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ABSTRACT  

In liver cirrhosis, hepatic inflammation and abundant portal-systemic collaterals are 

indicated for the development of hepatic encephalopathy. Sodium-glucose 

cotransporter-2 (SGLT-2) inhibitors are a type of anti-diabetic agent, which exert 

pleiotropic and anti-inflammatory effects. Diabetes and chronic liver disease often 

coexist but the influence of SGLT-2 inhibition on liver cirrhosis and hepatic 

encephalopathy remains unknown. This study investigated the effect of SGLT-2 

inhibition on cirrhotic rats. Biliary cirrhosis was induced in Sprague-Dawley rats via 

common bile duct ligation. A total of 2-weeks treatment with the SGLT-2 inhibitor, 

empagliflozin 30 mg/kg/day, was applied. The motor activities, hemodynamics, 

biochemistry parameters, plasma levels of vascular endothelial growth factor (VEGF) 

and the severity of portal-systemic collateral shunts were measured. The hepatic 

histopathology and protein expressions were examined. We found that empagliflozin 

treatment did not affect hemodynamics, liver biochemistry or blood glucose levels in 

cirrhotic rats. Empagliflozin did not affect hepatic inflammation and fibrosis. The protein 

expression of factors related to liver injury were not influenced by empagliflozin. 

However, empagliflozin decreased motor activities in cirrhotic rats and increased 

portal-systemic collateral shunts and VEGF plasma levels. In summary, SGLT-2 

inhibition by empagliflozin did not ameliorate portal hypertension and hepatic 
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inflammation in cirrhotic rats. In contrast, it exacerbated hepatic encephalopathy, which 

was evidenced by a decrease in motor activity. A possible mechanism could be an 

increase of portal-systemic shunts related to VEGF up-regulation. Therefore, 

empagliflozin use should be cautious in cirrhotic patients regarding the development of 

hepatic encephalopathy.   

 

Keywords: Hepatic encephalopathy; liver cirrhosis; portal hypertension; sodium-glucose 

cotransporter-2 inhibitor. 
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Significance Statement. Sodium-glucose cotransporter-2 inhibition by empagliflozin 

did not ameliorate portal hypertension and hepatic inflammation in cirrhotic rats. In 

contrast, it exacerbated hepatic encephalopathy through increased portal-systemic shunts 

related to VEGF up-regulation. 
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INTRODUCTION 

In liver cirrhosis, chronic inflammation and fibrosis increase intrahepatic resistance, 

which leads to portal hypertension and the formation of portal-systemic shunts. 

Hepatic encephalopathy (HE) is a neuropsychiatric complication of liver cirrhosis, 

presenting as altered mental status and decreased motor activities. HE is induced by 

circulatory toxins, especially ammonia, which bypass the liver via the portal-systemic 

collateral vessels to the central nervous system and which consequently induce 

astrocyte inflammation and brain edema (Wijdicks, 2016). Portal hypertension, 

overwhelming liver injury and abundant portal-systemic shunts are major contributors 

to HE in cirrhotic patients.  

 Sodium-glucose cotransporter-2 (SGLT-2) inhibitors lower glucose plasma levels 

by reducing renal glucose reabsorption and promoting its excretion; they have been 

widely used for the treatment of patients with diabetes mellitus (Ferrannini, 2017). 

Recently, SGLT-2 inhibitors have attracted attention due to their cardiovascular 

benefits beyond their hypoglycemia effects. In addition to glycemic control, treatment 

with SGLT-2 inhibitors has been associated with a reduction in systemic blood 

pressure in diabetic patients, possibly via changes in plasma volume and decreased 

arterial stiffness (Fioretto et al., 2016; Marx and McGuire, 2016). The EMPA-REG 

OUTCOME trial showed the cardio-protective effect of empagliflozin, a type of 
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SGLT-2 inhibitor, which lowered cardiovascular mortality in type 2 diabetic patients 

with established cardiovascular disease (Zinman et al., 2015). The mechanism by 

which empagliflozin exerts its beneficial cardiovascular effects is not fully understood. 

Given the minor difference in glycemic control and atherosclerosis changes observed 

with empagliflozin treatment compared with a placebo, these effects are unlikely to be 

the result of improved glycemic control and the atherosclerotic process. Potential 

mechanisms for the cardiovascular protection inferred by SGLT-2 inhibitors include a 

reduction in blood pressure, body weight and diuretic, anti-oxidative, 

anti-inflammatory and anti-apoptotic effects (Perrone-Filardi et al., 2017).  

 SGLT-2 inhibition has been documented to improve vascular function. It was 

shown that 8-weeks treatment with SGLT-2 inhibitors significantly lowered arterial 

stiffness and improved endothelial and smooth muscle dysfunction in diabetic mice 

(Lee et al., 2018). Chronic SGLT-2 inhibition enhances coronary vasodilation to nitric 

oxide donors in coronary arteries, but not in pulmonary arterial dilation, in diabetic 

mice, suggesting that SGLT-2 inhibition regulates vascular relaxation differently 

depending on the type of vessel (Han et al., 2015). Acute administration of SGLT-2 

inhibitors also improves systemic arterial and renal vascular function, occurring in the 

presence of stable blood glucose levels in diabetic patients (Solini et al., 2017). 
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Together, emerging evidence has shown that SGLT-2 inhibitors have pleotropic effects 

when given via acute or chronic administration in various vasculatures.  

 Regarding the liver, SGLT-2 inhibitors have been shown to reduce hepatic 

steatosis in murine models (Kabil et al., 2018). 4-weeks of 10 mg/kg/day 

empagliflozin treatment attenuates hepatic inflammation and fibrosis in mice with 

non-alcoholic steatohepatitis (Jojima et al., 2016). Although the anti-inflammatory 

effects of SGLT-2 inhibition have been previously documented in non-alcoholic 

steatohepatitis (Mirarchi et al., 2022), the impact of SGLT-2 inhibition on liver 

cirrhosis and cirrhosis related complications remains unclear. Therefore, in the current 

study we tested the therapeutic effect of SGLT-2 inhibition by empagliflozin on biliary 

cirrhotic rats and also investigated its impact on hemodynamic changes, hepatic 

fibrosis, inflammation, the severity of portal-systemic shunts and HE.  
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MATERIALS AND METHODS  

Experimental animal model for biliary cirrhosis.  

Male Sprague-Dawley rats purchased from BioLASCO Taiwan Co., Ltd., weighing 

300-320g at the time of surgery, were used for all experiments. Rats were housed in 

plastic cages and allowed free access to food and water. All rats were fasted for 12 

hours before the operation. Rats were randomly allocated to receive common bile duct 

ligation (BDL) to induce secondary biliary cirrhosis (Franco et al., 1979) or sham 

operation as surgical control. A high yield of secondary biliary cirrhosis was noted 4 

weeks after the ligation (Cameron and Muzaffar Hasan, 1958). To avoid coagulation 

defects, BDL rats received weekly vitamin K injections (50 μg/kg intramuscularly). 

Survival surgery and hemodynamic study were performed under Zoletil (50 mg/kg, 

intramuscular injection) anesthesia. After experiments, rats were euthanized with 

potassium chloride (1-2 meq/kg) via venous injection. All animals received humane 

care according to the criteria outlined in the "Guide for the Care and Use of 

Laboratory Animals, 8th edition, 2011" published by the National Research Council, 

United States. This study was authorized by the Animal Committee of Taipei Veterans 

General Hospital in Taipei (approval no. IACUC 2020-070). 

 

Study design.  
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Male Sprague-Dawley rats received BDL or Sham operations. Two weeks post 

operation, the rats received the following treatments for 2 weeks: (1) Sham-operated 

rats administered normal saline 0.2 ml/day (oral gavage, sham+vehicle, SV group) (2) 

BDL rats administered normal saline 0.2 ml/day (oral gavage, BDL+vehicle, BV 

group) (3) BDL rats administered 30 mg/kg/day empagliflozin in normal saline 0.2 ml 

(oral gavage, BDL+ empagliflozin, BE group). On the 29th day post operation, the 

motor activities of the rats were evaluated. Motor activities were used to indicate the 

severity of HE in the animals (Chang et al., 2017). Body weight and portal and 

systemic hemodynamic parameters were measured after the motor activity tests. The 

plasma levels of tumor necrosis factor-α (TNF-α), vascular endothelial growth factor 

(VEGF), fasting blood glucose, creatinine, alanine aminotransferase (ALT), aspartate 

aminotransferase (AST), total bilirubin and ammonia were measured at the end of the 

experiments. Hepatic protein expression levels were determined using Western 

blotting analysis. Histopathological changes to the liver were also examined. On 

parallel groups of sham-operated or BDL rats, the severity of portal-systemic shunts 

was measured using the color microsphere method. The study design is illustrated in 

Figure 1. 

 

Measurement of motor activities.  
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The motor activities of BDL rats were determined using the Auto-Track 

Opto-Varimex activity monitoring system (Columbus Instruments, Columbus, OH, 

USA). This system is a position tracking system which detects the motor activities of 

small laboratory rodents (Chang et al., 2017). The rats were housed in a transparent 

cage (42.2 x 42.5 x 20.5 cm) and the system utilizes infra-red beams to calculate the 

animals’ movement and current position. The Opto-Varimex system can be configured 

by sensor pairs which consist of emitters and detectors. These sensor pairs detect the 

movements of experimental animals and record their resting time(s), ambulatory 

time(s), and stereotypic time(s). Resting time is equivalent to the rat’s total time in the 

chamber minus their ambulatory and stereotypic time. To standardize the 

experimental condition concerning the influence exerted by acrophase, a dark 

environment was provided, the rats were rested for 30 minutes before experiment, the 

experiments were performed in the afternoon, and a control group was applied. 

During the activity measurements, animals had no access to food. All studies were 

performed under strictly standardized conditions in a dark room for 30 min. The 

resting, ambulatory and stereotypic times were recorded separately to reflect the 

motor activities. 

 

Measurement of systemic and portal hemodynamics.  
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The right femoral artery and superior mesentery vein were cannulated with PE-50 

catheters that were connected to a Spectramed DTX transducer (Spectramed Inc., 

Oxnard, CA, USA). Continuous recordings of mean arterial pressure (MAP), heart 

rate (HR) and portal pressure (PP) were performed on a multi-channel recorder 

(model RS 3400, Gould Inc., Cupertino, CA, USA). Cardiac output (CO, ml/min) was 

measured via the thermodilution method, as previously described (Albillos et al., 

1992). Cardiac index (CI, ml/min/100 g body weight) was calculated as CO per 100 g 

body weight (BW). Systemic vascular resistance (SVR, mmHg/ml/min/100 g BW) 

was calculated as MAP divided by the CI. Measurements of portal venous flow (PVf, 

ml/min) and superior mesenteric artery flow (SMAf, ml/min) were performed (Chang 

et al., 2019) using a non-constrictive perivascular ultrasonic transit-time flow probe 

(lRB, 1-mm diameter; Transonic Systems, Ithaca, NY, USA).  

 

Determination of plasma VEGF and TNF-α levels.  

The plasma levels of VEGF and TNF-α were measured by commercially available 

enzyme-linked immunosorbent assay kits (R&D Systems, Inc., Minneapolis, MN, 

USA), according to the manufacturer’s instructions.  

 

Measuring the degree of portal-systemic collateral shunting.  
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The degree of portal-systemic shunting was determined using the technique 

previously described by Chojkier and Groszmann, substituting color for radioactive 

microspheres (Chojkier et al., 1981). 

 

Hepatic histopathological examination of inflammation and fibrosis.  

Liver tissues were fixed in 10% formalin, embedded in paraffin, sectioned at 5 μm 

thickness, and stained with hematoxylin-eosin (H&E). Sirius red staining was 

performed to determine the severity of liver fibrosis. Immunohistochemical staining 

with anti-CD68 antibodies (diluted 1:200, ab31630, Abcam, Cambridge, UK) was 

also performed to detect CD68-positive macrophages, to measure intrahepatic 

inflammation (Hsu et al., 2020). The semi-quantitative counting of CD68-positive 

stained cells was measured. The H&E, Sirius red and CD68 stains were examined 

using a light microscope (Eclipse Ni-E, Nikon, Japan).  

 

Western blot analysis.  

Liver tissues were frozen in liquid nitrogen and stored at -80℃ prior to analysis. The 

blots were incubated with the following primary antibodies: endothelial nitric oxide 

synthase (eNOS; Cell Signaling Technology, Inc., Danvers, MA, USA, 32027S; 

1:1000), inducible nitric oxide synthase (iNOS; Genetex Irvine, CA, USA, Gtx130246; 
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1:1000), cyclooxygenase 1 (COX-1; Cell Signaling Technology, Inc., Danvers, MA, 

USA, 4841S; 1:2000), cyclooxygenase 2 (COX-2; Cell Signaling Technology, Inc., 

Danvers, MA, USA, 12282S; 1:1000), nuclear factor kappa B (NFκB; Cell Signaling 

Technology, Inc., Danvers, MA, USA, 8242S; 1:3000), nuclear factor of kappa light 

polypeptide gene enhancer in B-cells inhibitor alpha (IκBα); Cell Signaling 

Technology, Inc., Danvers, MA, USA, 4814S; 1:3000), protein kinase B (Akt; Cell 

Signaling Technology, Inc., Danvers, MA, USA; 1:500), beta-actin (Genetex Irvine, 

CA, USA, Gtx629630; 1:5000). Then the blots were incubated for 90 min with 

secondary antibodies (horseradish peroxidase-conjugated goat anti-mouse IgG 

antibody; Merck KGaA, Darmstadt, Germany). Specific proteins were then detected 

via enhanced chemiluminescence (Immobilon Western Chemiluminescent HRP 

Substrate, Merk Millipore Co., Billerica, MA, USA) and scanned with a 

computer-assisted video densitometer and digitalized system (BioSpectrum® 600 

Imaging System, Ultra-Violet Products Ltd., Upland, CA, USA). Then the signal 

intensity (integral volume) of the appropriate band was analyzed. 

 

Drugs.  

Empagliflozin was purchased from Boehringer Ingelheim and Eli Lilly, Germany. All 

solutions were freshly prepared on the day of the experiment.  
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Statistical analysis.  

All results are expressed as the mean ± standard deviation. Statistical analyses were 

performed using an unpaired Student’s t-test or one-way ANOVA with the Least 

Significant Difference test as appropriate. Survival curve analysis was performed 

using the Log-rank test. Results were considered statistically significant with a 

two-tailed p value <0.05.     
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RESULTS 

Mortality rates of empagliflozin- and vehicle-treated rats 

There was no significant difference in the mortality rate between empagliflozin- and 

vehicle-treated (control) BDL rats (empagliflozin vs. control: 25% (3/12) vs. 31% 

(4/13), p>0.05). All sham-operated rats survived during the experimental period.  

 

BW, hemodynamic and biochemistry parameters  

Table 1 shows the BW, hemodynamic and biochemistry parameters of rats with or 

without empagliflozin treatment. The BW of BDL rats was significantly lower than 

the sham-operated rats after 2-weeks treatment, but empagliflozin did not significantly 

reduce BW in the BDL rats (SV vs. BV and BE, p<0.05; BV vs. BE, p>0.05). In 

addition, BDL rats had significantly lower MAP, higher PP, higher CI and lower SVR 

compared with the sham-operated rats (MAP, PP, SVR: SV vs. BV and BE, p<0.05; 

BV vs. BE, p>0.05. CI: SV vs. BE, p<0.05; BV vs. BE, p>0.05). The SMAf and PVf 

were not significantly different among these 3 groups (SV vs. BV vs. BE, p>0.05). 

Compared to the sham-operated rats, BDL rats had higher ammonia, ALT and total 

bilirubin levels (SV vs. BV and BE, p<0.05; BV vs. BE, p>0.05). Fasting glucose 

plasma levels were significantly lower in BDL rats with or without empagliflozin 

treatment compared with the sham-operated rats (SV vs. BV and BE, p<0.05; BV vs. 
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BE, p>0.05).  

The biochemistry data was compatible with jaundice and liver injury in the BDL 

rats, and this was not significantly affected by empagliflozin treatment. Furthermore, 

BDL rats had a lower fasting blood glucose level compared with the sham-operated 

rats, which was not influenced by empagliflozin.   

 

Motor activity of sham-operated and BDL rats  

Table 2 presents the motor activities of sham-operated and BDL rats with or without 

empagliflozin treatment. Increased resting time and decreased ambulatory time were 

observed in BDL rats compared with the control group, indicating decreased motor 

activities in BDL rats (resting time and ambulatory time: SV vs. BV, both p<0.05). In 

addition, empagliflozin further decreased motor activities in BDL rats (resting time, 

ambulatory time and stereotypic time: BV vs. BE, all p<0.05). 

 

Histopathological changes in liver and intrahepatic CD68-positive stained cells  

Figure 2 depicts the histopathological changes in sham-operated and BDL rats with or 

without empagliflozin treatment. Compared with the sham-operated rats, hepatic H&E 

staining of BDL rats showed increased mononuclear cell infiltration and bile duct 

proliferation, indicating inflammatory changes in the livers of BDL rats. This 
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intrahepatic inflammation was not ameliorated by empagliflozin treatment in BDL 

rats. Sirius Red staining revealed obvious fibrosis of the liver in BDL rats, which was 

not attenuated by empagliflozin. In addition, many CD68-positive stained cells 

infiltrated the livers of BDL rats. Empagliflozin treatment did not reduce the number 

of CD68-positive stained cells in the liver (BV vs. BE: 36±20 vs. 29±18 cell 

numbers/high power field, p>0.05.)  

 

TNF-α and VEGF plasma levels 

Figure 3 depicts the plasma levels of TNF-α and VEGF in BDL rats with or without 

empagliflozin treatment. The plasma level of VEGF significantly elevated after 

empagliflozin treatment, but TNF-α level was not significantly affected by 

empagliflozin (BV vs. BE: VEGF= 10.4±1.6 vs. 12.0±1.4 pg/mL, p=0.03; TNF-α= 

12.4±5.9 vs. 15.9±6.0 pg/mL, p>0.05). 

 

Degree of portal-systemic shunting in BDL rats  

Figure 4 shows the degree of portal-systemic shunting in BDL rats with or without 

empagliflozin treatment (BV vs. BE: n=8, 8). The number of portal-systemic shunts 

significantly increased after empagliflozin treatment in BDL rats (BV vs. BE: 39±7 vs. 

67±10 %, p<0.001).  
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Hepatic protein expression in BDL rats 

Figure 5 reveals hepatic protein expression in BDL rats with or without empagliflozin 

treatment (BV vs. BA: n= 7, 7). NFκB, IκBα, eNOS, iNOS, COX-1, COX-2 and Akt 

protein expression were not significantly influenced by empagliflozin treatment 

(NFκB/β-actin= 0.65±0.15 vs. 0.62±0.10; IκBα/β-actin= 0.83±0.12 vs. 0.80±0.07; 

eNOS/β-actin= 0.70±0.10 vs. 0.72±0.10; iNOS/β-actin= 0.33±0.12 vs. 0.35±0.12; 

COX-1/β-actin= 0.73±0.21 vs. 0.68±0.09; COX-2/β-actin= 0.60±0.24 vs. 0.67±0.07; 

Akt/β-actin= 0.84±0.09 vs. 0.83±0.09; all p>0.05).  
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DISCUSSION 

In the present study, SGLT-2 inhibition via 2-weeks empagliflozin treatment did not 

exert an obviously hypoglycemic effect on cirrhotic rats, although cirrhotic rats had a 

lower level of fasting blood glucose compared with sham-operated rats. In addition, 

empagliflozin did not increase the mortality rate of cirrhotic rats. Regarding the safety 

of SGLT-2 inhibitor treatment in cirrhotic patients, a single dose of ipragliflozin, a 

type of SGLT-2 inhibitor, is well tolerated in cirrhotic patients with moderate hepatic 

impairment (Child-Pugh score 7-9) (Zhang et al., 2013). Similarly, our data indicated 

that 2-weeks empagliflozin treatment did not induce hypoglycemia or increase 

mortality rates in cirrhotic rats. BDL-induced biliary cirrhotic rats had significant 

jaundice, portal hypertension and hyperdynamic circulation compared with the 

sham-operated rats, which was in accordance with our previous findings (Huang et al., 

2021). Our data revealed that 2-weeks empagliflozin treatment neither improved 

portal hypertension nor ameliorated hepatic injury in biliary cirrhotic rats. However, 

inhibition of SGLT-2 by empagliflozin significantly increased portal-systemic shunts, 

elevated plasma VEGF levels, and decreased motor activities of cirrhotic rats.  

Emerging reports show that SGLT-2 inhibitors protect neurovascular units 

(Pawlos et al., 2021). In addition, SGLT-2 inhibition ameliorates cognitive 

dysfunction in obese and type 2 diabetic mice (Rizzo et al., 2022). An interesting 
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study showed that empagliflozin alleviated neuronal apoptosis induced cerebral 

ischemia/reperfusion injury and reduced the size of brain infarctions in a murine 

model, through up-regulation of hypoxia-inducible factor 1-alpha and its downstream 

mediator VEGF (Abdel-Latif et al., 2020). However, in the present study, we found 

that 2-weeks empagliflozin treatment did not exert neuroprotective effects; instead it 

decreased motor activity in cirrhotic rats, although we also found that empagliflozin 

up-regulated VEGF plasma levels. The motor activity detected by Auto-Track 

Opto-Varimex activity monitoring system can reflex the severity of HE, that is, less 

motor activity count indicates severer HE (Chang et al., 2017). The motor activity is 

synchronous with the circadian rhythm of rodent. Emerging data show that motor 

activity of rats is highest in the midnight and the circadian periodicity can regulate 

cerebral blood perfusion (Boakes and Wu, 2021; Wauschkuhn et al., 2005). Therefore, 

we conducted the motor activity study under strictly standardized condition by setting 

a dark environment, resting the rats for 30 minutes before experiment, and performing 

experiments in the afternoon to mimic the acrophase of rodent. Our data showed that 

2-weeks empagliflozin treatment decreased motor activity of BDL rats, indicating the 

exacerbation of HE.    

Two major pathological factors of HE are: overwhelming hepatic failure and 

abundant portal-systemic shunting vessels. The injured liver fails to “detoxify” 
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ammonia and neurotoxins, then the portal-systemic shunts bypass these noxious 

agents from the liver to the systemic circulation and the central nervous system. In the 

present study, ammonia plasma levels were not affected by empagliflozin treatment. 

In addition, liver inflammation and fibrogenesis-related protein expressions were not 

influenced by empagliflozin. Thus the major factor leading to aggravation of HE in 

empagliflozin-treated cirrhotic rats, could be the increased portal-systemic shunts. 

Angiogenesis driven by VEGF-dependent signaling pathways is a major contributor 

to portal-systemic shunt formation and development (Fernandez et al., 2004). It could 

therefore be that the increased VEGF level after empagliflozin treatment observed in 

the current study, might induce an increase in portal-systemic collaterals and 

contribute towards adverse events.  

The present study showed that SGLT-2 inhibition by empagliflozin did not alter 

portal hypertension and systemic hemodynamics in cirrhotic rats. Our data showed 

that cirrhotic rats had a significantly hyperdynamic circulation, presenting with higher 

CI and lower SVR. The effect of empagliflozin on hyperdynamic circulation was 

limited in cirrhotic rats; in addition, empagliflozin did not reduce portal pressure in 

cirrhotic rats. Portal pressure is determined by three main factors: intra-hepatic 

resistance, splanchnic blood flow as reflected by SMAf and PVf, and portal-systemic 

collateral vascular resistance. The unaltered severity of liver fibrosis (influencing the 
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intrahepatic resistance), indicate that SMAf and PVf might be the main factors driving 

the neutral effects of empagliflozin on portal pressure in rats with BDL-induced 

cirrhosis.  

A lot of previous studies have shown that empagliflozin treatment can improve 

liver function and ameliorate liver fibrosis in non-alcoholic fatty liver disease 

(Kuchay et al, 2018; Shimizu et al., 2019). Furthermore, an interesting study showed 

that SGLT-2 inhibition could attenuate non-alcoholic steatohepatitis and 

hepatocellular carcinoma in mice (Shiba et al., 2018). However, in the present study, 

2-weeks empagliflozin treatment did not improve liver biochemistry, hepatic 

inflammation or liver fibrosis in BDL-induced cirrhotic rats. Possible explanations for 

this finding could be the relatively short treatment period with empagliflozin in the 

present study, and the use of different animal models. A longer treatment protocol for 

cirrhotic animals could be tried to evaluate the therapeutic effect of empagliflozin. On 

the other hand, BDL-induced chronic liver inflammation and biliary cirrhosis are 

severe and relatively non-modifiable, and thus not easily reversed. In contrast, animal 

models for non-alcoholic steatohepatitis have less prominent inflammation and 

fibrosis of the liver. Therefore, the discrepant results might be related to the use of 

different experimental models.  
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Empagliflozin has been shown to reduce macrophage accumulation within white 

adipose tissue and the liver, and to lower TNF-α plasma levels in a mouse model (Xu 

et al., 2017). However, our data showed that empagliflozin did not decrease 

intrahepatic CD68-positive staining in macrophages or the TNF-α plasma level in 

cirrhotic rats. We further tested the protein expression of inflammation-related factors, 

including NFκB, IκBα, eNOS, iNOS, COX-1, COX-2 and Akt. However, the 

expression of these proteins was not affected by empagliflozin treatment. According 

to our results, 2-weeks empagliflozin treatment did not alleviate intrahepatic 

inflammation and macrophage recruitment in cirrhotic rats.    

In conclusion, our data showed that 2-weeks SGLT-2 inhibition by empagliflozin 

treatment did not affect the hemodynamics, hepatic inflammation or liver fibrosis of 

cirrhotic rats. Nevertheless, it increased portal-systemic shunts with decreased motor 

activities in cirrhotic rats, indicating an exacerbation of HE. To our knowledge, this is 

the first study that demonstrates empagliflozin treatment exacerbates HE in biliary 

cirrhotic rats. Therefore, clinicians should be cautious when considering the use of 

empagliflozin for cirrhotic patients, and further clinical trials to investigate its impact 

on HE are warranted.   
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FIGURE LEGENDS 

Figure 1: The illustration of study design and sequences of events. 

Figure 2: Hepatic histopathology in BDL rats with or without empagliflozin treatment. 

The representative H&E staining image of BDL rats shows many inflammatory cells 

and bile duct proliferation (green arrow, magnification 200x). Sirius Red staining 

reveals obvious fibrosis of the liver (green arrow, magnification 40x). In addition, 

there are many CD68-positive stained cells (green arrow) in the liver of BDL rats, 

indicating an increase in intrahepatic macrophages (magnification 200x). 

Empagliflozin treatment neither ameliorated hepatic inflammation and fibrosis nor 

significantly reduced the number of CD68-stained macrophages. 

 

Figure 3: TNF-α and VEGF plasma levels in BDL rats with or without empagliflozin 

treatment. The plasma level of VEGF significantly increased after empagliflozin 

treatment. The plasma level of TNF-α was not significantly affected by empagliflozin 

treatment.  

 

Figure 4: Portal-systemic collateral shunts of BDL rats with or without empagliflozin 

treatment. The degree of collateral shunting significantly increased after 

empagliflozin treatment in BDL rats. 
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Figure 5: Hepatic protein expression of inflammation-related factors in BDL rats with 

or without empagliflozin treatment. NFkB, IkBα, eNOS, iNOS, COX-1, COX-2 and 

Akt protein expression were not significantly influenced by empagliflozin treatment. 
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Table 1. Body weight, hemodynamic parameters and biochemistry data for BDL 

rats with or without empagliflozin treatment  

Item Sham+vehicle 

(n=9) 

BDL+vehicle 

(n=9) 

BDL+empagliflozin 

(n=9) 

BW1 (g) 307 ± 9 312 ± 8 311 ± 13 

BW2 (g) 411 ± 30 357 ± 59 a 341 ± 22 a 

MAP (mmHg) 145 ± 12 120 ± 11a 125 ± 21 a 

PP (mmHg) 8.5 ± 0.7 16.3 ± 3.8 a 16.4 ± 3.6 a 

HR (beats/min) 402 ± 33 397 ± 42 376 ± 50 

PVf (ml/min/100g) 10.3 ± 2.3 10.3 ± 4.2 12.2 ± 2.7 

SMAf (ml/min/100g) 6.9 ± 2.4 8.0 ± 2.9 9.1 ± 2.0 

SVR (mmHg/ml/min/100g) 4.8 ± 0.7 3.8 ± 1.2 a 3.3 ± 0.6 a 

CI (ml/min/100g) 30.6 ± 3.4 33.3 ± 8.3 38.3 ± 5.4 a 

Ammonia (μmol/L) 83 ± 56 216 ± 67 a 241 ± 70 a 

ALT (IU/L) 134 ± 59 309 ± 182 a 298 ± 142 a 

TB (mg/dL) 0.03 ± 0.01 8.7 ± 2.1 a 7.7 ± 1.2 a 

Cr (mg/dL) 0.3 ± 0.1 0.4 ± 0.1 0.4 ± 0.1 

Glu (mg/dL) 113 ± 5 92 ± 11 a 87 ± 15 a 
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BDL: bile duct ligation; BW1: body weight before treatment; BW2: body weight after 

treatment; MAP: mean arterial pressure; PP: portal pressure; HR: heart rate; PVf: 

portal venous flow; SMAf: superior mesentery arterial flow; SVR: systemic vascular 

resistance; CI: cardiac index; PaO2: partial pressure of oxygen; ALT: alanine 

aminotransferase; TB: total bilirubin; Cr: creatinine; Glu: fasting glucose; ap<0.05 

compared to the Sham+vehicle group.  
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Table 2. Motor activities in BDL rats with or without empagliflozin treatment 

Time measure Sham+vehicle 

(n=9) 

BDL+vehicle 

(n=9) 

BDL+empagliflozin 

(n=9) 

Resting time (s) 485 ± 142 748 ± 297a 1173 ± 103 a, b 

Ambulatory time (s) 1098 ± 154 848 ± 231a 526 ± 91 a, b 

Stereotypic time (s) 195 ± 96 186 ± 93 90 ± 28 a, b 

ap<0.05 compared to the Sham+vehicle group, bp<0.05 compared to the 

BDL+vehicle group. 
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