
 1

Title Page 

A Physiologically-Based Pharmacokinetic Model of the Brain Considering Regional Lipid Variance 

 

 

Andrew McPherson Heitman, Robert R. Bies, Sorell L. Schwartz 

Affiliations:  

AMH –Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 

RB - Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY  

SLS - Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC  

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on September 27, 2022 as DOI: 10.1124/jpet.122.001256

 at A
SPE

T
 Journals on A

pril 18, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


 2

Running Title Page  
Region-specific PBPK model of the CNS 
 
Corresponding Author:   
 
Sorell L. Schwartz, Ph.D. 
Department of Pharmacology & Physiology 
Georgetown University Medical Center 
3900 Reservoir Rd, NW 
Washington, DC  20057 
Mobile (301) 651-6141 
sschwa01@georgetown.edu 
 
 
Number of text pages:12 
Number of tables: 10 
Number of figures: 5 
Number of references: 52 
Word counts:  
 Abstract: 202 
 Introduction: 675 
 Discussion:  798 
Nonstandard abbreviations used:  
AUC Area under the curve 
AUC0-∞ AUC from time zero to infinity 
AUC0-24 AUC from time zero to 24 hours 
BBB Blood-brain barrier 
BCM Brain cell membrane 
BCSFB Blood-CSF barrier 
Cmax Maximal concentration  
CNS Central nervous system 
CP Choroid plexus 
CSF Cerebral spinal fluid 
ECF Extracellular fluid 
GM Grey matter 
LMFE Log mean-fold error 
NCA Noncompartmental analysis 
PBPK Physiologically based pharmacokinetic 
PK Pharmacokinetic 
ROB Rest of brain 
ROI Region of interest 
SAS Subarachnoid space 
Tmax Time to maximal concentration 
WM White matter 
WPBPK Whole body PBPK 

 

Recommended section assignment: Other 

  

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on September 27, 2022 as DOI: 10.1124/jpet.122.001256

 at A
SPE

T
 Journals on A

pril 18, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


 3

 
Abstract: Modeling and simulation of the central nervous provides a tool for understanding and predicting the 

distribution of small molecules throughout the brain tissue and cerebral spinal fluid (CSF) and these efforts often 

rely on empirical data to make predictions of distributions to move towards a better mechanistic understanding. A 

physiologically based pharmacokinetic (PBPK) model presented here incorporates multiple means of drug 

distribution to assemble a model for understanding potential factors that may determine the distribution of drugs 

across various regions of the brain, including both intra- and extracellular regions. Two classes of parameters are 

presented, the first concerns regional gross anatomical variability of the brain; the second concerns estimation of 

unbound fractions of drugs using know membrane phospholipid heterogeneity derived from regional lipid content. 

The model was then tested by comparing its outcomes to data from published human pharmacokinetic studies of 

acetaminophen, morphine, and phenytoin. The alignment of model predictions in the plasma, CSF, and tissue 

concentrations with the published data from studies of those three drugs suggests that the model can be a template 

for identifying drug localization in the brain. Clearly, knowledge of differentiated drug distribution in the brain is a 

requisite step in postulating pharmacodynamic and certain disease mechanisms. 

 

Significance statement: The application of heterogenous lipid distribution in brain tissue to predict regional 

variations in drug distribution in the brain via a mathematical model, thus expanding upon the current understanding 

of mechanisms of drug distribution in the central nervous system. 
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Introduction 

 Mathematical modeling in biological sciences spans a range of purpose – from the goal of predicting outcomes to 

understanding parameter relationships in a biological system(Bies et al., 2008). Semi-physiological or non-

physiological empirical models apply statistical methods to better describe observed data without necessarily 

providing intimate mechanistic details of the system; the data modeled determine the structure and parameters of the 

model. On the other hand, systems-models rely on detailing mechanisms quantitatively and testing the outcomes to 

assess the chosen parameters relationships in the systems where a model structure and parameters are determined a 

priori. Empirical models describe data and variations while systems models create novel data. Systems-models can 

broaden understanding of CNS biology interconnectivity and dynamics by incorporating multiple, often isolated 

mechanisms into a single comprehensive mathematical model. The novel predictions of drug distribution represent 

an outcome that allows for the testing of the overall system moving the concept of modeling well beyond simply 

describing data as in the empirical models. As such, the perspective represented by model becomes its own 

hypothesis and is tested through simulation. 

 Understanding and predicting drug distribution in the human central nervous system (CNS) is limited by a 

lack of available tools to observe drug concentrations in situ. Pre-clinical animal and cell models provide useful 

information by integrating wide-ranging individual mechanisms affecting drug distribution into a formal and 

quantified knowledge. However, the direct translation of these learnings to humans is problematic. The capacity to 

determine drug disposition in specific brain regions, both intracellularly and extracellularly is no doubt a means to 

crucial information on disease processes and treatment modalities. In humans, the relationship between neurological 

disorders and drug distribution localized within the CNS remains elusive. One obvious and overarching reason is 

limited access to the CNS for fluid and tissue samples.  Accordingly, human-based mechanistic modeling is 

requisite wherein it that can provide a means for extensive hypothesis testing and eventual extrapolation of 

individual and population dynamics.  

The goal of this research is not to test a model per se. An empirical modeling effort produces an objective 

function and p-values to determine model fit with a “final model” presented to describe observed data. In the 

systems-model, there is a process of developing where different parameters are considered in different arrays for a 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on September 27, 2022 as DOI: 10.1124/jpet.122.001256

 at A
SPE

T
 Journals on A

pril 18, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


 5

stated specific purpose. While each rendering of a “CNS model” may have the same overall goal (describing drug 

distribution), the specific purpose is more informative. Here we propose a version of a CNS model describing drug 

distribution in the CNS using a physiologically-based pharmacokinetic (PBPK) model. A PBPK model uses 

differential equations to describe the drug flux in various compartments representing tissue in the human body 

allowing simultaneous calculation of tissue specific concentrations over a set period. The subsequent comparison of 

the simulations to observed data tests the hypothesis presented, in essence asking, “are the mechanisms and 

processes utilized in the model sufficient to explain drug distribution?” The specific hypothesis presented here vis-à-

vis the PBPK model is based on two core components: 1) differential membrane permeability across regions of 

interest (ROI) and 2) differential unbound concentrations in the brain tissue. These areas of focus are described 

through the assembly of parameters taken from multiple literature sources that individually have been shown to have 

some impact on pharmacokinetics in the CNS. These parameters are then assembled into a cohesive set of equations 

represented by the PBPK model and the model is then compared to observed data.  

In this research we describe the determination of parameters of interest in the construction of the PBPK 

model, outline the construction of the system of equations with relevant parameters, simulate the distribution of 

three drugs with observed data available, and compare the simulation outcomes to the clinical data for each drug. 

Importantly, all parameters in the model were assembled from data and research unrelated to the test articles and 

observed data. Ultimately, we demonstrate that the parameters chosen, as described in materials and methods, can 

reproduce observed data, suggesting that the PBPK model can function as a method for understand drug distribution 

in the CNS.  
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Materials and methods 

Model development began with a whole-body PBPK (WBPBPK) model to provide the input to the CNS 

portions of the model. A published WBPBPK model was chosen from the literature as a starting point (Jones and 

Rowland‐Yeo, 2013) for the structural components of the current model. The total number of compartments was 

reduced to limit the overall dimensionality of the model while maintaining equations and parameters that were 

shown to be impactful in replicating plasma concentrations as determined by iterative simulations of a generic 

parameter set. No formal lumping process was used. Ordinary differential equations were used to describe the flux 

into each compartment of the WBPBPK model. The distribution of clearances and absorption rates (when necessary) 

were estimated from existing literature. Partition coefficients for the WBPBPK were derived using Rowland and 

Rodgers methods(Rodgers et al., 2005; Rodgers and Rowland, 2006a) and computed utilizing programming and a 

unified tissue database from literature (Utsey et al., 2020).  Structural parameters for the WBPBPK were taken from 

literature and are presented in the Supplemental Section I: Model Specifications, table 1.  

The goal of the parameterization of the model was to capture the differences in the CNS regions related to 

membrane permeability and unbound fractions. With regards to membrane permeability the BBB, BCSFB, and 

cellular membranes of the CNS were all considered. The first set of parameters determined were the passive flux of 

drug in the brain tissue and CSF. Two main barriers are involved the permeability of a drug into the CNS, the blood-

CSF barrier (BCSFB) and the blood-brain barrier (BBB). The BBB is in the capillaries of the brain and is comprised 

of endothelial cells connected via tight junctions while the BCSFB is formed by the epithelial cells of the choroid 

plexus (CP) (Redzic, 2011). The epithelial cells comprising the BCSFB reside in the ventricles of the brain and is 

relatively more permeable than the BBB as one of the CP’s major functions in the brain is fluid homeostasis(Solár et 

al., 2020). Active transporters at the BBB and BCSFB add more complexity due to the uneven distribution of 

various transporters and, maybe, differing function (efflux vs. influx). They are not a focus of this model but are 

addressed through the addition of a general term representing observed ratios due to active transport for each 

specific drug (Lange, 2004; Löscher and Potschka, 2005; Bendayan et al., 2006; Lange et al., 2018; Billington et al., 

2019). To address this complexity, the regions of the CNS that receive drug input across the BBB and BCSFB were 

parameterized in a way that reflects the known differences.  
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The first step in addressing these differences for the CNS portion of the model was to split a generic CNS 

compartment from the WBPBPK model into separate CSF and brain tissue compartments as shown in figure 2. 

Passive permeability was estimated via the application of permeability-surface area products where the clearance of 

drug across either the BBB or the BCSFB is a product of the flow of blood, the surface area available for 

permeation, and the permeability of the substance (Crone, 1963; Pardridge, 2016). Blood flow values for each 

region of the brain were taken from literature and estimated as a fraction of total cardiac output to scale with body 

weight. The barrier permeability for each drug tested was determined according to Yamamoto(Yamamoto, Välitalo, 

Berg, et al., 2017) for the BBB, BCSFB, the brain cell membrane (BCM).   

All four cerebral ventricles are represented by a single compartment to capture the entire surface area of the 

CP available for passive permeability and due to the complex and uneven distribution of the CP amongst the four 

ventricles (Solár et al., 2020). Additionally, the combination of all four ventricles into a single compartment 

facilitates the scaling of the CP with body weight without any arbitrary fractioning between the lateral and third and 

fourth ventricles. Representing the CP accurately is a key component of the model and helps to distinguish the BBB 

from the BCSFB. The basal cisterns function as a transfer compartment as there is no drug exchange occurring in 

this compartment and serves as a conduit to the subarachnoid space (SAS) of the spine. The SAS of the spine is the 

site of drug reabsorption from the CSF. 

Three regions of the brain were chosen with a fourth generic rest-of-brain (ROB) compartment. These 

regions of interest (ROI) were further divided into a microvasculature component, extracellular component, 

intracellular component, and phagolysosome compartment. Microvasculature represents the capillary beds that are 

the main site of BBB transfer(Pardridge, 2020), the extracellular environment represents the milieu surrounding 

brain parenchyma, the intracellular component represents a generic characterization of parenchymal cells in the 

brain, and the phagolysosomal space represents the estimated sum of low pH vacuoles in the cytosol of a brain cell.  

Anatomical parameters for the brain tissue were taken from imaging data and are listed in the supplemental 

materials with the values for the CSF compartments. The parameters used in the CNS compartments are found in 

Supplemental Section I: Model Specifications, tables 2-5 and Supplemental Section III: Determining Regional 

Lipophilicity, tables 6 and 7. 
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The second component tested in the model was the estimation of free fraction of drug. Estimation of the 

free fraction of drug in each of the regions of the brain tissue was accomplished by 1) estimating the 

lipid/phospholipid distribution for each region 2) calculating the fraction unbound based upon the lipid/phospholipid 

distribution, and 3) applying the ionization fraction differences based on the drugs pKa and the regional pH (this is 

incorporated into the free drug calculations as described in Supplemental II. Estimating Binding Fraction).  Neutral 

and acidic phospholipids are unevenly distributed between the intracellular and extracellular environment; most 

specifically, charged and uncharged phospholipids are heterogeneously distributed between the internal and external 

lamina of cell membranes(Devaux, 1991). The distribution of phospholipids was estimated for each ROI and 

separated by intra and extracellular portions by utilizing relative fractions of white matter (WM) and grey matter 

(GM) as well as the stoichiometry between internal and external facing phospholipids(O’Brien and Sampson, 1965; 

Kwee and Nakada, 1988). We adapted the methods for determining partitioning coefficients used in the WBPBPK 

and applying the estimated distribution of phospholipids, drug specific binding and partitioning is estimated for each 

region of the microvasculature(Rodgers and Rowland, 2006b; a; Rodgers et al., 2007).  The parameters for the 

distribution of phospholipids are found in Supplemental III. Determining Regional Lipophilicity, tables 6 and 7. 

Models were written into C++ files for simulation via the MRGsolve package (Elmokadem et al., 2019; 

Alhadab and Brundage, 2020) on RStudio v1.2.5019 running R v4.0. Once the model model was established, the 

parameters were assembled into the C++ file and any calculated variables added to the drug specific modeling code.  

The conceptual alignment of the modeling interactions is shown in figure 1. The coding development was comprised 

of three steps and at each step layers of complexity were added. Initially WBPBPK model was adapted from Jones 

2013 (Jones and Rowland‐Yeo, 2013) with a generic CNS compartment as shown in figure 2. Second, the CNS 

compartments were added. Third, the brain tissue was broken into regions of interest and separated into four spaces 

each – microvasculature, extracellular space, intracellular space, and phagolysosomal space.  At each step mass 

balance was monitored as a quality control measure.  All equations used are found in supplemental Section IV: 

PBPK Equations. All coding and data used in this publication can be found at the link provided in Supplemental V: 

Code and Data. 

Drug specific parameters (table 1) were entered into the model prior to simulation. A normal distribution 

for any parameter with known physiological variation (e.g., rate of absorption; total body clearance) was created and 
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sampled prior to each simulation when a distribution of parameters was available. The number of virtual subjects 

(N) input for each model simulation reflects the specific study used for model assessment’s overall N and all 

demographics available (e.g., body weight) were input into the model prior to each simulation run. The model is 

simulated between 500-1000 times for the given N and the outputs amalgamated into a single data set. This dataset 

was then analyzed for fit per the method below and compared to literature values of either individual time point or 

reported descriptive PK statistics, depending on availability.  Model outputs for observed data in the CSF, plasma, or 

tissue were assessed by calculating the log mean-fold error (LMFE). The LMFE for a time-point or PK parameter is 

calculated as (Peters, 2008): 

𝐿𝑀𝐹𝐸 =  10[ ∑ ]  

Where the FE is the fold-error or ratio of the individual prediction-observation points such that it is always ≥ 1, and 

n is the number of comparisons for the time point or parameter. Typically, the acceptable fold-error for predictions 

is 2.0; however, it is an arbitrary number that might not capture the true variability in an observed population, but it 

is sufficient for the purpose of model evaluation (Abduljalil et al., 2014). Time-point level data was extract from a 

publication, when possible, via WebPlot Digitizer-4.3 (https://automeris.io/WebPlotDigitizer/)(Drevon et al., 2017).  

When observable data for intracellular and extracellular concentrations was not available, relative 

concentrations from the published literature were used in testing the behavior of the model system. The ratios 

between simulated concentrations in various brain regions, including microanatomy, were computed from data 

output for each region. A range of AUC ratios between the regions (0.8-1.2) was chosen a priori range to allow for a 

qualitative assessment of equivalence between the regions compared.  While the absolute concentrations are 

available for these simulations, they are not informative with regards to the objective of this research. Extracellular 

and intracellular AUC0-24 was computed for each virtual subject in each simulation and compared to across regions. 

Extracellular and intracellular concentrations were also compared within each region to estimate the variability 

between the extracellular and intracellular space.  
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Results 

All three modules of the model (WBPBPK, CSF, brain tissue including sub-compartments) were tested 

using drugs selected based on the availability of literature that contained information about simultaneous plasma and 

CSF or tissue data. This allowed the validation of the regions of the CNS that were selected to be put in context of 

the plasma concentrations. The data available were then compared to the predictions as described in the previous 

section. Results shown compare pharmacokinetic parameters, time-series data, or both when available. The drugs 

selected serve as a means for testing the parameter sets. 

Acetaminophen was used to test the model performance in predicting simultaneous plasma and CSF 

concentrations utilizing two studies. In Singla (Singla et al., 2012), three groups of between 6 and 7 subjects 

received one of either oral (1000 mg), IV (1000 mg over 15 minutes), or rectal (not examined here) acetaminophen. 

Simultaneous plasma and CSF were collected via catheter over 6 hours. In Langford (Langford et al., 2016),  three 

groups of subjects received either oral (1000 mg or 1500 mg) or IV (1000 mg over 20 minutes) and both plasma and 

CSF were collected over 6 hours. Study parameters were modeled after the demographics of each study and 

simulations were run according to table 8. Mean time-series data from the Singla study are compared to the 95 per 

cent prediction interval in figure 3. Both the oral and IV simulations of plasma administration of acetaminophen met 

acceptability criteria in the time-series and non-compartmental analysis (NCA) comparisons as shown in table 1. 

The corresponding CSF analysis (figure 3 and table 1) displayed an acceptable fit in both the oral and IV simulations 

as well as for the NCA statistics, while the time-series met acceptability only in the oral simulation. The discrepancy 

in the early phase of the CSF data from patients receiving IV acetaminophen can arise from multiple factors 

including a small sample number in the clinical study, sampling errors in the early collection portion and model 

limitations. 

NCA statistics were compared in the Langford study for all dose groups. The data are presented in table 2. 

The model neared acceptability criteria in all three studies of morphine plasma concentrations. The LMFE were all 

outside of the acceptability criteria from the CSF.  However, in those, the model-generated CSF ranges for each 

statistic analyzed were similar. Notably, the observed patient data from the Langford study showed wide variations 

in concentration profiles between patients and that contributed to mean values not adequately representing the 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on September 27, 2022 as DOI: 10.1124/jpet.122.001256

 at A
SPE

T
 Journals on A

pril 18, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


 11

individual patient data. This, alone or in combination with model limitations, is likely reflected in the model output 

for CSF. 

Human studies with morphine were used to examine extracellular predictions in the cortex via two studies 

dealing with three patients with traumatic brain injury(Bouw et al., 2001; Ederoth et al., 2004). All three patients 

received 10 mg IV morphine over 10 minutes and samples were collected via microdialysis from extracellular fluid 

(ECF). Plasma samples were also collected intermittently for all three subjects. Demographic data were combined 

with literature data and body weight from the studies (Ball et al., 2012).  Model simulations were compared to the 

observed plasma and the ECF data as shown in figure 4. The plasma predictions showed a LMFE of 1.788 over all 

time points when comparing the 50th percentile predicted values to the observed values reported in literature. The 

model-generated ECF concentration in cortex was compared to the “better brain” sections as described in the 

observed data (Bouw et al., 2001; Ederoth et al., 2004).  The LMFE over all time points for the ECF was 1.394.  

Phenytoin was used to test the model performance in predicting plasma, CSF, and brain tissue drug content. 

Wilder assessed phenytoin in four groups of patients with status epilepticus (Wilder et al., 1977). For the first group, 

the kinetics of a single IV infusion of phenytoin was assessed. The second group was studied to determine the 

efficacy of IV phenytoin (no PK samples collected); for the third group, consecutive plasma and CNS tissue samples 

were collected for PK analysis; and in the fourth group, drug in plasma and spinal fluid was assessed. Tissue 

samples were taken from areas of “normal” brain during tumor extraction via craniotomy. Time series data were 

reported along with demographics and dosing information for each individual subject. Plasma samples were 

collected for each group and aligned with CSF and tissue samples. The demographic and dosing information was 

used as data input for simulation. All patient plasma values fell within the acceptance criteria as shown in figure 5. 

Plasma and CSF concentrations for patients in the third group are shown in figure 5 as well and while the LMFE of 

the plasma data are within the acceptance criteria, the simulated CSF data fall outside. One possibility for this is 

likely reflected in the apparent under-prediction in the early phase of the plasma infusion as shown in figure which 

may cause both a lag in Tmax as well as a shortfall in Cmax. Both plasma and tissue concentrations fall within the 

acceptance criteria for the fourth group of patients (figure 5). 

A comparison of predicted extracellular concentrations across regions of the brain are show in tables 1-7. 

All regions were compared to one another, and the resulting ratios listed in the tables. Acetaminophen and Morphine 
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showed equivalent distribution between regions of the brain (in both extracellular and intracellular regions). 

Phenytoin showed a higher concentration of drug in regions of the brain with a greater white matter concentration 

aligning with some empirical evidence that demonstrated higher concentrations in more lipid rich regions(Goldberg 

and Crandall, 1978; Rambeck et al., 1992). A comparison of each region intra- versus extra-cellular predicted 

concentrations are shown in tables 8-10. Acetaminophen showed a significantly higher exposure in the intracellular 

environment aligning with described mechanisms of action(Jóźwiak-Bebenista and Nowak, 2014). Similarly, 

morphine showed a significantly higher drug concentration in the extracellular environment aligning with the known 

pharmacology (Trescot et al., 2008; Sverrisdóttir et al., 2015). Phenytoin was equivalent between extra- and intra-

cellular spaces.   
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Discussion 

Mathematical models of complex human biology necessarily need to be “fit-for-purpose”. Adhering to the 

adage coined by George Box(Box, 1976) “all models are wrong, some are useful”, a mathematical model of the 

CNS is bound to be “wrong”, but if the design reflects specific research questions it can provide useful information. 

Here we have aimed to look at the integration of lipid heterogeneity in combination with regional physiological 

differences on the impact of heterogenous drug distribution in brain tissue. We have demonstrated that this approach 

aligns with observable data and known mechanisms of action of the drugs used in the referenced studies and, as 

such, the model presented here can be a tool in further explorations of drug distribution in neurological diseases 

affecting the selected regions and the impact of pathology on these regions.  

Recent models of the CNS address several similar parameters and approaches in the current model, as is 

expected. Yamamoto et al(Yamamoto, Välitalo, Berg, et al., 2017; Yamamoto, Välitalo, Huntjens, et al., 2017; Y 

Yamamoto et al., 2018) extrapolated regional CNS distribution of drugs from rats to humans by estimating the 

passive permeability derived from drug properties in the brain. In their models the tissue was partitioned into an 

extracellular intracellular, and lysosomal sections while still treating the brain as one homogenous tissue.   

Incorporated CSF compartments were used to capture drug diffusion from brain tissue to CSF as well as the 

permeability of the BCSFB.  A key component of the Yamamoto models is the estimation of permeability by 

incorporating in vitro data(Avdeef et al., 2004; Grumetto et al., 2016) to determine the passive permeability across 

the BBB, BCSFB, as well as the cell and lysosomal membranes.   Zakaria et al(Zakaria and Badhan, 2018) 

developed a model in rat and human that divided the CNS into specific regions of the brain, namely the 

hippocampus and the frontal cortex.   The Zakaria model incorporated observed permeabilities from literature, 

corrected for the surface area of the BBB in each region, to estimate the variation between the nuclei. Both modeling 

efforts marked significant progress in understanding CNS drug distribution mechanisms. However, the Zakaria 

model relies on drug specific empirical evidence to estimate the regional distribution while the Yamamoto models 

treat the brain tissue as a single homogenous entity. All these prior models are informative, and the current effort is 

intended add to that information The goal of the modeling efforts presented here is fit to purpose: understand the 

potential impact of regional morphology on drug distribution.  
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While much of the discussion is focused on the tissue concentrations, the relationship between CSF and 

tissue is also of importance. The CSF concentrations served as a surrogate in clinical studies for some time but 

unfortunately, they are not always representative of what is happening in the ECF, let alone the intracellular 

environment due to a litany of reasons and has been well discussed elsewhere (Shen et al., 2004; Pardridge, 2016; 

Saleh et al., 2021). However, a model that can represent the mechanistic differences in drug permeability can 

provide useful insight into the relationship between CSF concentration and brain tissue concentration. The clinical 

access to the CSF provides an important tool in the assessment of CNS targeted therapeutics and a “human-to-

human” translation of CSF drug concentration to brain concentration, at an individual level, can prove important 

information with regards to factors affecting variability. Similarly, the narrow range of variation in AUC of the ECF 

and ICF predictions indicates that a relatively wide plasma concentration can be associated with brain content and 

distribution that do not reflect the width of plasma concentrations.  Often in clinical trials, human plasma 

concentration is used as a surrogate for brain tissue concentrations and the resulting variability is used to describe a 

variation in pharmacodynamics (PD). While in certain cases, this might be true – but the results here indicate that a 

simple approach (comparing plasma concentrations to PD outcomes) is limited in its utility.  

 The results of this research present evidence that two main factors determining regional drug distribution in 

the CNS, including cellular and subcellular distribution, are related to CNS barrier permeability and phospholipid 

heterogeneity of a generic brain cell together. In instances where direct observations are unavailable to confirm 

model predictions, we have relied on indirect evidence that the qualitative distribution is representative. In the 

instance of acetaminophen and morphine, as mentioned in the results, the relative ratios of distribution are indicative 

of the target-effect described in literature. A qualitative description is utilized here to focus on the limited ability of 

observing these concentrations in vivo so far. Presenting the absolute concentrations without the ability to compare 

or confirm may lead to inappropriate assumptions about the feasibility of the model. The current model represents a 

modality for understanding the effect of regional variations on drug distribution in the brain. 
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 Legends for figures 

1. Overview of model development and module interaction. One of the aims of the entire model is to be able 

to simultaneously predict time-concentration profiles in each compartment and model the relationship 

between the input and output of drug flow between the selected areas. The plasma model serves sole as a 

means for replicating observed drug concentrations that would be expected to contribute to both sub-

models contained in the CNS model. 

2. (clockwise from bottom left): Schematic of full body PBPK model. The CNS modules (both CSF and tissue 

models) are represented as a singular compartment for the sake of illustration. Expansion of CNS model 

including CSF and Brain Tissue portions: MV=microvasculature supplying region; ECF= extracellular 

fluid; ICF=intracellular fluid; SAS=subarachnoid space; ROB=rest of brain  Clbbb,in = Clearance from 

microvasculature across BBB into ECF; Clbbb,out = Clearance from the ECF to the MV; Clbcm,in= 

clearance from ECF to ICF, CLbcm,out=clearance from ICF to ECF; Cllyso,in=clearance from ICF across 

phagolysosomal membrane; Clyso,out=clearance from phagolysosomal compartment to ICF. Model of 

drug distribution in microanatomy of the tissue including microvasculature: Qart=blood flow from the 

artery; Qvein=blood flow to the vein; Fb/i=Fraction bound and ionized; Qecf=ECF flow out from 

interstitial area to the CSF; Fion=fraction ionized 

3. Acetaminophen validation: Black dots represent mean concentration data from the study reported with error 

bars representing a 35% CV based upon reported data in the study. Solid black line represents the 50th 

percentile predicted value while the shaded area represents the 95% prediction interval over 1000 

simulations of the specified number of subjects. A. Data taken from individual time points for oral 

administration of 1000 mg of acetaminophen in 7 healthy volunteers. The LMFE for all datapoints shown 

for the plasma and CSF were 1.61 and 1.524. B. Data taken from individual time points for IV 

administration of 1000 mg of acetaminophen in 6 healthy volunteers. The LMFE for all datapoints shown 

for the plasma and CSF were 1.416 and 3.006 respectively. 
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4. Morphine study in 3 subjects with TBI taken from the non-injured side of the cortex. Dots represent 

individual time points; Solid line represents the predicted 50th percentile of drug in the ECF; the shaded 

region represents the 95th percentile of projections. Both log and linear plots are presented. The LMFE for 

plasma and ECF when comparing all three patients to the 50th percentile model projected value is 1.788 

and 1.394, respectively. 

5. Phenytoin study in 33 subjects from Wilder. Black dots are observed data points from literature. Black line 

is 50th percentile value of model predicted drug concentration. Shaded region represents 95th percentile of 

predicted values. Plasma from all patients is shown in the top row in both Log and linear plots; plasma for 

all patients when compared to predicted 50th percentile had a LMFE of 1.383. Middle row represents the 

plasma and CSF values for 6 patients with a LMFE of 1.388 and 2.295 respectively. Bottom row represents 

the plasma and brain tissue samples from 3 subjects with a LMFE of 1.361 and 1.16 respectively. 
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Tables and Figures  

 

Drug Molecular 
Weight 

Log P pKa Fu,p Fu,csf B:P 

Acetaminophen 
(Saleh and Lange, 2021) 

151.2 0.91 9.46 0.85 0.991 1 

Morphine  
(Ball et al., 2012; Ouzzine et al., 2014; 
Yumi Yamamoto et al., 2018; Liu et 
al., 2019; Saleh and Lange, 2021) 

285.3 0.87 10.96 0.65 0.997 1.02 

Phenytoin  
(Polasek et al., 2009; Saleh and 
Lange, 2021) 

252.3 2.28 8.42 0.1 0.995 0.61 

 
Drug Absorption Clearance 

Hepatic 
Clearance 

Renal 
Clearance 

Brain 
Transporter 

Effects 
Charge 
Class 

Acetaminophen 15 h-1 22800  780 0 None Neutral 
Morphine 0.139 h-1 30 mL/min/kg 0.11*Hepatic 

Clearance 
0 PGPa  

Base 
Phenytoin 0.632 h-1 16000 121 0 None Acid 

Table 1. Drug properties used in model simulations. a) While the PGP interaction with morphine is well established, all subjects 
received an unknown dose of fentanyl, a known PGP inhibitor, and the generic asymmetry factor was set to 1. 
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Extracellular 

Acetaminophen 

Thalamus Cortex Basal Ganglia Rest of Brain 

Thalamus X 0.8176-0.8179 0.9833-0.9835 0.9998-1.0006 

Cortex 0.8176-0.8179 X 0.8313-0.8317 0.8174-0.8184 

Basal Ganglia 0.9833-0.9835 0.8313-0.8317 X 0.9833-0.9839 

Rest of Brain 0.9998-1.0006 0.8174-0.8184 0.9833-0.9839 X 

Table 2. Comparison of prediction regional extracellular ratios for bioequivalence of acetaminophen. Ranges contained 
completely outside of 0.8-1.2 are considered non-equivalent.   
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Intracellular 

Acetaminophen 

Thalamus Cortex Basal Ganglia Rest of Brain 

Thalamus X 0.9490-0.9496 1.0772-1.0781 0.9243-0.9245 

Cortex 0.9490-0.9496 X 0.8802-0.8815 0.8777-0.8785 

Basal Ganglia 1.0772-1.0781 0.8802-0.8815 X 0.9966-0.9966 

Rest of Brain 0.9243-0.9245 0.8777-0.8785 0.9966-0.9966 X 

Table 3. Comparison of prediction regional intracellular ratios for bioequivalence of acetaminophen. Ranges contained 
completely outside of 0.8-1.2 are considered non-equivalent.  

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on September 27, 2022 as DOI: 10.1124/jpet.122.001256

 at A
SPE

T
 Journals on A

pril 18, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


 26

 

 

 

  

Extracellular 

Morphine 

Thalamus Cortex Basal Ganglia Rest of Brain 

Thalamus X 0.8804-0.8885 1.0621-1.0717 0.9919-0.9981 

Cortex 0.8804-0.8885 X 0.8811-0.8928 0.8733-0.8868 

Basal Ganglia 1.0621-1.0717 0.8811-0.8928 X 0.9911-0.9932 

Rest of Brain 0.9919-0.9981 0.8733-0.8868 0.9911-0.9932 X 

Table 4.  Comparison of prediction regional extracellular ratios for bioequivalence of morphine. Ranges contained completely 
outside of 0.8-1.2 are considered non-equivalent 
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Intracellular 

Morphine 

Thalamus Cortex Basal Ganglia Rest of Brain 

Thalamus X 0.9729-0.9848 1.0621-1.0717 0.9307-0.9418 

Cortex 0.9729-0.9848 X 0.9078-0.9271 0.9055-0.9276 

Basal Ganglia 1.0621-1.0717 0.9078-0.9271 X 0.9974-1.0004 

Rest of Brain 0.9307-0.9418 0.9055-0.9276 0.9974-1.0004 X 

Table 5. Comparison of prediction regional intracellular. ratios for bioequivalence of morphine. Ranges contained completely 
outside of 0.8-1.2 are considered non-equivalent 
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Extracellular 

Phenytoin 

Thalamus Cortex Basal Ganglia Rest of Brain 

Thalamus X 0.8576-0.8578 1.0764-1.0765 0.9191-0.9194 

Cortex 0.8576-0.8578 X 0.7966-0.7969 0.7883-0.7888 

Basal Ganglia 1.0764-1.0765 0.7966-0.7969 X 0.9895-0.9897 

Rest of Brain 0.9191-0.9194 0.7883-0.7888 0.9895-0.9897 X 

Table 6. Comparison of prediction regional extracellular ratios for bioequivalence of phenytoin. Ranges contained completely 
outside of 0.8-1.2 are considered non-equivalent  
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Intracellular 

Phenytoin 

Thalamus Cortex Basal Ganglia Rest of Brain 

Thalamus X 0.8585-0.8587 1.0754-1.0756 0.9197-0.9200 

Cortex 0.8585-0.8587 X 0.7981-0.7985 0.7896-0.7901 

Basal Ganglia 1.0754-1.0756 0.7981-0.7985 X 0.9893-0.9895 

Rest of Brain 0.9197-0.9200 0.7896-0.7901 0.9893-0.9895 X 

Table 7. Comparison of prediction regional intracellular ratios for bioequivalence of phenytoin. Ranges contained completely 
outside of 0.8-1.2 are considered non-equivalent 
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Comparison of extracellular/intracellular concentration - Acetaminophen 

Region Intracellular: Extracellular 90% CI Ratio 

Thalamus 2.8004-2.8501 

Cortex 3.2514-3.3082 

Basal Ganglia 3.0677-3.1244 

ROB 3.0286-3.0827 

Table 8. Comparison of predicted intracellular versus extracellular concentrations of acetaminophen. Rations completely outside 
of 0.8-1.2 are considered not-equivalent.  

  

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on September 27, 2022 as DOI: 10.1124/jpet.122.001256

 at A
SPE

T
 Journals on A

pril 18, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


 31

 

 

 

Comparison of extracellular/intracellular concentration - Morphine 

Region Intracellular:Extracellular 90% CI Ratio 

Thalamus 0.4518-0.4795 

Cortex 0.5008-0.5299 

Basal Ganglia 0.4823-0.5143 

ROB 0.4788-0.5110 

Table 9. Comparison of predicted intracellular versus extracellular concentrations of morphine. Rations completely outside of 
0.8-1.2 are considered not-equivalent. 
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Comparison of extracellular/intracellular concentration - Phenytoin 

Region Extracellular:Intracellular 90% CI Ratio 

Thalamus 1.0171-1.0712 

Cortex 1.0181-1.0813 

Basal Ganglia 1.0162-1.0163 

ROB 1.0164-1.0166 

Table 10. Comparison of predicted intracellular versus extracellular concentrations of phenytoin. Rations completely outside of 
0.8-1.2 are considered not-equivalent 
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