Title page:

**Empagliflozin Protects against Pulmonary Ischemia/Reperfusion Injury via an ERK1/2-Dependent Mechanism**

**Dou Huang**¹, **Feng Ju**², **Lei Du**¹, **Ting Liu**², **Yunxia Zuo**¹, **Geoffrey W. Abbott**³, **Zhaoyang Hu**²*  

1 Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu. Sichuan, China  
2 Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu. Sichuan, China  
3 Bioelectricity Laboratory, Dept. of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA  

See footnotes for funding of this study
Running title: pulmonary protection by empagliflozin

* To whom correspondence should be addressed: Dr. Zhaoyang Hu, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu. Sichuan, China. Tel: +86 28 85164039. Email: zyhu@hotmail.com.

Number of manuscript pages: 30
Number of manuscript figures: 8
Number of manuscript tables: 1
Number of references: 39
Word count of the Abstract: 219
Word count of Introduction: 378
Word count of Discussion: 1347

ABBREVIATIONS
I/R, ischemia-reperfusion; T2DM: Type 2 diabetes mellitus; SGLT2, Sodium-glucose cotransporter 2; BAL, Bronchoalveolar lavage; IL-6, interleukin-6; TNF-α, tumor necrosis factor-α; TUNEL, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling; ELISA, enzyme-linked immunosorbent assay; q-PCR, quantitative PCR; H&E, hematoxylin and eosin; AKT: protein kinase B; GSK-3β: glycogen synthase kinase-3β; STAT: signal transducer and activator of transcription; ERK1/2: extracellular signal-regulated kinases 1 and 2; SAFE pathway, survivor activating factor enhancement pathway, RISK pathway: reperfusion injury salvage kinase pathway.

Key words: SGLT2 inhibitors, empagliflozin, ischemia/reperfusion injury, lung, ERK1/2
Abstract
Ischemia/reperfusion (I/R) injury of the lung can lead to extensive pulmonary damage. Sodium-glucose cotransporter-2 (SGLT2) inhibitors are insulin-independent, oral anti-hyperglycemic agents used for treating type 2 diabetes mellitus (T2DM). Their cardioprotective properties have been reported, however, their potential roles in pulmonary protection in vivo are poorly characterized. Here, we tested an hypothesis that empagliflozin, an SGLT2 inhibitor, can protect lungs in a mouse model of lung I/R injury induced by pulmonary hilum ligation in vivo. We assigned C57/BL6 mice to sham-operated, non-empagliflozin-treated control, or empagliflozin-treated groups. Pulmonary I/R injury was induced by 1-hour left hilum ligation followed by 2-hour reperfusion. Using q-PCR and western blot analysis, we demonstrate that SGLT2 is highly expressed in mouse kidney but is weakly expressed in mouse lung (n=5-6 per group, P<0.01 or P<0.001). Empagliflozin improved respiratory function, attenuated I/R-induced lung edema, lessened structural damage, inhibited apoptosis, and reduced inflammatory cytokine production and protein concentration in bronchoalveolar lavage (BAL) fluid (P<0.05 or P<0.001 vs. CON). In addition, empagliflozin enhanced phosphorylation of pulmonary ERK1/2 post-I/R injury in vivo (P<0.001, vs. CON, n=5 per group). We further showed that pharmacological inhibition of ERK1/2 activity reversed these beneficial effects of empagliflozin. In conclusion, we showed that empagliflozin exerts strong lung protective effects against pulmonary I/R injury in vivo, at least in part via the ERK1/2-mediated signaling pathway.
Significance Statement

Pulmonary ischemia-reperfusion (I/R) can exacerbate lung injury. Empagliflozin is a new anti-diabetic agent for type 2 diabetes mellitus. This study shows that empagliflozin attenuates lung damage after pulmonary I/R injury in vivo. This protective phenomenon was mediated at least in part via the ERK1/2-mediated signaling pathway. This opens a new avenue of research for SGLT2 inhibitors in the treatment of reperfusion-induced acute pulmonary injury.
Introduction

Pulmonary ischemia-reperfusion (I/R) occurs in many clinical conditions (de Perrot et al., 2003; Chen-Yoshikawa, 2021). This process is often associated with an exacerbation of lung injury, leading to heavy deterioration in lung function and altered lung histological structure (de Perrot et al., 2003). This pulmonary I/R injury is characterized by lung edema, non-specific alveolar damage, decreased lung compliance and progressive hypoxemia (de Perrot et al., 2003). Therefore, strategies aimed at preventing lung I/R injury and treating specific complications may have substantial effectiveness to reduce mortality and morbidity in the postoperative period.

Empagliflozin, dapagliflozin, canagliflozin and ertugliflozin are recently developed anti-diabetic agents used in the clinical management of type 2 diabetes mellitus (T2DM). They reduce plasma glucose concentrations via regulating glucose homeostasis (Jurczak et al., 2011). In addition to their anti-hyperglycemic effects, in large randomized controlled trials, these SGLT2 inhibitors have exhibited the ability to improve cardiovascular outcomes and reduce heart failure hospitalizations and major adverse cardiovascular events in patients with T2DM (Zinman et al., 2015; Neal et al., 2017; Wiviott et al., 2019). More importantly, the most recent reports extend the substantial cardioprotective properties of SGLT2 inhibitors to non-diabetic patients (McMurray et al., 2019). Notably, accumulating evidence suggests that apart from strong cardiovascular benefits (Tentolouris et al., 2019; Sarzani et al., 2020), SGLT2 inhibitors may also protect other vital organs, for example, kidney (Ellison, 2021), liver (Yamane et al., 2019) and brain (Sa-Nguanmoo et al., 2017) in a variety of experimental animal models. In terms of the lungs, empagliflozin was shown to prevent pulmonary artery remodeling, suggesting a possible protective role of empagliflozin against vascular-related pulmonary disease (Chowdhury et al., 2020). Although empagliflozin was shown to limit infarct size after myocardial ischemia/reperfusion injury (Lu et al., 2020), the question has remained unanswered whether empagliflozin has beneficial effects against reperfusion-induced lung injury. Furthermore, it is worth exploring the underlying molecular mechanisms in
potential pulmonary-protective effects with the goal of developing novel and effective therapeutic approaches to ameliorate lung damage after pulmonary I/R injury in the postoperative period.

Here, our in vivo study investigated the hypothesis that empagliflozin may attenuate lung I/R injury using a mouse model of single lung I/R injury induced by clipping the pulmonary hilum. We further elucidated an underlying molecular mechanism for this empagliflozin-induced pulmonary protection.

Materials and methods

Animals

Animal procedures and all protocols were approved by the Institutional Animal Care and Use Committee of Sichuan University (Chengdu, Sichuan, China) (Approval No: 20211201A). This study was performed in compliance with the principles for the care and use of laboratory animals (Guide, Eighth edition, 2011). Adult, pathogen-free C57/BL6 male mice (Chengdu Dashuo Experimental Animal Co., Ltd., Chengdu, China) of average age 14 months (weighing 25 to 35 g) were used for all experiments. Mice were housed with 12:12-h light-dark cycles at 20-25°C and fed a standard rodent diet.

Experimental protocol

Figure 1 shows the experimental procedures. A total of 86 mice were used in the study. Specifically, 12 mice were sacrificed for the analysis of SGLT2 expression. There were another three parallel experiments to evaluate the beneficial effects of empagliflozin against lung I/R injury. 34 mice were used for the determination of wet-to-dry ratio and oxygenation. 25 mice were used for histological staining, TUNEL analysis and western blot analysis. 15 mice were used for Inflammatory cytokines and myeloperoxidase measurements. Mice were allocated into five groups, as follows: (1) Mice in the sham-operated (Sham) group received once-daily oral administration of physiological saline for 7 days before thoracotomy. Lungs were exposed without
ligation. n=17; (2) Control Group (CON): Mice received physiological saline for 7 days orally before being subjected to pulmonary I/R injury. n=17; (3) Empagliflozin group (Em): Empagliflozin was administered intragastrically to the mice once a day for 7 days prior to pulmonary I/R injury (10 mg/kg body weight). n=18; (4) Control with U0126 group (CON+U0126): U0126, a MAPK/ERK kinase (MEK) specific inhibitor (1 mg/kg, MedChemExpress, Monmouth Junction, NJ, USA), was given from the femoral vein to the control mice five minutes ahead of pulmonary reperfusion. n=6; (5) Empagliflozin with U0126 group (Em+U0126): U0126 was applied to mice in the empagliflozin group. n=6. Mice in all groups received an identical volume of vehicle. We chose the doses of empagliflozin and U0126 based on our (Hu et al., 2016; Hu et al., 2021) and other’s previous publications (Oshima et al., 2019; Liu et al., 2021).

**Pulmonary ischemia and reperfusion injury**

Animals were anesthetized with sodium pentobarbital (50 mg/kg, i.p.) and shaved over the chest. A midline neck incision was performed, and each mouse received a tracheostomy. A 20-gauge angiocatheter was introduced into the trachea, and artificial ventilation was established using a rodent MiniVent ventilator (Harvard Apparatus, Holliston, MA, USA). The frequency was set at 110 strokes/minute, and the tidal volume was set at 0.2 ml. After stabilization, a left-side thoracotomy was performed. Left hilum was identified. Mice were injected with heparin (15 units in saline solution) 10 minutes ahead of left hilum ligation. During the lung ischemic period, the ventilator was set to a tidal volume of 0.175 ml, frequency was 120 strokes per minute. After one hour of pulmonary occlusion, the lung was re-perfused for another two hours. Tidal volume was then reset at 0.2 ml, frequency was 110 strokes per minute. A heating pad was used throughout the experiment to maintain body temperature. 20 mg/kg pentobarbital sodium (i.p.) was given every 30 minutes to each mouse to maintain anesthesia. At the end of reperfusion, 200 mg/kg (i.p.) sodium pentobarbital was used to euthanize the mice and death was confirmed by observing the cessation of heart beat and breath. Dissection was conducted with the aid of an operating microscope.
Arterial blood gas analysis.
Blood gas was measured using the ABL800 FLEX analyzer (Radiometer Medical, Brønshøj, Denmark) 120 minutes post-reperfusion in the sham, control and empagliflozin groups.

Blood serum
Blood was obtained from the left ventricle immediately after sacrificing the mice and was centrifuged for 10 minutes (4,000 g, 4°C). The supernatant was taken and frozen at -20°C until used.

Wet-to-dry ratio measurement
The left main bronchus was clamped after the mice were euthanized. The left lung lobes were taken and immediately weighed (wet weight). After that, the lung tissue was dried in an oven for 72 hours (60°C) and weighted (dry weight). The wet-to-dry (W/D) ratio was calculated and served as an index of lung water content.

Bronchoalveolar lavage (BAL)
At the end of the experiment, the right main bronchus was tied. Three aliquots of 1.5 mL phosphate-buffered saline was instilled to the left lung from the trachea. The fluid was gently aspirated after each infusion. The BAL fluid was centrifuged at 1,500 g for 10 min at 4°C and supernatant was collected and frozen for further analysis. The total protein concentration in BAL fluid was determined using a BCA Protein Assay Reagent Kit (Beyotime Institute of Biotechnology, Shanghai, China) according to manufacturers’ instruction. Briefly, 1μl BAL fluid sample was mixed with 200μl BCA working reagent in a 96-well microplate, and incubated in an oven for 20 minutes at 60°C. The absorbance was measured at 562 nm using a microplate reader (EPOCH™, BioTek Instruments, Inc, Winooski, VT, USA). The protein concentration is obtained based on the standard curve (Wallin et al., 2017).
Inflammatory cytokines and myeloperoxidase measurements

As previously described (Zhou et al., 2019), the levels of inflammatory cytokines (interleukin-6, IL-6 and tumor necrosis factor-α, TNF-α) and myeloperoxidase (MPO) were measured in duplicate in BAL fluid and blood serum using enzyme-linked immunosorbent assay (ELISA) kits (IL-6 and MPO: MultiSciences Biotech Co., Ltd, Hangzhou, Zhejiang, China, TNF-α: Invitrogen Corp. Camarillo, CA, USA) according to manufacturers’ instructions.

Tissue preparation

In a parallel experiment, after sacrificing the mice, the left lung was surgically dissected. The upper lobes of the lung were kept in -80°C freezer for western blot analysis. The lower lobes of the lung were fixed with 4% paraformaldehyde for histological examination, immunofluorescence and apoptosis staining.

In order to evaluate the expression level of SGLT2 in lung and kidney, in a separate set of experiments, untreated C57/BL6 mice were euthanized. Then, mice lungs and kidneys were removed for quantitative PCR (q-PCRs), western blot analysis, and immunofluorescence staining.

Histological evaluation

The lung sections were embedded in paraffin wax, and then sectioned (3 μm) for hematoxylin and eosin (H&E) staining. The histological changes were evaluated by two independent researchers in a blinded manner. Based on the degree of neutrophil infiltration, interstitial edema and intra-alveolar hemorrhage, a scoring system was applied for evaluation, as described previously (Matute-Bello et al., 2011; Zhou et al., 2019) (Table 1). Briefly, a score of 0 indicates normal lung histological structure, a score of 1 indicates mild pulmonary damage, and a score of 2 indicates severe lung injury. Images were digitally captured using an upright microscope with digital camera (Eclipse Ni-E, Nikon, Tokyo, Japan).

TUNEL Assay
Cell apoptosis was determined by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay kit (DeadEnd™ Fluorometric TUNEL system, Promega Corporation, Madison, WI, USA). A total of ten visual fields were randomly selected and obtained from each slice. TUNEL-positive cells were stained green and total nuclei were stained blue (DAPI). The percentage of apoptotic cells was calculated as the number of green nuclei divided by the number of blue nuclei. Images were obtained and analyzed with an upright fluorescence microscope with digital camera (Eclipse Ni-E, Nikon, Tokyo, Japan).

**Quantitative PCR assay**

We tested the mRNA expression of SGLT2 by q-PCR. TRIzol reagent (Invitrogen Life Technologies, Carlsbad, CA, USA) was used to extract total RNA from mouse left lung and kidney. cDNA was then generated by reverse transcription. PCR reaction system was made by the qPCR SYBR Green mix kit (Yeasen Bio. Inc., Shanghai, China), followed by quantitative PCR on a Bio-Rad real-time PCR systems (BioRad, Hercules, CA, USA). The housekeeper gene GAPDH was used as control. The mRNA expression levels of SGLT2 were determined via normalization to the expression of GAPDH.

The Primers:

**SGLT2**
- Forward: 5’ GGTCTATGTTCAGAACCAAT 3’
- Reverse: 5’ GAGCGCATTCCACTCAAAT 3’

**GAPDH**
- Forward: 5’ CCACAGTCCATGCCATCACT 3’
- Reverse: 5’ GATGACCTTGCCCACAGCCTT 3’

The above PCR products were loaded into the wells in 2% agarose gels and then were separated by electrophoresis. Bands were visualized with UV light.

**Immunofluorescence staining**

The expression of SGLT2 was also examined by immunofluorescence staining.
Sections of lung and kidney were deparaffinized and rehydrated. Antigen retrieval was conducted. After being microwaved for 16 minutes and washed for 10 minutes in distilled water, the tissue slices were then blocked with 1% bovine serum albumin for 40 minutes at room temperature and incubated with SGLT2 Polyclonal Antibody (1:200; Proteintech, Wuhan Hubei China) overnight at 4°C. After blocking, the slices were washed five times with phosphate-buffered saline (5 min per wash) and incubated for 30 min with Alexa 488 goat anti-rabbit (Jackson Immunoresearch, West Grove, PA, USA) at 37°C. DAPI (4′, 6-diamidino-2-phenylindole, Sigma-Aldrich, St. Louis, MO, USA), a DNA binding dye, was used for nuclear staining. Images were taken by Nikon Eclipse Ni-E fluorescence microscope (Nikon, Tokyo, Japan).

**Western blot analysis**

Tissues were washed with distilled water and then homogenized using a precooled pestle grinder (Fisher Scientific, Hampton, NH, USA) in RIPA lysis buffer (150 mM NaCl, 1% NP-40, 50 mM Tris-HCl (pH7.4), 0.25% sodium deoxycholate, 1 mM EDTA, and 150 mM NaCl). Cocktails of phosphatase and protease inhibitor (Sigma-Aldrich, St. Louis, MO, USA) were added in the buffer. The mixed samples were centrifuged for 10 minutes at 10,000 g (4°C). The supernatant was then taken. The protein concentration was determined by BCA method (Pierce, Rockford, IL, USA). The supernatant was then mixed with sample buffer (2X Laemmli, Sigma-Aldrich, St. Louis, MO, USA), vortexed and then boiled at 95°C for 10 minutes before loading onto 12% sodium dodecyl sulfate-PAGE gels for protein electrophoresis (12ug/well). The proteins were then transferred to nitrocellulose membranes (Pall Corporation, Port Washington, NY, USA), and were blocked by 5% skimmed milk in 1X phosphate buffered saline solution containing 1% Tween 20 at room temperature for 45 minutes. The primary antibodies used in this study were: p-GSK-3β: phosphorylated glycogen synthase kinase-3β (Ser9); t-GSK-3β: total GSK-3β; p-AKT: phosphorylated AKT (ser473); t-AKT: total AKT; p-ERK: phosphorylated extracellular signal-regulated kinase1/2 (ERK1/2) (Thr202/Tyr204);
t-ERK: total ERK1/2; p-STAT1: phosphorylated STAT-1 (Tyr701), t-STAT-1: total STAT-1; p-STAT-3: phosphorylated STAT-3 (Tyr705), t-STAT-3: total STAT-3, p-STAT-5: phosphorylated STAT-5 (Tyr694), t-STAT-5: total STAT-5 (all primary antibodies, 1:1000, Cell Signaling, Danvers, MA, USA). SGLT2 (1:1000, Proteintech, Wuhan, Hubei, China). After overnight incubation, the membranes were incubated with goat anti-rabbit IgG secondary antibody conjugated to horseradish peroxidase (1:5000, Bio-Rad, Hercules, CA, USA). Immunoreactive bands were visualized by the chemiluminescence ECL reagent (GE Healthcare, Little Chalfont, UK). Western blot images were taken using an Amersham Imager (600 system, GE Healthcare, Little Chalfont, UK) and were further analyzed with ImageJ (1.46r edition, National Institutes of Health, Bethesda, MD, USA). Band densities for phosphorylated proteins were calculated relative to their respective total protein densities.

**Statistical Analysis**

The experimental results are shown as mean ± SD. Comparisons between groups over three were performed by One-Way Analysis of Variance (ANOVA) followed by Newman-Keuls test or Dunnett’s T3 test (if variances were not homogenous). Student’s t-tests (Unpaired, two-tailed) were used to compare the means between two groups. Mann-Whitney test was used to compare the q-PCR results between two groups. Kruskal-Wallis test was applied to compare the histological scores over three groups. A p-value less than 0.05 (P<0.05) was regarded as statistically significant.

**Results**

**Expression of SGLT2 in mice**

It is well recognized that SGLT2 is dominantly located on the membrane of the renal proximal tubules (You et al., 1995). We determined the expression level of SGLT2 in mice kidneys and lungs by Quantitative PCR (q-PCR), Western blot analysis and immunofluorescence staining. Gene expression levels of SGLT2 were normalized to GAPDH. The results from q-PCR showed that SGLT2 mRNA was highly enriched in
kidney biopsies obtained from mice (Figure 2A). However, there was very little expression of SGLT2 transcript in mouse lung, i.e., approximately 0.002-fold the level we observed in the kidney (Figure 2A). Next, the PCR products from cDNA samples were separated by electrophoresis in our study. We found that GAPDH transcript was heavily expressed in mouse kidney and lung in the agarose gel (Figure 2B). Meanwhile, mice kidney samples exhibited predominant bands around 185 bp (SGLT2) region; in contrast, the PCR product from mice lungs yielded only faint bands for SGLT2 transcript (Figure 2B). Moreover, SGLT2 protein expression in mouse kidney or lung was also determined by Western blot method. As shown in Figure 2C, SGLT2 was abundant in kidney, such that in mouse kidney, the SGLT2 antibody labeled a ∼70-kDa protein band, however, the same band was almost absent in mouse lungs (Figure 2C, P<0.01). These findings were further confirmed by immunofluorescence staining, which demonstrated distinct staining of SGLT2 protein in the proximal tubule of the kidney, in contrast to negligible staining in the mouse lung (Figure 2D).

**Empagliflozin attenuates lung damage after pulmonary I/R injury**

Wet-to-dry (W/D) lung weight ratios (sign of lung edema) were quantified among different groups. In the present study, mice in the control group exhibited a higher wet-to-dry (W/D) ratio (5.7±0.5) than those in the sham-operated group (4.4±0.4, P<0.001). In contrast, the values of the W/D ratios in the empagliflozin group (4.5±0.2) were markedly lower than those in the non-empagliflozin-treated control mice, indicating that empagliflozin could effectively reduce pulmonary edema following pulmonary IR injury (Figure 3A). Meanwhile, we found that pO₂ and oxygenation index were decreased after reperfusion in the control group (Figure 3B, C, P<0.001 versus sham-operated mice). However, pretreatment with empagliflozin largely improved respiratory function, as evidenced by increased pO₂ and PaO₂/FiO₂ after reperfusion injury. In accordance with improved lung function, as shown in Figure 3D, mice in the sham and empagliflozin groups had similar histological structures with scattered neutrophil infiltration. In contrast, acute pulmonary I/R injury
led to severe alveolar damage, as indicated by extensive interstitial edema, widespread alveolar collapse and bleeding, increased alveolar interstitial thickness, and inflammatory cell infiltration. In our study, the histological assessment of lung injury was performed using a composite histological lung injury scoring system (see Methods). Following reperfusion, the above-mentioned pathohistological changes were significantly alleviated in the empagliflozin-treated lungs (0.33±0.04) as compared with those seen in the non-empagliflozin-treated control lungs (0.66±0.04, P<0.05). Consistent with this, although TUNEL-positive stained cells were observed in all tested groups, there were much fewer apoptotic cells in lungs with empagliflozin treatment (0.03±0.004), compared with those in the non-empagliflozin-treated control lungs after I/R (0.25±0.02, P<0.001, Figure 3E).

**Empagliflozin decreases I/R-induced inflammatory cytokine production**

As shown in Figure 4, pulmonary I/R injury caused significant elevation of IL-6 (Figure 4A and 4B), and TNF-α (Figure 4C and 4D) in BAL fluid and plasma (P<0.001, compared with sham). However, levels of these pro-inflammatory cytokines were significantly decreased upon empagliflozin treatment (P<0.001, compared with CON). MPO, a polymorphonuclear neutrophils marker enzyme, was shown to have pro-inflammatory properties and is associated with the pathogenesis of lung injury. The levels of MPO were also measured in our study as an index of lung inflammation. We observed that compared to sham-operated mice, pulmonary I/R injury led to a significant elevation of MPO concentration in BAL fluid (Figure 4F) and blood serum (Figure 4G) in control mice (P<0.001 vs. sham). Moreover, MPO levels were markedly reduced in the empagliflozin group than those in the control group (P<0.001 vs. CON, Figure 4F and 4G). Previous studies showed that high total protein concentration in BAL fluid is linked to higher mortality in patients, thus, the presence of high total protein concentration is an indicator of severe lung injury (Hendrickson et al., 2017). We also evaluated the total protein concentration in the BAL fluid post I/R. Here, as shown in Figure 4G, we found that empagliflozin significantly inhibited the increase of total protein concentrations in bronchoalveolar...
lavage fluid (P<0.001 vs. CON), indicating that empagliflozin ameliorated acute lung damage induced by I/R injury in vivo.

**Empagliflozin affects protein phosphorylation after pulmonary I/R injury**

To further elucidate potential underlying mechanisms attributable to empagliflozin-induced pulmonary protection, multiple signaling pathways associated with reperfusion injury and ischemic damage were tested in our current study. Phosphorylated proteins were normalized relative to their non-phosphorylated total proteins. We found that total GSK-3β, AKT, ERK1/2, STAT-1, STAT-3 or STAT-5 protein levels were not different in all groups. GSK-3β and AKT phosphorylation were each increased in control lungs after reperfusion injury (P<0.01 or P<0.001 versus sham-operated lungs), while phosphorylation levels of GSK-3β and AKT were expressed at almost the same levels in empagliflozin-treated or non-treated control lungs (P>0.05, **Figure 5A, B**). Interestingly, although ERK phosphorylation levels in control lungs (0.6±0.2) were increased by 50% after 2 h of reperfusion as compared with the sham-operated lungs (0.4±0.1, P<0.05), we found a 2.5-fold elevation in ERK1/2 phosphorylation in empagliflozin-treated lungs (1.0±0.2) in comparison with those in control groups after I/R injury (P<0.001 **Figure 5C**).

STATs are a group of transcription factors with seven known members, including STAT1, STAT3 and STAT5, all of which play crucial roles in regulating cellular functions during I/R injury. As shown in **Figure 5 D-F**, pulmonary reperfusion injury caused activation (phosphorylation) of STAT1 (**Figure 5D**), STAT3 (**Figure 5E**) and STAT5 (**Figure 5F**) signaling molecules, however, no differences were detected between CON and Em groups post I/R regardless of whether or not they were treated with empagliflozin (all P>0.05), indicating that the beneficial pulmonary-protective effects of empagliflozin were less likely to be attributed to the modification of STAT-related pathways.

**ERK1/2 inhibition impairs the pulmonary-protective effect of empagliflozin**

We showed that the phosphorylation level of ERK1/2 was higher in control lungs than
in sham-operated lungs and was further enhanced (vs. CON) in the empagliflozin-treated lungs (Figure 5C). To elucidate the potential role of ERK1/2 in empagliflozin-associated pulmonary protection, a MAPK/ERK kinase (MEK) specific inhibitor, U0126, was injected to the mice in our study. Western blots indicated that U0126 administration significantly blocked empagliflozin-induced phosphorylation of ERK1/2 when compared with the non-U0126-treated empagliflozin group (P<0.001, Figure 6A and 6B). We next investigated whether pharmacological inhibition of ERK1/2 activation (phosphorylation) would affect empagliflozin-induced pulmonary protection. In contrast to our earlier findings showing that empagliflozin improved lung function and reduced histological evidence of lung damage after pulmonary I/R injury, here, we found that empagliflozin-treated mice exhibited severe pulmonary damage after reperfusion in the presence of inhibitor. For example, W/D ratios were similarly elevated in U0126-treated control and U0126-treated empagliflozin groups post I/R, to levels similar to that of lungs in the non-U0126-treated control group (P<0.01 or P<0.001 vs. empagliflozin group, Figure 7A). In the meantime, U0126 pretreatment significantly diminished the PO2 and PO2/FiO2 elevation we had previously seen for empagliflozin-treated mice (P<0.001 vs. empagliflozin group, Figure 7B and 7C). Consistent with this, empagliflozin-treated mice also treated with U0126 exhibited severe pulmonary histological damage after I/R injury, as seen in the significantly increased lung injury scores (P<0.001 vs. empagliflozin group, Figure 7D and 7E). We also compared levels of pulmonary cell apoptosis between empagliflozin-treated lungs in the presence or absence of U0126. We found that U0126 induced pulmonary apoptosis, such that inhibitor-treated lungs in the empagliflozin group had more TUNEL-stained nuclei when compared to non-inhibitor-treated empagliflozin lungs (P<0.001 vs. empagliflozin group, Figure 7F and 7G). Taken together, our results indicated that empagliflozin exerted a strong pulmonary protective effect against pulmonary I/R injury, in an ERK1/2-dependent manner.

Discussion

SGLT2 inhibitors, including empagliflozin, ertugliflozin, dapagliflozin and canagliflozin,
are oral hypoglycemic agents, initially designed for patients with T2DM (Hsia et al., 2017). SGLT2 is heavily expressed in the kidney, where it is enriched in the proximal convoluted tubule (Tentolouris et al., 2019). Accordingly, inhibition of SGLT2 results in osmotic diuresis, sodium excretion and intravascular volume contraction (Lupsa and Inzucchi, 2018). Besides the potent anti-hypoglycemic properties, a large randomized EMPA-REG OUTCOME trial that recruited 7020 T2DM patients demonstrated that empagliflozin reduced rates of death, both from cardiovascular causes and from any causes (Zinman et al., 2015). Following this, other large trials such as the DECLARE-TIMI 58 trial (Wiviott et al., 2019) and the CANVAS trial (Neal et al., 2017) all showed that other SGLT2 inhibitors, including canagliflozin and dapagliflozin offered beneficial cardioprotective effects in T2DM patients. Surprisingly, the follow-up analyses of the EMPA-REG OUTCOME trial (Inzucchi et al., 2018), recent DAPA-HF trial (McMurray et al., 2019) and EMPEROR-PRESERVED trial (Anker et al., 2021) all revealed that SGLT2 inhibitors exhibited cardioprotective properties regardless of the absence or presence of type 2 diabetes mellitus. In line with clinical case findings, the protective effects of SGLT2 inhibitors were also extended and confirmed in organs other than the heart (Verma and McMurray, 2018) in preclinical studies using various animal models. Focusing on acute I/R injury, although recent emerging reports showed that empagliflozin could protect non-diabetic hearts against myocardial I/R injury-induced lethal arrhythmia (Hu et al., 2021). Additionally, empagliflozin (Lu et al., 2020) and dapagliflozin (Lahnwong et al., 2020) each had infarct-sparing effects after myocardial I/R injury in animals without T2DM. Unfortunately, the current knowledge about SGLT2 inhibitors in perioperative lung protection is indirect. For example, reports showed that empagliflozin had beneficial effects on bleomycin-induced pulmonary fibrosis (Kabel et al., 2020), obesity-induced asthma (Park et al., 2019), or pulmonary artery remodeling (Chowdhury et al., 2020). Therefore, our current study may shed light on the potential protective role of SGLT2 inhibitors against pulmonary I/R injury in vivo. We showed in our study that empagliflozin, a SGLT2 inhibitor, attenuated lung damage after pulmonary I/R injury. For example, it effectively reduced pulmonary edema, improved
oxygenation, inhibited apoptosis, alleviated structural abnormalities and decreased inflammatory cytokine production following pulmonary IR injury. Our results may offer new perspectives for designing individualized therapeutic strategies for patients with high risk of pulmonary injury during the perioperative period.

It has been shown that SGLT2 is primarily detected in the kidney (Kanai et al., 1994). Several investigations further showed that SGLT2 is also expressed in other tissues, like hearts and pancreatic islets in animals or human (Sabatino et al., 2020; Saponaro et al., 2020). Unlike SGLT1, which can be found in various organs and tissues, SGLT2 is not expressed in normal human lungs according to the NCBI Gene database (https://www.ncbi.nlm.nih.gov/gene/6524), while in recent published work, Sabatino et al. reported that SGLT2 was slightly expressed in mouse lung but substantially expressed in kidney (Sabatino et al., 2020). In line with the earlier investigation, using different methodologies including q-PCR, gel electrophoresis and western blot analysis, we were able to detect faint SGLT2 transcript and protein expression in C57BL/6 mice lungs as shown in Figure 2A, 2B and 2C. It is worth mentioning that in our study, SGLT2 was localized and abundantly expressed in kidney proximal tubules, in contrast, no obvious positive-stained SGLT2 signals were visualized in lung sections (Figure 2D). Meanwhile, although the antibody could detect SGLT2 expression in western blotting, it failed to detect its epitopes in immunofluorescence-stained samples under a fluorescence microscope in our study (Figure 2D). The reason may be attributed to the difference of these two techniques. Although immunofluorescence and western blotting all rely on the antibody-antigen interaction, their detective sensitivity is different, therefore, it is rational that faint signals were unable to be visualized. Taking into account the four different methodologies we used, one can conclude that SGLT2 is weakly expressed in mouse lung (Figure 2A, 2B, 2C and 2D). Thus, our results further indicate that empagliflozin-induced lung protection in the current animal model may be exerted via an alternative mechanism rather than direct targeting of pulmonary SGLT2 receptors. This study is the first to elucidate the beneficial role of SGLT2 inhibitors in pulmonary
I/R injury, albeit they are known to alleviate I/R damage in other organs, and we further identified the underlying mechanisms involving signaling pathways. There are two similar but independent pro-survival signaling pathways associated with I/R injury, the RISK (reperfusion injury salvage kinase) pathway and the SAFE (survivor activating factor enhancement) pathway. ERK1/2 and AKT, major components of the RISK pathway, can each be phosphorylated upon activation by stress such as I/R injury (Hausenloy and Yellon, 2007). It is well-established that protective stimuli, such as ischemic preconditioning and postconditioning, can cause AKT and ERK1/2 activation; thus, inhibition of their phosphorylation may abolish their beneficial protective effects (Hausenloy et al., 2011; Hu et al., 2016).

Meanwhile, GSK-3β, a downstream signaling molecule of AKT and ERK1/2 pathways, may serve as a possible point of convergence for pro-survival signals conveyed by various pathways. Our study demonstrated that empagliflozin, an SGLT2 inhibitor, exerts favorable effects in ameliorating pulmonary damage post-I/R by enhancing pulmonary phosphorylation of ERK1/2, but not AKT or GSK-3β. Furthermore, we also found that the beneficial effects were blocked by the ERK1/2 inhibitor, U0126, indicating that empagliflozin-induced pulmonary protection was exerted via an ERK1/2 phosphorylation-dependent mechanism (Figure 7A, 7B, 7C, 7D, 7E, 7F, 7G).

Meanwhile, we also examined the importance of the SAFE pathway in our study. Signaling molecules including STAT-1~STAT-5 in this pro-survival cascade can be activated and phosphorylated, lessening cell death during reperfusion (Lecour, 2009). We and others have previously found that phosphorylation of STATs was required for organ protection (Stephanou, 2004; Luo et al., 2018). However, in the current study, although we found I/R stimuli was able to stimulate STAT1, STAT3 and STAT5 activation, i.e. phosphorylation, the administration of empagliflozin failed to further enhance their phosphorylation levels, suggesting that the empagliflozin-induced pulmonary protection is unlikely to be due to the activation of SAFE pathway.

There are several limitations in this study. First, the usual dose for empagliflozin
is 10mg-25mg/60kg/day for humans, whereas we used 10mg/kg/day for mice, which is beyond the currently used clinical dose range. The dose of empagliflozin we used was based on recently published articles (Oshima et al., 2019; Hu et al., 2021; Liu et al., 2021). Although we showed that empagliflozin protected lungs against pulmonary I/R injury, its lung protective properties within the typical, currently used clinical range deserve further determination. Regardless, the present study provides preliminary evidence for the potential therapeutic properties of empagliflozin against I/R-induced lung damage. Second, mice in the current study experienced 2 hours of reperfusion, which may cause acute pulmonary damage. Lung I/R injury serves as a major complication after cardiopulmonary bypass or lung transplantation; therefore, the validation of empagliflozin-induced long-term lung protection may be carried out in different animal models in the future. Third, we only evaluated two major signaling pathways associated with reperfusion injury; whether other molecules or kinases play a role in this beneficial process remains to be elucidated. Fourth, we did not use additional drugs as controls, such as tissue plasminogen activator, it would be interesting to see its effect in future studies. Fifth, we conducted three parallel experiments to evaluate the effect of empagliflozin on lung I/R injury. We found that empagliflozin attenuated lung damage after pulmonary I/R injury. However, the animal numbers are not always consistent in each set of the experiment. We therefore cannot exclude the possibility that this number difference may eventually produce bias.

In conclusion, the present results showed that pretreatment with empagliflozin exerted strong pulmonary protective effects against reperfusion-induced lung injury in vivo, which was associated with phosphorylation of pulmonary ERK1/2. Furthermore, inhibition of ERK1/2 activation abolished the empagliflozin-induced pulmonary protection. The empagliflozin-mediated pulmonary protection we observed is therefore linked to ERK1/2-dependent pathways. Given their significant protection efficacies and unique insulin-independent mode of action, SGLT2 inhibitors may offer a promising and novel therapeutic approach for patients with high risk of pulmonary damage during the perioperative period.
Acknowledgments

We would like to thank Drs. Qingjie Xia and Dunshui Liao for technical support in q-PCR.

Authorship Contributions

Participated in research design: Zhaoyang Hu
Conducted experiments and the study: Dou Huang, Feng Ju, Ting Liu, Zhaoyang Hu
Performed data analysis: Dou Huang, Feng Ju, Lei Du, Ting Liu, Zhaoyang Hu
Wrote or contributed to the writing of the manuscript: Zhaoyang Hu, Yunxia Zuo, Geoffrey W. Abbott.
References


Footnotes

This study was supported by Grant No. 81670300 (to ZH) from the National Natural Science Foundation of China. Financial Disclosure: No conflicts of interest, financial or otherwise, are declared by the authors.
Figure legends

**Figure 1 Experimental protocols**
Lungs in each group except for the sham-operated ones were subjected to 60 minutes of pulmonary ischemia by clamping the left hilum (Ischemia), followed by 2 hours of reperfusion (Reperfusion). The ERK1/2 inhibitor U0126 was given intravenously from femoral vein 5 minutes ahead of reperfusion (orange arrow). The black vertical arrow on the figure refers the time point when blood and samples were taken.

**Figure 2 SGLT2 expression**
A. Quantitative PCR validation of SGLT2 transcript expression in lungs and kidneys of mice (n=6, each group).
B. Agarose gel electrophoresis of the PCR products obtained from A (n=6, each group).
C. Western blot of SGLT2 protein expression in mouse lung and kidney tissue (n=5, each group). ***$P<0.001$, between two groups.
D. Representative images of immunofluorescence staining for SGLT2 in lung and kidney tissue sections of mice.

**Figure 3 Empagliflozin ameliorates pulmonary ischemia/reperfusion injury**
A. Wet-to-dry ratio of the left lung tissues post-IR. ***$P<0.001$, compared with sham-operated mice; ###$P<0.001$, versus control mice. CON: control, Em: Empagliflozin. n=6-7 per group.
B. Changes in partial pressure of oxygen post-IR. n=6-8 per group. ***$P<0.001$, versus sham-operated mice; ###$P<0.001$, versus control mice. CON: control, Em: Empagliflozin.
C. Changes in oxygenation index ($\text{PaO}_2/\text{FiO}_2$) post-IR. n=6-8 per group. ***$P<0.001$, compared with sham-operated mice; ###$P<0.001$, versus control mice. CON: control, Em: Empagliflozin.
D. **Left.** Representative lung section stained for H&E after pulmonary I/R injury. scale
bars, 50μm. Representative of n=5 mice per group. *Right*, semi-quantitative analysis of pulmonary injury in left lungs after I/R injury (n=5 mice per genotype). ***P<0.01, versus sham-operated mice; ###P<0.05, versus control mice. CON: control, Em: Empagliflozin.

**E. Left**, Images of TUNEL-positive cells after pulmonary I/R injury. Green: apoptotic nuclei, blue: total nuclei. *Right*, Apoptotic index, i.e., percentage of green-stained nuclei in tissue sections. n=5 per group. ***P<0.001, versus sham-operated mice; ###P<0.001, versus control mice.**

*Figure 4 Oral intake of empagliflozin alleviates the inflammatory injury after pulmonary I/R injury*

**A-B:** Levels of interleukin-6 (IL-6) in BALF fluid (A) or in plasma (B) after 120 min of reperfusion. n=4-5 per group. ***P<0.001, versus sham-operated mice; ###P<0.001, versus control mice. CON: control, Em: Empagliflozin.

**C-D:** Levels of tumor necrosis factor-α (TNF-α) in BALF fluid (C) or in plasma (D) after 120 min of reperfusion. n=4-6 per group. ***P<0.001, versus sham-operated mice; ###P<0.001, versus control mice.

**E-F:** Levels of myeloperoxidase (MPO) in BALF fluid (E) or in plasma (F) after 120 min of reperfusion. n=4-6 per group. ***P<0.001, versus sham-operated mice; ###P<0.001, versus control mice.

**G.** Total protein concentration in BALF fluid after I/R injury. n=4-5 per group. ***P<0.001, versus sham-operated mice; ###P<0.001, versus control mice.

*Figure 5 The effect of empagliflozin on protein phosphorylation after I/R injury*

**A-F. Left**, western blots of p-GSK-3β and t-GSK-3β (A), p-AKT and t-AKT (B), p-ERK1/2 and t-ERK1/2 (C), p-STAT-1 and t-STAT-1 (D), p-STAT-3 and t-STAT-3 (E), p-STAT-5 and t-STAT-5 (F) in lung tissues after I/R injury; **Right**, bar graph showing mean ratio of the phospho-/total band densities. **P<0.01,***P<0.001, versus sham-operated mice; ###P<0.001, versus control mice. n=5 per group. CON: control, Em: Empagliflozin.
Figure 6  **U0126 abolishes empagliflozin-stimulated phosphorylation of pulmonary ERK1/2**

**A.** Representative western blot of p-ERK1/2 and t-ERK1/2 in left lung tissues after I/R injury. Em: Empagliflozin, CON: control.

**B.** Quantification of ERK1/2 protein band density (normalized to t-ERK1/2) in mice left lungs with (+) or without (-) U0126 treatment. ***$P<0.001$, versus empagliflozin-treated mice. $n=5$ per group.

Figure 7  **pharmacological inhibition of ERK1/2 reverses the pulmonary protection offered by empagliflozin after I/R injury**

**A.** Wet-to-dry ratio of left lungs from sham-operated, CON and empagliflozin-treated mice in the absence (-) or presence (+) of U0126 after reperfusion. **$P<0.01$, ***$P<0.001$, versus empagliflozin-treated mice. CON: control, Em: Empagliflozin. $n=5-7$ per group. Values for sham, CON and Em groups are repeated from Fig. 3A for comparison.

**B.** Changes in partial pressure of oxygen. ***$P<0.001$, versus empagliflozin-treated mice. $n=6-8$ per group. Values for sham, CON and Em groups are repeated from Fig. 3B for comparison.

**C.** Changes in oxygenation index. ***$P<0.001$, versus empagliflozin-treated mice. $n=6-8$ per group. Values for sham, CON and Em groups are repeated from Fig. 3C for comparison.

**D.** Representative H&E-stained left lung sections in five experimental groups.

**E.** Histological evaluation of pulmonary damage after I/R injury. * $P<0.05$, **$P<0.01$, versus empagliflozin-treated mice. $n=4-5$ per group. CON: control, Em: Empagliflozin. Values for sham, CON and Em groups are repeated from Fig. 3D for comparison.

**F.** Representative images of TUNEL-positive cells after pulmonary I/R injury.

**G.** Analysis of pulmonary cell apoptosis in sham, CON and empagliflozin-treated mice with (+) or without (-) U0126. $n=4-5$ per group. ***$P<0.001$, versus empagliflozin-treated mice. Values for sham, CON and Em groups are repeated from...
Fig. 3E for comparison.

*Figure 8 Schematic illustration of the potential mechanisms of empagliflozin on pulmonary injury induced by ischemia and reperfusion.*
# Tables

**Table 1** Lung injury evaluation score system (Matute-Bello et al., 2011; Zhou et al., 2019)

<table>
<thead>
<tr>
<th>parameter</th>
<th>Score per field</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Accumulation of neutrophils in the alveolar space</td>
<td>None 1-5 &gt;5</td>
</tr>
<tr>
<td>B Accumulation of neutrophils in the interstitial space</td>
<td>None 1-5 &gt;5</td>
</tr>
<tr>
<td>C Hyaline membrane formation</td>
<td>None 1 &gt;1</td>
</tr>
<tr>
<td>D Presence of proteinaceous debris in the alveolar space</td>
<td>None 1 &gt;1</td>
</tr>
<tr>
<td>E The degree of alveolar wall thickening</td>
<td>&lt;2x 2x-4x &gt;4x</td>
</tr>
</tbody>
</table>

Score = [(20×A)+(14×B)+(7×C)+(7×D)+(2×E)]/(number of fields×100)
Figure 6

A

![Western blot for p-ERK1/2 and ERK1/2](image)

- **p-ERK1/2**
- **ERK1/2**

B

![Bar graph for ERK p/t](image)

- **U0126**
  - Sham
  - CON
  - Em
  - CON
  - Em

- **ERK p/t**
  - Sham
  - CON
  - Em
  - CON
  - Em

**Significance**:
- ******* p < 0.001
Figure 8

Empagliflozin, vehicle i.g. 7 days

Left hilum ligation → Reperfusion → Pulmonary protection

- Reduce pulmonary edema
- Improve oxygenation
- Inhibit apoptosis
- Alleviate structural abnormalities
- Decrease inflammatory cytokine production

RISK Pathway
- GSK-3β
- AKT
- ERK1/2

SAFE Pathway
- STAT-1
- STAT-3
- STAT-5

Phosphorylation

Cell survival