nu Balb/c mice (female) were supplied by Vital River Laboratory Animal Technology Co. Ltd. (Beijing, China). Animals received humane care according to the guidelines of the Experimental Animal Ethics Committee. 1×10^7 cells were grafted hypodermically on the back of mice. After the tumor developed around 100 mm^3, mice were stochastically divided into two groups, including control group and CA group. Mice were treated with normal saline or 10 mg/kg CA through intraperitoneal administration every day. Tumor size was detected with the caliper
every three days and tumor volume was derived with this formula: \(0.5 \times a \times b^2\), where \(a\) referred to the long diameter and \(b\) to the short diameter of the tumor. Mice body weight were recorded every three days. Mice were euthanatized after 3 weeks and xenografts were collected, weighed and soaked in 4% paraformaldehyde for further assays.

Immunohistochemistry (IHC) assay

Xenograft tumors were dehydrated, embedded in paraffin and sliced into 5 μm thickness. Then, these sections were treated with 0.5% TritonX-100 for 30 min at room temperature, repaired with 0.01 M sodium citrate buffer solution under microwave and blocked with 5% BSA for 1 h at room temperature. Next, these sections were incubated with primary antibodies, including Anti rabbit LRP6 antibody (dilution 1:400, CST), Anti rabbit Vimentin antibody (dilution 1:200, CST) and Anti rabbit E-cadherin antibody (dilution 1:200, CST), at 4°C overnight, followed by the secondary antibody. Finally, these slices were dyed with a DAB kit and observed under a microscope. The integrated optical density (IOD) values of LRP6, Vimentin and E-cadherin at each visual field (400× magnification) were quantified with the Image-Pro Plus 6.0 software.

Statistics

Data are presented as mean ± SD. Student's t-test was used to determine whether the difference between the two groups was statistically significant. The statistical
differences among three groups were analyzed by one-way analysis of variance. $P < 0.05$ was regarded as the level of significance.
Results

Virtual screening and preliminary identification of small molecules targeting LRP6

We first applied Vina and ProtDomain to proceed the drug virtual screening process (Fig. 1A). The 2D structures of selected 10 small molecules were shown in Fig. 1B. The docking score (affinity) of selected 10 small molecules with best pose to LRP6 was presented in Fig. 1C. The binding position and best pose of selected 10 small molecules were presented in Fig. 1D. We first detected the non-toxic concentrations of the selected 10 small molecules in MCF-7 cells (Supp. Table 2). Among them, the small molecule #9 was excluded due to the non-resolve ability. We then used the non-toxic concentration of 6.25 μM to explore their roles in cancer. Morphological observation was performed under a microscope after cells were administrated with 6.25 μM of small molecules. Except the small molecular #7 (chlorogenic acid, CA), the morphology of MCF-7 cells treated with other small molecules could not exhibit epithelial cobblestone phenotype (epithelial phenotype) (Supp. Fig. 1). Therefore, we focused on the CA in our next experiments.

CA changed the morphology of MCF-7 cells from a mesenchymal morphology to an epithelial morphology

The chemical structure of CA is shown in Fig. 2A. Since this study focus on the inhibitory effect of CA on EMT, we further detected the non-toxic concentrations of CA (cell viability ≥ 90%) to exclude the apoptosis effect in breast cancer cell line. As shown in Fig. 2B, the cell viability rate of 90% corresponds to a dose of 2.5 μM.
Acquisition of a spindle-shaped morphology, decrease of E-cadherin and elevated Vimentin are hallmarks of mesenchymal phenotypic conversion of epithelia in tumor migration and invasion. Therefore, morphological observation was performed under a microscope after cells were dosed with 2.5 μM of CA. As displayed in Fig. 2C, the cell morphology in control group was elongated fibroblastic phenotype (mesenchymal phenotype) while the morphology of MCF-7 cells treated with CA exhibited epithelial cobblestone phenotype (epithelial phenotype). Immunofluorescence assay showed that the expression of Vimentin decreased and E-cadherin increased after CA treatment (Fig. 2D), indicating CA has an inhibitory effect on MCF-7 cells EMT.

CA lowered mesenchymal biomarkers’ expression and elevated epithelial proteins’ expression in MCF-7 cells

To further verify the inhibitory effect on EMT by CA, the mRNA level and protein expression of EMT-related markers, including ZO-1, E-cadherin, N-cadherin, ZEB1, Vimentin, Snail, and Slug were determined in MCF-7 cells. As shown in Fig. 3A, the mRNA level of epithelial markers (ZO-1 and E-cadherin) was elevated after CA treatment while mesenchymal biomarkers’ expression (N-cadherin, ZEB1, Vimentin, Snail, and Slug) was reduced by CA. Western blot assay showed a similar result. The expression of ZO-1 and E-cadherin was up-regulated whereas N-cadherin, ZEB1, Vimentin, Snail and Slug expression were down-regulated after MCF-7 cells were dosed with 2.5 μM of CA (Fig. 3B&3C). We also examined the antagonistic effect of CA on EMT in MDA-MB-231 cells using Western blot assay. As shown in
Supp. Fig. 2, the epithelial markers, E-cadherin and ZO-1, were up-regulated whereas the mesenchymal markers, such as N-cadherin, ZEB1, Vimentin, Snail and Slug, were down-regulated. However, in our further study, we found that CA had no effect on the expression level of LRP6. So CA could inhibit EMT in MDA-MB-231 cells, but not decreased LRP6 expression.

CA repressed the migratory and invasive ability of MCF-7 cells

MMPs, including MMP-2 and MMP-9, play an important part in cancer invasion by degrading the extracellular matrix (ECM). The gelatin zymography assay demonstrated that the activities of MMP-2 and MMP-9 were degraded by CA (Fig. 4A&4B). The expression of MMP-2 and MMP-9 was also decreased by CA (Fig. 4C&4D). Wound-healing experiment was applied to determine the migration potential of MCF-7 cells. Results showed that CA significantly repressed wound closure (Fig. 4E&4F). Cell migration was also examined using Transwell assay with non-coated membrane and cell invasion was evaluated through Transwell assay with coated membrane. We found that CA markedly attenuated the cellular migration and invasion through the membrane (Fig. 4G&4H). These data indicate that CA can effectively restrain the migration and invasion of MCF-7 cells.

Silencing LRP6 expression inhibited migration, invasion, and EMT in MCF-7 cells

As LRP6 has been proved to play a significant role in tumor metastasis, we then examined the effect of CA on LRP6. qRT-PCR and WB assay have shown that the
mRNA and protein expression was reduced after CA treatment (Fig. 5A&5B&5C). To elucidate whether LRP6 promotes MCF-7 cell EMT, we developed siRNA interference sequences (LRP6 siRNA) to silence LRP6 expression in MCF-7 cells. The LRP6 siRNA notably decreased both mRNA and protein expression of LRP6 (Fig. 5D&5E&5F). Next, we assessed the effect of LRP6 on MCF-7 cell EMT. Compared with the negative control group, E-cadherin and Vimentin expression in MCF-7 cells treated with LRP6 siRNA were observably increased and decreased respectively. However, compared with the LRP6 siRNA group, knockdown of LRP6 didn’t enhanced the inhibitory effect of CA on EMT (Fig. 5G&5H). Transwell assay showed that LRP6 siRNA clearly attenuated cell migration and invasion (Fig. 5I&5J). Above studies suggest that LRP6 promotes breast cancer EMT and LRP6 may be a potential target of CA to inhibit the EMT in breast cancer.

CA reversed EMT by down-regulating LRP6 in MCF-7 cells

Whether CA inhibited MCF-7 cell EMT through repressing LRP6 expression remains unknown. Thus, we constructed LRP6 overexpressed plasmids to determine if overexpression of LRP6 antagonizes the EMT inhibition effect by CA. After MCF-7 cells were transfected with LRP6 overexpressed plasmids, both mRNA and protein levels of LRP6 were markedly augmented (Fig. 6A&6B&6C). Compared with cells transfected with vector, LRP6 overexpression notably reduced E-cadherin expression and up-regulated Vimentin. However, compared with the LRP6 overexpression group, E-cadherin and Vimentin expression was enhanced and
reduced respectively in cells treated with CA and LRP6 overexpressed plasmids (Fig. 6D&6E). Transwell migration and invasion assay showed similar results. The elevated migration and invasion capacity of MCF-7 cells induced by LRP6 overexpression was diminished by CA (Fig. 6F&6G). These data suggest that CA reversed breast cancer cell EMT via inhibiting LRP6.

CA directly bind to LRP6 inhibited EMT via Wnt/β-catenin signaling

To investigate the equilibrium binding constant between CA and LRP6 under close-to-native condition, we performed MST to detect the interaction and the binding affinity. With the MST fit curve, obtained dissociation constant (Kd) of 2.47±0.45 μM presented strong binding of CA to LRP6 (Fig. 7A). These results indicated that CA may directly bind to LRP6. In addition, LRP6 is a coreceptor of Wnt/β-catenin signaling. To further determine CA decreased LRP6 expression and inhibited EMT through Wnt/β-catenin signaling in MCF-7 cells, we investigated the levels of LRP6, p-LRP6 (Ser 1490) and β-catenin by Western blot. The results showed that CA suppressed the levels of LRP6, p-LRP6 (Ser 1490) and β-catenin in MCF-7 cells (Fig. 7B).

CA restrained the growth and EMT of xenograft tumors

To further investigate the inhibitory effect of CA in EMT and metastasis in vivo, MCF-7 cells were inoculated into nude mice. After 3 weeks of continuous administration, tumor volume and weight were observably reduced by CA (Fig. 8A,
8B & Supp. Fig. 3). No obvious difference in body weight was observed between the control group and the CA administrated group (Fig. 8C). IHC analysis revealed that the expression of LRP6 and Vimentin was lower in the CA treated group, while E-cadherin expression was higher than that in the control group (Fig. 8D&8E). Western blot analysis of in vivo samples also showed that the expression of E-cadherin and ZO-1 were up-regulated, whereas LRP6, N-cadherin, ZEB1, Vimentin, MMP9 and MMP2 were down-regulated (Fig. 8F). These results suggesting that CA significantly suppressed LRP6 expression, and inhibited EMT in vivo.
Discussion

EMT facilitates cancer metastasis and cancer progression. During EMT seeding metastasis, it not only delivers cancer cell from one organ to another to proliferate but also endows cancer cells stemness traits, which contributes to chemotherapy resistance of cancer. Cancer metastasis induced by EMT can enhance malignant and refractory extent, indicating that EMT is closely associated with clinical cancer grade (Cai et al., 2018). Thus, inhibiting EMT could be a doable treatment means for metastatic cancer treatment.

Increasing evidence has testified that CA has an anti-invasive effect on a variety of cancers. In hepatocellular carcinoma, CA has been proved to be one of the chemical entities in coffee inhibiting hepatoma invasion in vitro (Yagasaki et al., 2000). Jin et al. (Jin et al., 2005) found that CA strongly inhibited MMP-9 activity in a content-dependent way on zymography in Hep3B cells. Yan et al. (Yan et al., 2017) have shown that CA inhibited the growth of HepG2 cells in vitro, decreased MMP-2 and MMP-9 expression in xenograft tumors, and attenuated the progression of HepG2 xenograft in vivo (Liu et al., 2020). In glioma, Anissa et al. found that CA represses U-87 glioma cell migration and MMP-2 secretion via inhibiting glucose-6-phosphate translocase (G6PT) which expression is high in U-87 glioma cells (Belkaid et al., 2006). In breast cancer, Zhang et al. have proven that a combination of lapatinib and CA can efficaciously restrain macrophage M2 polarization and metastasis of mammary tumor (Jieqiong Zhang, Zhangting Yao, Guikai Liang, Xi Chen, Honghai Wu, Lu Jin, 2015). Yu et al. (Metroharbor et al., 2018) pointed out that a derivative of
CA, isochlorogenic acid C (ICAC) isolated from Lonicera japonica, reversed EMT via inactivating EGFR signaling pathway in MDA-MB-231 cells. In fibrosarcoma, Hwang et al. (Pil et al., 2010) reported that a derivative of CA, 3-Caffeoyl, 4-dihydrocaffeoylquinic acid (CDCQ) extracted from Salicornia herbacea, had anti-invasive effects on human fibrosarcoma HT-1080 cells, and the underlying molecular mechanism was that CDCQ down-regulated MMP-9 by inhibiting AP-1 and signaling pathways involving PKC delta and three MAPKs. In present study, we found that CA significantly increased E-cadherin and ZO-1 expression (epithelial markers) and decreased N-cadherin, ZEB1, Vimentin, Snail and Slug expression (mesenchymal markers). In addition, CA down-regulated MMP-2 and MMP-9 activities, and weakened MCF-7 cell migration and invasion abilities, were indicating that CA has an inhibitory effect on breast cancer EMT. However, the dosage of CA applied in this study differs from previous studies, suggesting that different cancer cell lines have different sensitivity to CA. As far as we know, this study is the first to report that CA can inhibit EMT in breast cancer.

Growing body of evidence in the literature strongly suggests the function of low-density lipoprotein receptor-related protein 6 (LRP6) in tumorigenesis of breast cancer. Liu et al. showed that the expression of LRP6 was increased in a subpopulation of human breast cancers. LRP6 silencing in mammary tumor cells reduced cell growth rate and tumor growth in vivo. An LRP6 antagonist, Mesd, can observably inhibit the growth of MMTV-Wnt1 cancer and has negligible side effects (Liu et al., 2010). Zhang et al. found that the expression of LRP6 was
upregulated in a subset of human breast cancer tissues and cell lines. They found that mammary tissues from MMTV-LRP6 mice exhibited noteworthy Wnt activation, as verified by the transposition of β-catenin from membrane to cytoplasmic/nuclear compartment. Higher expression of multiple Wnt target genes such as Axin2, Cyclin D1, and c-Myc was also found in MMTV-LRP6 mice. Furthermore, compared with wild-type mice, the breast glands of virgin MMTV-LRP6 mice showed marked hyperplasia, a sign of developing breast carcinoma. The expression of some matrix metalloproteinases is increased in MMTV-LRP6 mice, possibly conducive to the proliferative phenotype. Their results indicated that activation of Wnt signaling at the level of cell surface receptors can promote breast cancer development (Zhang et al., 2010). Prodigiosin, a natural red pigment generated by a variety of bacteria, suppresses the Wnt/β-catenin pathway through targeting multisite of this signaling, such as the LRP6 (Wang et al., 2016). Silibinin was shown to inhibit Wnt/β-catenin pathway through decreasing the Wnt co-receptor LRP6 level in human prostate and breast tumor cells (Lu et al., 2012).

In this study, we found that CA down-regulated the mRNA and protein level of LRP6, and knockdown of LRP6 with siRNA interference sequences significantly reversed EMT and attenuated cell migration and invasive capacity, indicating that LRP6 plays a key role in breast carcinoma EMT. Further mechanism study showed that overexpression of LRP6 weakened the EMT inhibitory effect induced by CA, while knockdown of LRP6 didn’t enhanced the inhibitory effect of CA on EMT, suggesting that CA represses EMT of MCF-7 cells via inhibiting LRP6 expression.
LRP6 is a coreceptor of Wnt/β-catenin signaling, our experiments have demonstrated that CA directly targeting LRP6 inhibits EMT in breast cancer through Wnt/β-catenin signaling. Previous studies showed that TGF-β and Notch1 pathways play important roles in tumor metastasis (Sulaiman et al., 2021; Zhang et al., 2021). CA decreased expression of LRP6 but did not affect the expression of TGF-β and Notch1 (Supp. Fig. 4), suggesting that CA targeted to LRP6 through Wnt/β-catenin signaling, but not via TGF-β and Notch1 signaling. Moreover, CA could inhibit tumor growth and xenograft tumor EMT in vivo. CA has a good therapeutic effect and is expected to be a potential drug for the treatment of metastatic breast cancer.

In summary, CA can inhibit EMT in breast cancer through down-regulating LRP6 expression in vitro and in vivo. CA could be developed as a potential EMT inhibitor for breast cancer treatment. In the future, an orthotopic breast cancer model should be developed and living animal imaging should be used to monitor tumor metastasis in vivo. Based on the orthotopic breast cancer model, the metastatic activity of CA can be assessed specifically.
Authors' Contributions

Hongwei Guo, Yiqiang Ouyang and Qinpei Lu participated in research design. Wei Xue, Jie Hao, Qiuping Zhang and Yanying Liu conducted experiments. Hongwei Guo contributed new reagents or analytic tools. Ronghua Jin, Zhuo Luo, and Xin Yang performed data analysis. Wue Xue and Qinpei Lu contributed to the writing of the manuscript.
References

Footnote

Funding

This work was supported by National Natural Science Foundation of China (82074347); Guangxi key research and development project (GUIKE AB20238004); Innovation Project of Guangxi Graduate Education (YCBZ2021048), and Advanced Innovation Teams and Xinghu Scholars Program of Guangxi Medical University.

Competing interests

The authors declare that they have no competing interests.
Figure legends

Figure 1. Virtual screening of small molecules targeting LRP6. (A) The drug virtual screening process based on Vina and ProtDomain. (B) The 2D structures of selected 10 small molecules. (C) The docking score (affinity) of selected 10 small molecules with best pose. (D) The binding position and best pose of selected 10 small molecules.

Figure 2. The morphology of MCF-7 cells converted from a mesenchymal-like type to an epithelial-like type after CA treatment. (A) The chemical structure of CA. (B) After treatment with various concentrations of CA for 48 h, the viability of MCF-7 cells was measured with a CCK-8 assay. (C) After 48 h of incubation with 2.5 μM of CA, the shape of MCF-7 cells was captured using a microscope (scale bar = 50 μm). (D) Vimentin and E-cadherin were detected by immunofluorescent staining in MCF-7 cells after CA treatment for 48 h (scale bar = 20 μm). Data are expressed as the mean ± SD (n=3).

Figure 3. CA inhibited EMT in MCF-7 cells. MCF-7 cells were administrated with 2.5 μM of CA for 48 h and the expression levels of EMT-related markers were detected. (A) The expression of epithelial markers (ZO-1 and E-cadherin) and mesenchymal markers (N-cadherin, ZEB1, Vimentin, Snail, and Slug) was evaluated by qRT-PCR assay (B) and Western blot experiment. (C) The relative protein level of EMT markers was quantified using the densitometric analysis. β-actin was considered an internal control. Results are shown as the mean ± SD (n=3). *P<0.05 and **P<0.01 versus the
control group.

Figure 4. CA weakened cell migration and invasion. MCF-7 cells were incubated with 2.5 μM of CA for 48 h. (A) Activities of MMP-2 and MMP-9 degrading ECM were assessed with gelatin zymography assay. (B) Relative activity was quantified. (C) The expression levels of MMP-2 and MMP-9 were determined by Western blot assay. (D) Relative protein expression was quantified. (E) Cell migration potential was detected with a wound-healing experiment. (F) The relative wound width. (G) Transwell assay with non-coated membrane or matrigel-coated membrane was applied to evaluate cellular migratory and invasive abilities. (H) The relative number of migrated and invasive cells was counted by using Image-Pro Plus. Results are represented as the mean ± SD (n=3). *P<0.05 and **P<0.01 versus the control group.

Figure 5. Silencing LRP6 expression inhibited migration, invasion and EMT in MCF-7 cells. (A) MCF-7 cells were treated with 2.5 μM of CA for 48 h and the mRNA level of LRP6 was determined by qPCR assay. (B) The protein level of LRP6 was detected by Western blot assay. (C) Relative expression of LRP6 was quantified. (D) Transfection of LRP6 siRNA was performed on MCF-7 cells. The mRNA level of LRP6 was examined by qRT-PCR assay. (E) The protein level of LRP6 was detected by the Western blot experiment. (F) Relative expression of LRP6 was quantified. (G) The effect of silencing LRP6 on EMT-related markers was determined by Western blot experiment. (H) Relative expression of EMT-related markers was quantified. (I)
The effect of silencing LRP6 on cell migration and invasion was measured by Transwell assay. (J) The relative amount of migrated and invasive cells was counted by using Image-Pro Plus. Statistics are expressed as the mean ± SD (n=3). *P<0.05, **P<0.01, and ***P<0.001 against the control group.

Figure 6. CA reversed EMT by down-regulating LRP6 in MCF-7 cells. MCF-7 cells were transfected with LRP6 overexpressed plasmids. (A) qRT-PCR assay was used to assess the mRNA expression of LRP6. (B) The expression of LRP6 at protein level was determined by Western blot assay. (C) Relative expression of LRP6 was quantified. (D) MCF-7 cells were transfected with LRP6 overexpressed plasmids for 24 h and then cells were exposed to 2.5 μM of CA for 48 h. EMT-related markers were evaluated by Western blot assay. (E) Relative expression of EMT-related biomarkers was quantified. (F) The effect of LRP6 overexpression on CA-inhibited migration and invasion was assessed by Transwell assay. (G) The relative amount of migrated and invasive cells was calculated by using Image-Pro Plus 6.0. Data are shown as the mean ± SD (n=3). *P<0.05, **P<0.01, and ***P<0.001 against the control group. #P<0.05 and ##P<0.01 relative to the LRP6 group.

Figure 7. CA directly binding to LRP6 inhibited the EMT via Wnt/β-catenin signaling in MCF-7 cells. (A) Interaction of CA and LRP6 determined by microscale thermophoresis. (B) Wnt/β-catenin signaling related proteins were evaluated by Western blot assay.
Figure 8. CA restrained the growth and EMT of xenograft tumors.

Nude mice bearing xenograft tumors derived from MCF-7 cells (n=4 per group) were administrated with normal saline or 10 mg/kg CA for 3 weeks. (A) Tumor volume, (B) tumor weight, and (C) body weight were shown. (D) Immunohistochemical staining of LRP6, Vimentin and E-cadherin were performed in xenograft tumor tissues (scale bar = 50 μm). (E) Relative expression of LRP6, Vimentin and E-cadherin was quantified. (F) The expression of LRP6, epithelial markers (ZO-1 and E-cadherin), and mesenchymal markers (N-cadherin, ZEB1, Vimentin, MMP2, and MMP9) was evaluated by Western blot experiment. Data are presented as the mean ± SD (n=3). *P<0.01 and ***P<0.001 against the control group.
Fig. 3

A

mRNA Fold Change

ZO-1 E-cadherin N-cadherin ZEB1 Vimentin Snail Slug

control CA

B

control CA

ZO-1 Vimentin

E-cadherin Snail

N-cadherin Slug

ZEB1 β-actin

C

Relative expression

ZO-1 E-cadherin N-cadherin ZEB1 Vimentin Snail Slug

control CA
Fig. 6

A. mRNA Fold Change

B. Western Blot for LRP6 and β-actin

C. Relative expression of LRP6

D. Western Blot for E-cadherin, vimentin, and β-actin

E. Relative expression of E-cadherin and Vimentin

F. Migration and invasion images for vector, LRP6, and CA+LRP6

G. Relative migrated cells for migration and invasion