Potentiation of muscarinic M₃ receptor activation through a new allosteric site with a novel positive allosteric modulator ASP8302

Risa Okimoto, Katsutoshi Ino, Kenichiro Ishizu, Hajime Takamatsu, Kazuyuki Sakamoto, Hironori Yuyama, Hideyoshi Fuji, Akiyoshi Someya, Akiyoshi Ohtake, Takao Ishigami, Noriyuki Masuda, Masahiro Takeda, Shunichi Kajioka, Naoki Yoshimura

Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan (RO, KI, KI, HT, KS, HY, HF, AS, AO, TI, NM, MT); Department of Pharmaceutical Sciences, International University of Health and Welfare, Fukuoka, Japan (SK); Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (NY)
Running title
Novel muscarinic M₃ receptor PAM ASP8302 and its function

Corresponding author
Risa Okimoto
Candidate Discovery Science Labs.
Drug Discovery Research
Astellas Pharma Inc.
21, Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
Tel: +81-(0)29-863-7135 (Office Number)
Fax: +81-(0)29-850-5120
E-mail: risa.okimoto@astellas.com

Number of:
Text pages: 37
Figures: 8
Tables: 3
References: 46
Supplemental Tables: 4

Number of words in:
Abstract: 250 words
Introduction: 534 words
Discussion: 1688 words
Abbreviations

M₃, Muscarinic M₃; ACh, Acetylcholine; PAM, Positive allosteric modulator; CRC, concentration-response curve; mAChR, Muscarinic acetylcholine receptor; GPCR, G-protein coupled receptor; TM, Transmembrane; ECL, Extracellular loop; CCh, Carbamoylcholine chloride; [³H]NMS, [N-methyl-³H]scopolamine; FLIPR, Fluorometric imaging plate reader

Section assignment

Drug Discovery and Translational Science
Abstract

Muscarinic M₃ (M₃) receptors mediate a wide range of acetylcholine (ACh)-induced functions, including visceral smooth muscle contraction and glandular secretion. Positive allosteric modulators (PAMs) can avoid various side effects of muscarinic agonists with their spatiotemporal receptor activation control and potentially better subtype selectivity. However, the mechanism of allosteric modulation of M₃ receptors is not fully understood, presumably due to the lack of a potent and selective PAM. In this study, we investigated the pharmacological profile of ASP8302, a novel PAM of M₃ receptors, and explored the principal site of amino acid sequences in the human M₃ receptor required for the potentiation of receptor activation. In cells expressing human M₃ and M₅ receptors, ASP8302 shifted the concentration-response curve (CRC) for carbachol to the lower concentrations with no significant effects on other subtypes. In a binding study with M₃ receptor-expressing membrane, ASP8302 also shifted the CRC for ACh without affecting the binding of orthosteric agonists. Similar shifts in the CRC of contractions by multiple stimulants were also confirmed in isolated human bladder strips. Mutagenesis analysis indicated no interaction between ASP8302 and previously reported allosteric sites; however, identified threonine 230 as the amino acid essential for the PAM effect of ASP8302. These results demonstrate that ASP8302 enhances the activation of human M₃ receptors by interacting with a single amino acid distinct from the reported allosteric sites. Our findings suggest not only a novel allosteric site of M₃ receptors but also the potential application of ASP8302 to diseases caused by insufficient M₃ receptor activation.
Significance Statement

The significance of this study is that the novel M₃ receptor positive allosteric modulator ASP8302 enhances the activation of human M₃ receptor by interacting with a residue distinct from the reported allosteric sites. The finding of Thr²³⁰ as a novel amino acid involved in the allosteric modulation of M₃ receptors provides significant insight into further research of the mechanism of allosteric modulation of M₃ and other muscarinic receptors.
Introduction

Muscarinic acetylcholine receptors (mAChRs), a family of G-protein coupled receptors (GPCRs) with five subtypes, mediate a wide range of physiological effects of acetylcholine (ACh) released from parasympathetic nerve terminals (Fetscher et al., 2002; Wess et al., 2003). In the mAChR family, muscarinic M₃ (M₃) receptors are expressed broadly, and are responsible for various cholinergic functions such as smooth muscle contraction and secretion from glands (Wess et al., 2007). Although multiple receptor agonists and cholinesterase inhibitors have been used to treat disorders caused by insufficient M₃ receptor activity, currently available agonists have low receptor subtype sensitivity and/or excessive activation, and their use carries a risk of adverse cholinomimetic side effects (Brown, 2020).

Positive allosteric modulators (PAMs) are a class of drugs that bind to a site spatially distinct site from the orthosteric ligand binding site (i.e., allosteric site), thereby enhancing the responses mediated by receptor activation. Some PAMs increase the affinity of an agonist to the receptor, while others enhance orthosteric agonist efficacy only, or enhance both affinity and efficacy, mainly due to a structural change in the receptor (Conn et al., 2009). Compared with agonists, PAMs are considered to be advantageous in avoiding side effects by enhancing the effect of agonists only (when they are present), and in obtaining subtype selectivity by not targeting the orthosteric site, which is highly conserved among five subtypes in the case of mAChR (Dror et al., 2013; Kruse et al., 2013).

Considerable progress has been made over the past few decades in our understanding of the mechanisms of allosteric modulations of mAChR subtypes and in identifying allosteric ligands (Burger et al., 2018). Previous studies using mutagenesis have suggested that allosteric ligands for mAChR bind to regions in the extracellular loops (ECLs) and the top of the transmembrane (TM) helices (Gnagey et al., 1999; Krejcí and Tucek, 2001; Huang et al., 2005). Determination of the molecular structures of human M₂ receptors and interaction with
allosteric modulators has indicated that key residues and amino acids for the binding and action of allosteric ligands (Gregory et al., 2007) are located in the second and third ECL and the second and seventh TM region (Haga et al., 2012; Dror et al., 2013; Kruse et al., 2013). The structure of rat M₃ receptors has also been reported (Kruse et al., 2013). However, details about the allosteric site of M₃ receptors and the mechanism of action of allosteric ligands have not been fully elucidated, presumably due to the low affinity and limited selectivity of the available tools (Bock et al., 2018). To date, only a few studies have reported the discovery of M₃-preferred PAM through a high throughput screening and comprehensive structure-activity relationships study (Tanaka et al., 2020; Tanaka et al., 2021).

ASP8302 (Fig. 1) is a newly developed PAM which targets M₃ receptors. In this study, we investigated the pharmacological profile of ASP8302 in the binding and activation of M₃ receptors as well as the modulation of bladder smooth muscle contraction, the latter as a representative biological function showcasing the role of M₃ receptors (Matsui et al., 2002; Schneider et al., 2004). We also explored the site in human M₃ receptors critical for the PAM effect of ASP8302, using chimeric and mutated receptors.
Materials and Methods

Test substances

ASP8302 (3-[(2S)-4-(5-{(4-(4-chlorothiophen-2-yl)-5-{{[(2R)-2-methylpyrrolidin-1-yl]methyl}-1,3-thiazol-2-yl}carbamoyl)pyrazin-2-yl]-2-methylpiperazin-1-yl)propanoic acid) was synthesized by Astellas Pharma Inc. ASP8302 dihydrochloride was used in the intracellular Ca\(^{2+}\) mobilization assay except for human M\(_3\) receptor and the receptor binding assay. ASP8302 dimaleate was used in the intracellular Ca\(^{2+}\) mobilization assay for the human M\(_3\) receptor and measurement of contractile responses of isolated human bladder strips.

Salts of ASP8302 were dissolved in dimethyl sulfoxide (DMSO) for in vitro experiments. Carbamoylcholine chloride (carbachol, CCh) (Sigma-Aldrich, St. Louis, MO, USA), atropine sulfate monohydrate (Wako Pure Chemical Industries, Ltd., Osaka, Japan), and acetylcholine chloride (Sigma-Aldrich) were dissolved in water. \([\text{N-methyl-}^3\text{H}]\text{scopolamine (}[^3\text{H}]\text{NMS)}\) was purchased from PerkinElmer Inc. (Boston, MA, USA) and was diluted with the reaction buffer (50 mmol/L Tris-HCl (pH7.5), 10 mmol/L MgCl\(_2\), and 1 mmol/L EDTA) for the binding study.

Constructions and culture of cells expressing human muscarinic M\(_1\), M\(_2\), M\(_3\), M\(_4\) and M\(_5\) receptors and human M\(_3\) receptor mutants

Chinese hamster ovary-K1 (CHO-K1) cells expressing human muscarinic receptors were constructed by Astellas Pharma Inc. Polymerase chain reaction (PCR) products of human M\(_1\), M\(_2\), M\(_3\), M\(_4\), and M\(_5\) muscarinic receptor amplified from human genomic DNA using listed primers (shown in the supplementary material) were inserted into pcDNA3.1™ expression vectors (Life Technologies Japan Ltd., Tokyo, Japan) and the muscarinic receptor-expressing vectors were transfected into CHO-K1 cells (ATCC No. CCL-61) using Lipofectamine 2000 reagent (Life Technologies Japan Ltd.). The cells were cultured in alpha minimum essential
medium (α-MEM) containing 2 mmol/L glutamic acid, 10% fetal bovine serum, and 2 mg/mL geneticin (Life Technologies Japan Ltd.) for about 4 weeks to acquire drug-resistant clones stably expressing each muscarinic receptor. To convert the signaling pathway of M\textsubscript{2} and M\textsubscript{4} muscarinic receptor subtypes, which are coupled to Gi/o proteins, into a Gq signaling pathway, we also transfected a human G\textsubscript{15} G protein α subunit-expressing vector into human M\textsubscript{2}- and M\textsubscript{4}-expressing cells as described above, and drug-resistant clones were selected in the presence of 0.5 mg/mL hygromycin B.

Vectors expressing mutated M\textsubscript{3} receptor were constructed by PCR-based single-site mutagenesis or inverse PCR-based site-directed mutagenesis with or without mega primer polymerase chain reaction. Inverse PCR, digestion of the template plasmid by DpnI, and self-ligation of PCR products (Kinase/Ligase) were conducted using a KOD -Plus- Mutagenesis Kit (Toyobo, Osaka Japan) according to the manufacturer’s instruction manuals. Sequences of the mutant constructs were confirmed by DNA sequencing. Details are shown in the supplementary material. Plasmid DNAs of M\textsubscript{1_TM4_M3}, M\textsubscript{3_TM4_M1_TM5_M3}, M\textsubscript{1_TM4_M3_TM5_M1}, M\textsubscript{3_ECL2_F210L_K213E_E228Q_T230I}, M\textsubscript{3_ECL2_F210A}, M\textsubscript{3_ECL2_K213A}, M\textsubscript{3_ECL2_E228A}, M\textsubscript{3_ECL2_T230A}, M\textsubscript{1_ECL2_I187T} and M\textsubscript{5_ECL2_T192A} were constructed using gene synthesis by Thermo Fisher Scientific.

Cells expressing M\textsubscript{1}, M\textsubscript{3}, or M\textsubscript{5} receptor were cultured in α-MEM supplemented with 10% fetal bovine serum, 50 U/mL penicillin, 50 µg/mL streptomycin, 2 mmol/L L-glutamine, and 0.2 mg/mL geneticin at 37°C and 5% CO\textsubscript{2}. Cells expressing the M\textsubscript{2} or M\textsubscript{4} receptor were cultured in α-MEM supplemented with 10% fetal bovine serum, 50 U/mL penicillin, 50 µg/mL streptomycin, 2 mmol/L L-glutamine, 0.2 mg/mL geneticin and 50 µg/mL hygromycin at 37°C and 5% CO\textsubscript{2}.

Measurement of intracellular Ca\(^{2+}\) mobilization using fluorometric imaging plate reader (FLIPR)

The positive allosteric modulating effect of ASP8302 was investigated using a Ca\(^{2+}\) flux assay described previously (Tanaka et al., 2020) with some modifications. CCh was used instead of the endogenous agonist ACh because of its commonality with ACh in the ligand binding site (and process) (Mokrý et al., 2005), and to avoid potential underestimation of receptor activation or variability in the result due to the decomposition of ACh by acetylcholinesterase (AChE). ASP8302 and CCh were dissolved in DMSO and water, respectively, and diluted with assay buffer [Hank's Balanced Salt Solutions (HBSS) containing 2.5 mmol/L probenecid, 20 mmol/L 2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid (HEPES) (pH 7.5) and 1 mg/mL bovine serum albumin (BSA)]. The final concentration of DMSO was 1%.

Cells were seeded in tissue culture-treated black-walled clear bottom 384-well plates. The cells were cultured for one day (plates with 12,000 cells per well) or two days (plates with 6,000 cells per well). On the day of measurement, the cells were loaded with 3.1 μmol/L Fluo-4 AM (Dojindo, Kumamoto, Japan) in assay buffer and incubated for about 2 h at room temperature. After they were washed with assay buffer, fluorescence was measured using FLIPR-TETRA (Molecular Devices Corporation Japan, Tokyo, Japan) with an excitation wavelength of 470 – 495 nm and an emission wavelength of 515 – 575 nm. ASP8302 (0.1, 0.3, and 1 μmol/L for M\(_3\) and M\(_5\) receptor, 10 μmol/L M\(_1\), M\(_2\), and M\(_4\) receptors) was added to each well. Approximately 4 min later, CCh (0.0095 – 10,000 nmol/L) was added to each well, and the maximal increase induced by CCh was recorded. Data in each single experiment were obtained in duplicate.

Change in intracellular Ca\(^{2+}\) mobilization induced by CCh in the presence of ASP8302 was expressed as a percentage, with the maximum response at the maximum concentration of
CCh in the absence of ASP8302 as 100% and the signal in the absence of CCh and ASP8302 as 0%. The same process was performed for human M₃ receptor mutants.

Receptor binding assay

Competitive binding studies were performed to examine the displacement of [³H]NMS binding to human M₃ receptors using the membrane fraction of CHO-K1 cells expressing human M₃ receptors. ACh was used as the agonist in this cell-free system. To calculate the concentrations of ACh, atropine, and ASP8302 showing 50% inhibition of [³H]NMS binding to the receptor (IC₅₀ values), 30 μg of cell membrane fraction ([³H]NMS affinity: Bₘₐₓ = 0.41 pmol/mg protein, Kᵣ = 0.092 nmol/L) was incubated with 0.4 nmol/L of [³H]NMS for 90 min at room temperature in the presence of ACh, atropine, or ASP8302. To evaluate the effect of ASP8302 on the binding affinity of ACh, 30 μg of cell membrane fraction was incubated with 0.4 nmol/L of [³H]NMS for 90 min at room temperature in the presence of ACh and 1, 3, or 10 μmol/L of ASP8302. To determine non-specific binding, 1 μmol/L of atropine or 1 mmol/L of ACh was added. Cell membranes were then obtained by filtering the cell membrane fraction through glass fiber (GF/C) filters. After drying the GF/C filter, each filter was mixed with 30 μL of liquid scintillation cocktail (Microscint-20, PerkinElmer Inc.) and incubated at room temperature for one night. The radioactivity was counted using a TopCount (PerkinElmer Inc.).

Measurement of contractile responses of isolated bladder strips

Human bladder tissues were obtained from six patients (four males, two females) with bladder cancer undergoing radical cystectomy through the Department of Clinical Pharmacology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan. The study was approved by the Ethics Committee of Kyushu University and Astellas Pharma Inc. All the human bladder tissues were collected after informed consent was obtained from the donors. Isolated human bladder tissues were immediately kept in Krebs-Henseleit solution.
(composition described below) at 4°C prior to transfer to the laboratory. The cold bladder
time ranged from 14 to 16 h. Bladder smooth muscle strips (approximately 6 mm in length
and 2 mm in width) were prepared from the bladder dome above the trigon after removal of
the urothelium and connective tissue under a dissecting microscope.

The strip was suspended between a pair of electrodes (Nihon Kohden, Tokyo, Japan)
in 10 mL organ baths containing Krebs-Henseleit solution (118.4 mmol/L NaCl, 4.7 mmol/L
KCl, 2.5 mmol/L CaCl₂ 2H₂O, 1.2 mmol/L KH₂PO₄, 1.2 mmol/L MgSO₄ 7H₂O, 25 mmol/L
NaHCO₃, 11 mmol/L glucose), maintained at 37°C, and constantly aerated with 95% O₂ and
5% CO₂. Celphines tied with silk ligatures were applied to each end of the bladder strip. One
end was attached to a holder and the other to an isometric tension transducer (TB-611T,
Nihon Kohden) coupled to a PowerLab system (Power Lab8/30, AD Instruments, Aichi,
Japan) to record contractile responses. Resting tension of the strips was adjusted to
approximately 1 g, and then the strips were left to equilibrate for approximately 1 h. Strips
were pre-contracted with KCl (final concentration: 60 mmol/L) and washed out with Krebs-
Henseleit solution twice.

Contractions induced by the endogenous agonist ACh as well as those by CCh were
evaluated to investigate the effect of ASP8302 on cholinergic contraction. After confirming
contraction with 10 μmol/L CCh or 30 μmol/L ACh, the effect of ASP8302 on CCh- or ACh-
induced concentration-dependent contraction was evaluated. Concentration- response curves
for CCh and ACh were constructed six times by repeating treatments with CCh or ACh (final
0.003 μmol/L to 30 μmol/L), with a washout time interval of 1 h between each concentration.
ASP8302 (final 1 and 10 μmol/L) was added 15 min before the addition of CCh or ACh.
Vehicle for ASP8302 (DMSO final 0.1%) was applied as a time-matched control. Contraction
of each strip was expressed as the % of that induced by 10 μmol/L CCh or 30 μmol/L ACh.
Data analysis

The results are presented as mean ± standard error of the mean (SEM). Half maximal effective concentration (EC$_{50}$), and the maximum efficacy (E$_{max}$) value of the CRC were calculated by Sigmoid-E$_{max}$ non-linear regression analysis and expressed as the geometric mean and 95% confidence interval (CI) of 3 or 4 independent experiments. The positive allosteric modulating activity of ASP8302 was expressed by a fold-shift of CCh-CRC calculated by dividing the EC$_{50}$ value of CCh-CRC in the absence of ASP8302 by the EC$_{50}$ value of CCh-CRC in the presence of ASP8302. Statistical significance analyses were performed using SAS software (version 9, SAS Institute Japan, Tokyo, Japan) or GraphPad Prism (version 5 to 8, GraphPad Software, Inc., San Diego, CA, USA). In the tissue contraction study, KCl-induced contractions with ASP8302 was compared with control using Dunnett’s multiple comparisons test, and a probability value of less than 0.05 was considered significant.
Results

Positive allosteric modulating activities of ASP8302 on human muscarinic receptors

We examined the PAM property and subtype selectivity of ASP8302 by assessing the effect on the CRC for CCh-induced Ca\(^{2+}\) mobilization in cells expressing human muscarinic receptors. ASP8302 (0.1, 0.3, and 1 \(\mu\)mol/L) enhanced the response induced by CCh (9.8 nmol/L) in a concentration-dependent manner, while ASP8302 per se, did not produce any change in intracellular Ca\(^{2+}\) concentration ([Ca\(^{2+}\)]\(_i\)) up to 10 \(\mu\)mol/L. Representative traces of changes in [Ca\(^{2+}\)]\(_i\) in the cells expressing human M\(_3\) receptors are shown in Figure 2. ASP8302 shifted the CCh-CRC to the left (low-concentration side) without affecting the \(E_{\text{max}}\) (Fig. 3). The fold-shifts of CCh-CRC induced by ASP8302 at 0.1, 0.3 and 1 \(\mu\)mol/L were 7.9, 20.1, and 51.2, respectively (Table 1). In the cells expressing human M\(_3\) receptors, ASP8302 also shifted the CCh-CRC to the left without affecting the \(E_{\text{max}}\), with fold-shifts of 9.5, 22.7, and 79.6 at 0.1, 0.3, and 1 \(\mu\)mol/L, respectively (Table 1). In the cells expressing human muscarinic M\(_1\), M\(_2\), and M\(_4\) receptors, the fold-shifts of CCh-CRC induced by ASP8302 at 10 \(\mu\)mol/L were 0.5, 0.4 and 1.2, respectively (Table 1). In addition, ASP8302 (10 \(\mu\)mol/L) did not show significant (>50%) inhibition on radioligand binding to any of 57 receptors, ion channels and transporters tested, or on the reactions of three enzymes (shown in the supplementary data).

Enhancement of binding affinity of acetylcholine and human M\(_3\) receptor by ASP8302

To confirm that ASP8302 binds to a site distinct from the orthosteric ligand binding site recognized by the endogenous ligand ACh, a competitive binding experiment was performed using \([\text{3}H]\)NMS.

Acetylcholine and atropine displaced the binding of \([\text{3}H]\)NMS in a concentration-dependent manner with \(IC_{50}\) values of 51 \(\mu\)mol/L and 6.2 nmol/L, respectively. In contrast,
ASP8302 did not displace \[^3\text{H}\text{NMS}\] binding up to a concentration of 10 \(\mu\text{mol/L}\) (Fig. 4), indicating no interaction on the orthosteric binding site. On the other hand, ASP8302 (1, 3, and 10 \(\mu\text{mol/L}\)) concentration-dependently shifted the ACh concentration-inhibition curves for \[^3\text{H}\text{NMS}\] binding to the left (Fig. 5), indicating increased affinity between the receptor and ACh.

Determination of the residue in the human M\(_3\) receptor required for the PAM activity of ASP8302

We investigated the principal site in human M\(_3\) receptors required for the PAM activity of ASP8302 by assessing the effect of this compound on CRC for CCh-induced \(\text{Ca}^{2+}\) mobilization using cells expressing the M\(_3\) receptors with various gene sequences transformed. Because ASP8302 did not have PAM activity on M\(_1\) receptors (Table 1), we first located the key area in the M\(_3\) receptor using M\(_3\)-M\(_1\) chimeric receptors with various residues of M\(_3\) receptors replaced with the corresponding parts of M\(_1\) receptors (Fig. 6).

As shown in Table 2, ASP8302 (10 \(\mu\text{mol/L}\)) did not show PAM activity in either condition where we used the cells expressing the C-terminal side of M\(_3\) receptors replaced with those of M\(_1\) receptors from the amino acid next to serine (Ser\(_{109}\)) (sequence numbering as human M\(_3\) receptors) in TM2 (M\(_3\)_TM2_M\(_1\) in Fig. 6) and those of M\(_3\) receptors replaced with M\(_1\) receptors from the amino acid next to alanine (Ala\(_{201}\)) in TM4 (M\(_3\)_TM4_M\(_1\)). On the other hand, PAM activity was retained in the cells in which the residues of M\(_3\) receptors next to isoleucine (Ile\(_{249}\)) in TM5 were replaced with those of M\(_1\) receptors (M\(_3\)_TM5_M\(_1\)). These results suggested that the principal site required for M\(_3\) PAM might exist between Ala\(_{201}\) and Ile\(_{249}\) of M\(_3\) receptors. To further verify the position of the principal site contributing to the PAM activity of ASP8302, we tried to evaluate the effect of ASP8302 using the cells in which the sequence of the N-terminal side was changed. When the N-terminal side until Ile\(_{249}\) in TM 5 was replaced with M\(_1\) receptors (M\(_1\)_TM5_M\(_3\)), ASP8302
did not show PAM activity. The PAM activity of this compound was, however, observed when the amino acid sequences of the \(\text{M}_1 \) receptor were replaced with those of \(\text{M}_3 \) receptor until Ala\(^{201} \) in TM4 (\(\text{M}_1_\text{TM4}_\text{M}_3 \)). Taken together, the principal amino acids are considered to exist in the domain from Pro\(^{202} \) to Ile\(^{249} \), a span which includes the ECL2 and its flanking regions in TM4 and TM5.

We next examined the influence of the region from Pro\(^{217} \) to Phe\(^{222} \) on the PAM activity of ASP8302, which was reported to play an important role in the corresponding residue of \(\text{M}_2 \) receptors (Huang et al., 2005). In cells in which these six amino acids of the \(\text{M}_3 \) receptor were replaced with the corresponding sequences of the \(\text{M}_1 \) receptor (Leu\(^{174} \) to Tyr\(^{179} \), \(\text{M}_3_\text{ECL2}_\text{M}_1 \)), ASP8302 (10 \(\mu \text{mol/L} \)) showed PAM activity (Table 2). By contrast, PAM activity of this compound was not observed in cells expressing \(\text{M}_3 \) receptors of which all other parts except for Pro\(^{217} \) to Phe\(^{222} \) were replaced with the sequences of \(\text{M}_1 \) receptor (\(\text{M}_1_\text{ECL2}_\text{M}_3 \)) (Table 2). In addition, ASP8302 did not show PAM activity in cells for which valine (Val)\(^{194} \) to isoleucine (Ile)\(^{246} \) of the \(\text{M}_3 \) receptor was replaced with the equivalent sequence of the \(\text{M}_1 \) receptor (Leu\(^{151} \) to Val\(^{203} \)) (\(\text{M}_3_\text{TM4}_\text{M}_1_\text{TM5}_\text{M}_3 \)) (Table 2). On the other hand, the PAM effect of ASP8302 was maintained in cells expressing \(\text{M}_3 \) receptors retaining Val\(^{194} \) to Ile\(^{246} \) together with replacement of the rest of the sequences with those of \(\text{M}_1 \) receptor (\(\text{M}_1_\text{TM4}_\text{M}_3_\text{TM5}_\text{M}_1 \)) (Table 2). These results indicate that the critical residue required for the PAM activity of ASP8302 exists in the residues from Pro\(^{202} \) to Val\(^{216} \) and/or from Ile\(^{223} \) to Ile\(^{246} \) located in or adjacent to ECL2.

Identification of Threonine 230 as the principal amino acid for the expression of the PAM activity of ASP8302

To identify the principal amino acids in the residues from Pro\(^{202} \) to Val\(^{216} \) and from Ile\(^{223} \) to Ile\(^{246} \), we introduced mutations into four amino acids that differ between human \(\text{M}_1 \) and \(\text{M}_3 \) receptors in cells used to evaluate the PAM activity of ASP8302. Three of these were...
common between human M_3 and M_5 receptors (Fig. 7). The PAM activity of ASP8302 (10 μmol/L) was not observed when four specific amino acids of M_3 receptors (Phe210, Lys213, Glu228, and Thr230) in cells were replaced with the corresponding amino acids of M_1 receptors (Leu167, Glu170, Gln185, and Ile187) (M_3ECL2_F210L_K213E_E228Q_T230I) (Table 3). Subsequently, we tried to substitute individual amino acids in the cells with alanine. Among the four conditions, the PAM activity of ASP8302 disappeared only in the cells in which Thr230 was replaced with alanine (Table 3).

To confirm the role of Thr230 as a principal amino acid in the PAM activity of ASP8302, we examined the effect of ASP8302 on CRC for CCh-induced Ca$^{2+}$ mobilization in cells expressing the mutant M_1 and M_5 receptors in which the amino acids corresponding to Thr230 (Ile187 of M_1 receptor, Thr192 of M_5 receptor) were substituted into alanine and threonine, respectively. In the mutated M_5 receptor (M_5ECL2_T192A), the PAM activity of ASP8302 was not observed. On the other hand, ASP8302 showed PAM activity under conditions in which Ile187 of the M_1 receptor was replaced with threonine (M_1ECL2_I187T) (Table 3).

Potentiation of ASP8302 on carbamoylcholine chloride (CCh)- and acetylcholine (ACh)-induced contraction of human isolated urinary bladder

To determine whether ASP8302 functionally modulates cholinergic contractions of the bladder smooth muscle in the most physiologically-relevant experimental setting in this study, we investigated the effect of ASP8302 on contractions induced by the endogenous agonist ACh as well as CCh in isolated human bladder smooth muscle strips. As shown in Figure 8, ASP8302 (1 and 10 μmol/L) shifted the CRC of CCh and ACh to the left, that is, to the lower concentration side. ASP8302 at 10 μmol/L shifted the EC$_{50}$ of CCh CRC from 0.44 μmol/L to 0.038 μmol/L, and the EC$_{50}$ of ACh CRC from 0.64 μmol/L to 0.032 μmol/L (Fig. 8 b, c). ASP8302 did not affect either KCl-induced contraction (Fig. 8 d).
Discussion

Recent studies on allosteric modulation of muscarinic receptors have developed various PAMs that may potentially overcome the safety concerns of existing cholinergic agents, such as agonists and choline esterase inhibitors, due to their insufficient subtype selectivity and unnecessary activation of the receptor (Urwyler, 2011). However, only a few PAMs have been reported for M₃ receptors (Bridges et al., 2009; Stahl et al., 2011; Tanaka et al., 2020). This may have limited investigations into the mechanistic details underlying allosteric modulation for M₃ receptors and its advantages over existing cholinergic agents. In the present study, we demonstrated that the novel compound ASP8302 possessed potent PAM activity on the M₃ receptor in receptor binding and intracellular Ca²⁺ mobilization assays. In addition, using mutagenesis approaches we identified Thr²³⁰ as an essential amino acid residue for the PAM activity of ASP8302. Further, we confirmed that ASP8302 augmented the human bladder smooth muscle contraction induced by CCh. To our knowledge, this is the first study to demonstrate that a single amino acid distinct from previously reported allosteric sites (Kruse et al., 2012) plays a critical role in the positive allosteric modulation of M₃ receptor.

In cells expressing M₃ receptors, ASP8302 concentration-dependently shifted the CRC of CCh-induced intracellular Ca²⁺ mobilization to the left (i.e., enhanced efficacy of CCh at lower concentrations). The observed leftward shift by 51.2 times at 1 μmol/L ASP8302 suggests that ASP8302 is more potent than other functionally confirmed M₃ receptor PAMs (no shift with VU0119498 up to 1 μmol/L (Burger et al., 2018) or 10 times shift at 1 μmol/L for Compound 9 (Tanaka et al., 2020)). In addition, ASP8302 produced no change in the Eₘₐₓ of CCh-induced intracellular Ca²⁺ mobilization whereas amiodarone (Stahl et al., 2011) and VU0119498 (Zhu et al., 2019) increased it. These findings demonstrate a unique M₃ PAM profile of ASP8302. ASP8302 (10 μmol/L) had no PAM activities on human
M₁, M₂, or M₄ receptors (Table 1), although ASP8302 did show PAM activity on human M₅ receptors with a similar potency to that on M₃ receptors. Previous studies reported that many known M₃ receptor PAMs had affinity for M₁ receptors (Lazareno et al., 1998; Lazareno et al., 2002) (Stahl and Ellis, 2010) (Bridges et al., 2009) and that classical allosteric ligands like gallamine showed PAM activity on both M₂ and M₃ receptors, although their PAM activity on M₃ receptors was less potent than that on M₂ receptors (Gnagey et al., 1999) (Jakubík and El-Fakahany, 2010), probably due to a difference in the structure of allosteric sites (Dror et al., 2013; Jakubík et al., 2017). Thus, subtype selectivity of PAM activity on human M₃ receptors with ASP8302 over M₁ and M₂ receptors is considered to be a unique attribute of this compound compared to previously known M₃ receptor PAMs. In addition, ASP8302 did not show potent binding affinities or inhibition for various receptors, ion channels, transporters, or enzymatic activities (shown in the supplementary data).

While ASP8302 did not displace the binding of [³H]NMS, ASP8302 shifted the ACh concentration-inhibition curves for [³H]NMS binding concentration-dependently to the left. Although we did not perform the binding study under equilibrium conditions to evaluate the effect on the dissociation of NMS (Jakubík et al., 2017), our results provide evidence that ASP8302 enhances the binding affinity of ACh for human M₃ receptors not by acting on the orthosteric site, but by interacting with a site distinct from the orthosteric site, which is a fundamental feature of a PAM.

The results of cellular studies suggesting that ASP8302 acts on a site possibly homologous between M₃ and M₅ receptors, but presumably different from known allosteric sites led us to determine the key region using a mutagenesis approach. Results using chimeric receptors between M₃ and M₁ at various TMs indicated the importance of ECL2 including some parts of TM4 and TM5. This is not inconsistent with prior findings that the binding site of classical allosteric modulators lies in the space between ECL2 and ECL3 (Jakubík and El-
Fakahany, 2020). Surprisingly, however, substitution of the six amino acids in ECL2 (Pro217 to Phe222) corresponding to the charged and acidic EDGE motif of M\textsubscript{2} receptors, which is known to be important for allosteric ligand binding (Leppik et al., 1994) (Huang et al., 2005) to the relevant part of M\textsubscript{1} receptors (LAGQCY, non-acidic) did not affect the PAM activity of ASP8302. Therefore, we further investigated the importance of the residues around the boundary between TM4 and ECL2 (from Pro202 to Val216) and between ECL2 and TM5 (from Ile223 to Ile246) using site-directed mutagenesis, and identified Thr230 as the critical amino acid for the PAM activity of ASP8302. Previous studies with mutagenesis in M\textsubscript{2} receptors have determined multiple amino acids important for the interaction with allosteric ligands in the ECL2, ECL3, and at the top of TM7 [e.g. Tyr177, Asn419, Trp422, Thr423 (Prilla et al., 2006)] (Voigtländer et al., 2003) (May et al., 2007) (Buller et al., 2002) (Huang et al., 2005) (Gnagey et al., 1999)]. A simulation by Dror et al. (Dror et al., 2013) indicated two binding centers for allosteric ligands defined by a pair of aromatic residues (Tyr177 in ECL2 and Trp422 in TM7 at center 1, Tyr80 and Tyr83 in TM2 at center 2), which form cation-\(\pi\) interactions with the ammonium group of allosteric ligands. However, to our knowledge, ASP8302 is the first PAM whose activity is determined by a single non-aromatic amino acid located distinct from known allosteric sites, at least for human M\textsubscript{3} receptors.

The loss- and gain-of-PAM activity of ASP8302 in the Thr230Ala mutant of M\textsubscript{3} receptors and Ile186Thr of M\textsubscript{1} receptors, respectively, strongly suggests that interaction between ASP8302 and Thr230 plays a significant role in enhancing receptor activation. Predictions from a database (Kruse et al., 2012) and structural analysis of the corresponding amino acid (Thr229) in rat M\textsubscript{3} receptors (Kruse et al., 2012) suggest that Thr230 (position 5.37 by Ballesteros and Weinstein numbering system (Ballesteros and Weinstein, 1995)) is in the vicinity of ECL2 and could therefore interact with the extracellular vestibule, to which allosteric ligands bind to. Mutation of Thr229 in rat M\textsubscript{3} receptors is also reported to impair the
activity of the receptor (Schmidt et al., 2003), suggesting the possible involvement of Thr$_{230}$ in the modulation of receptor activation. Although threonine is a non-aromatic hydroxyl amino acid which is polar but non-charged, we consider that atomic-level molecular dynamics differing from the above-mentioned cation-π interactions play an important role in the drug-receptor interaction between ASP8302 and Thr$_{230}$. Structural analysis of the M$_3$ receptor complex with ASP8302 is required to prove its importance in the PAM activity of ASP8302, and to further investigate the role of Thr$_{230}$ in the allosteric regulation of receptor activity.

Our finding on the augmentation of contractions induced by CCh and the endogenous ligand ACh with ASP8302 in isolated human bladder strips supports previous results obtained with muscarinic receptor agonists/antagonists and genetically modified animals that M$_3$ receptors play a key role in modulating bladder smooth muscle contraction (Igawa et al., 2004), although the contribution of other mAChRs such as M$_1$, M$_2$ and M$_4$ receptors may not completely be excluded. Of the two muscarinic receptor subtypes expressed predominantly in bladder smooth muscle, M$_3$ receptors have been considered as the major subtype responsible for producing bladder contraction (Matsui et al., 2000; Chess-Williams et al., 2001; Fetscher et al., 2002) whereas more abundantly expressed M$_2$ receptors (Wang et al., 1995; Hegde and Eglen, 1999) indirectly contribute to contraction, e.g. suppression of relaxation via β$_3$-adrenergic receptors (Chess-Williams et al., 2001; Fetscher et al., 2002). However, the insufficient subtype selectivity of pharmacological agents used in past studies have hampered a conclusive decision on the involvement of M$_2$ and/or M$_3$ receptors in the control of bladder contractility. Thus, further studies are needed to clarify the potential involvement of M$_2$ receptor in the regulation of bladder smooth muscle contraction using an M$_2$-specific tool, such as the M$_2$-specific PAM. In addition, the prejunctional excitatory M$_1$ and inhibitory M$_4$ subtypes are also reportedly expressed in the bladder. It has been shown that M$_1$ and M$_4$ receptors facilitate and inhibit ACh release from nerve terminals, respectively (Giglio and
As ASP8302 showed clear selectivity over M₁ and M₄ receptors (Table 1), it is unlikely that M₁ and M₄ receptors are significantly involved in ASP8302-induced enhancement of CCh-induced bladder smooth muscle contraction. Furthermore, although ASP8302 has PAM activity on M₅ receptors, it is unlikely that this effect on M₅ receptors is associated with the enhancement of contraction, given that no study has indicated significant expression of M₅ receptors in bladder smooth muscle or its contribution to contraction (Chess-Williams et al., 2001).

The potentiation of CCh and ACh demonstrated by an approximately 10-fold shift in EC₅₀ also suggests the application of ASP8302 in the treatment of diseases caused by impairment of M₃ receptor-mediated bladder smooth muscle contraction. Insufficient bladder contractility can cause difficulties in urine voiding and complications caused by incomplete bladder emptying, known as underactive bladder (Miyazato et al., 2013). ASP8302 may be useful in overcoming these conditions by enhancing bladder contraction by potentiating the activation of M₃ receptors during micturition only, albeit that further studies in animal disease models are required. Another consideration for the clinical use of ASP8302 is the need for selectivity over M₅ receptors, because M₅ receptors are implicated in physiological processes related to Alzheimer's disease, schizophrenia, and addiction (Bender et al., 2019). Further studies are required to address the effect of positive allosteric modulation of the M₅ receptor on physiological and pathophysiological functions. Identification of selective M₅ receptor modulators may suggest the possibility of chemical modification of ASP8302 to gain selectivity over M₅ receptors (Gentry et al., 2010), and thereby help us address these questions.

In conclusion, our pharmacological characterization of the novel human M₃ receptor PAM ASP8302 demonstrates its potency, selectivity, and augmentation of bladder contractility. These findings suggest that this agent has the potential to enhance M₃-mediated...
functional responses. In particular, the finding of Thr230 as a novel amino acid involved in the allostERIC modulation of M\textsubscript{3} receptors provides significant insight into further research of the mechanism of allostERIC modulation of M\textsubscript{3} and other muscarinic receptors.

Acknowledgements

We are grateful to Dr. Tomoko Maki and Dr. Ken Lee (Graduate School of Medical Sciences, Kyushu University) for the preparation of human bladder tissues. We would like to thank Dr. Takanori Koike (Drug Discovery Research, Astellas Pharma Inc.) for the synthesis of ASP8302.

Conflict of Interest

Okimoto, Ino, Ishizu, Takamatsu, Sakamoto, Yuyama, Fuji, Someya, Ohtake, Masuda, and Takeda are employees of Astellas Pharma Inc. This research was financially supported by Astellas Pharma Inc.

Authorship Contributions

Participated in research design: Okimoto, Ino, Ishizu, Takamatsu, Yuyama, Fuji, Someya, Ohtake, Ishigami, Masuda, Takeda, Kajioka, and Yoshimura.

Conducted experiments: Okimoto, Ino, Ishizu, and Takamatsu.

Performed data analysis: Okimoto, Ishizu, and Takamatsu.

Wrote or contributed to the writing of the manuscript: Okimoto, Ishizu, Sakamoto, Ohtake, Masuda, and Takeda.
References

JPET-AR-2021-000709

Footnotes

Authors are employees of the Astellas group.

This work received no external funding.

Address reprint requests to:

Risa Okimoto

21 Miyukigaoka, Tsukuba, Ibaraki, 3058585

E-mail: risa.okimoto@astellas.com
Legends for figures

Figure 1. Chemical structure of ASP8302 (3-[(2S)-4-(5-{4-(4-chlorothiophen-2-yl)-5-[(2R)-2-methylpyrrolidin-1-yl]methyl}-1,3-thiazol-2-yl]carbamoyl]pyrazin-2-yl)-2-methylpiperazin-1-yl)propanoic acid)

Figure 2. Representative signal traces of the effect of ASP8302 on carbachol-induced changes in intracellular Ca$^{2+}$ in cells expressing human M$_3$ receptors. Representative traces of fluorometric signals in the absence or presence of ASP8302 (0.1, 0.3 or 1 μmol/L). Control [dimethyl sulfoxide (DMSO), 1%] or ASP8302 was added 10 seconds after the initiation of measurement (red arrow), and carbachol (CCh) (9.8 nmol/L) was added 305 seconds after initiation (blue arrow).

Figure 3. Effects of ASP8302 on carbachol concentration-response curve in CHO-K1 cells expressing human M$_3$ receptor. Carbachol concentration-response curves in CHO-K1 cells expressing human M$_3$ receptor in the absence (DMSO, 1%) or presence of ASP8302 (0.1, 0.3 or 1 μmol/L) (mean ± SEM, n=4). DMSO: dimethyl sulfoxide; CCh: carbamoylcholine chloride.

Figure 4. Competition study of acetylcholine, atropine, and ASP8302 in [3H]N-methylscopolamine binding to human M$_3$ receptor. Competition studies were performed using [3H]N-methylscopolamine (NMS) and membrane fractions expressing human M$_3$ receptor. Each plot is expressed as the mean of two independent experiments, so the error cannot be shown. ACh: acetylcholine.
Figure 5. Inhibition of $[^3H]N$-methylscopolamine binding to human M$_3$ receptor by acetylcholine in the absence or presence of ASP8302. Binding studies were performed using $[^3H]N$-methylscopolamine (NMS) and membrane fractions expressing human M$_3$ receptor. Each plot is expressed as the mean of two independent experiments, so the error cannot be shown. ACh: acetylcholine.

Figure 6. Composition diagram of the prepared human M$_3$ receptor mutants. N: N-terminus, C: C-terminus, TM: transmembrane, ECL: extracellular loop, WT: wild type, M1: muscarinic M$_1$ receptor, M3: muscarinic M$_3$ receptor. The amino acid sequence number corresponds to the human M$_3$ receptor.

Figure 7. Mutation sites of human muscarinic M$_3$ receptor. a. Position of four mutated amino acids in the human muscarinic M$_3$ receptor. Amino acids are indicated by a single letter. The snake plot diagram is from GPCRdb (Kooistra et al., 2020). The positions of the mutated amino acids are grayed out. ECL: extracellular loop, ICL: intracellular loop. b. The three amino acids common to the M$_3$ and M$_5$ receptors were K213, E228, and T230. Amino acids are indicated by a single letter. L: Leucine; E: Glutamic acid; Q: Glutamine; I: Isoleucine; F: Phenylalanine; K: Lysine; T: Threonine. The amino acid sequence number corresponds to the human M$_3$ receptor.

Figure 8. Potentiating effect of ASP8302 on carbamoylcholine chloride (CCh) and acetylcholine (ACh)-induced contraction of human isolated urinary bladder. a: Representative traces of CCh-induced contraction, b: Effect of ASP8302 on CCh-induced contraction, c: Effect of ASP8302 on ACh-induced contraction, d: Effect of ASP8302 on KCl-induced contraction.
JPET-AR-2021-000709

contraction. Data are shown as the extent (%) of contraction compared to control contraction (precontraction) obtained with the stimulants used in each experiment, and expressed as the mean ± SEM of six specimens for CCh or ACh-induced contraction, and six specimens (two or three strips per specimen) for KCl-induced contraction. KCl-induced contractions with ASP8302 were compared with control using Dunnett’s multiple comparisons test, and a probability value of less than 0.05 was considered significant. N: number of donor specimens, ns: not significant, CCh: carbamoylcholine chloride, ACh: acetylcholine, DMSO: dimethyl sulfoxide
Table 1

Positive allosteric modulating activity of ASP8302 on carbachol-induced intracellular Ca2+ changes in CHO-K1 cells expressing human muscarinic receptors

<table>
<thead>
<tr>
<th>Muscarinic Receptors (N)</th>
<th>Test compound</th>
<th>EC\textsubscript{50} (mol/L)</th>
<th>95% CI (mol/L)</th>
<th>Fold shift</th>
<th>E\textsubscript{max} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M\textsubscript{1} (2)</td>
<td>DMSO</td>
<td>2.7E-07</td>
<td>ND</td>
<td>NA</td>
<td>105.7</td>
</tr>
<tr>
<td></td>
<td>10 μmol/L ASP8302</td>
<td>5.6E-07</td>
<td>ND</td>
<td>0.5</td>
<td>111.3</td>
</tr>
<tr>
<td>M\textsubscript{2} (2)</td>
<td>DMSO</td>
<td>4.7E-07</td>
<td>ND</td>
<td>NA</td>
<td>111.3</td>
</tr>
<tr>
<td></td>
<td>10 μmol/L ASP8302</td>
<td>1.0E-06</td>
<td>ND</td>
<td>0.4</td>
<td>116.2</td>
</tr>
<tr>
<td>M\textsubscript{3} (4)</td>
<td>DMSO</td>
<td>1.2E-07</td>
<td>3.1E-08-4.9E-07</td>
<td>NA</td>
<td>97.0</td>
</tr>
<tr>
<td></td>
<td>0.1 μmol/L ASP8302</td>
<td>1.6E-08</td>
<td>3.3E-09-7.4E-08</td>
<td>7.9</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>0.3 μmol/L ASP8302</td>
<td>6.1E-09</td>
<td>1.3E-09-2.8E-08</td>
<td>20.1</td>
<td>104.3</td>
</tr>
<tr>
<td></td>
<td>1 μmol/L ASP8302</td>
<td>2.4E-09</td>
<td>5.4E-10-1.1E-08</td>
<td>51.2</td>
<td>104.8</td>
</tr>
<tr>
<td>M\textsubscript{4} (2)</td>
<td>DMSO</td>
<td>5.4E-07</td>
<td>ND</td>
<td>NA</td>
<td>104.4</td>
</tr>
<tr>
<td></td>
<td>10 μmol/L ASP8302</td>
<td>4.5E-07</td>
<td>ND</td>
<td>1.2</td>
<td>105.2</td>
</tr>
<tr>
<td>M\textsubscript{5} (3)</td>
<td>DMSO</td>
<td>3.2E-08</td>
<td>2.3E-09-4.3E-07</td>
<td>NA</td>
<td>101.5</td>
</tr>
<tr>
<td></td>
<td>0.1 μmol/L ASP8302</td>
<td>3.3E-09</td>
<td>4.1E-10-2.7E-08</td>
<td>9.5</td>
<td>99.2</td>
</tr>
<tr>
<td></td>
<td>0.3 μmol/L ASP8302</td>
<td>1.4E-09</td>
<td>1.8E-10-1.1E-08</td>
<td>22.7</td>
<td>94.8</td>
</tr>
<tr>
<td></td>
<td>1 μmol/L ASP8302</td>
<td>4.0E-10</td>
<td>5.8E-11-2.7E-09</td>
<td>79.6</td>
<td>93.1</td>
</tr>
</tbody>
</table>

EC\textsubscript{50} and E\textsubscript{max} values for the carbachol concentration-response curve (CRC) were calculated by Sigmoid-E\textsubscript{max} non-linear regression analysis. EC\textsubscript{50} values are expressed as the geometric mean and 95% confidence interval (CI) of three or four independent experiments. Each E\textsubscript{max} value is expressed as the arithmetic mean. The fold-shift values were calculated by dividing the EC\textsubscript{50} value of carbachol CRC in the absence of ASP8302 by those in the presence of ASP8302.

DMSO: dimethyl sulfoxide; E\textsubscript{max}: maximum efficacy; EC\textsubscript{50}: half-maximal effective concentration; N: number of trials; NA: not applicable, ND: not done.
Table 2

Positive allosteric modulating activity of ASP8302 on carbachol-induced intracellular Ca$^{2+}$ changes in CHO-K1 cells expressing human wild type and mutated muscarinic receptors

a. Wild type

<table>
<thead>
<tr>
<th>Subtype (N)</th>
<th>Test compound</th>
<th>EC$_{50}$ (mol/L)</th>
<th>95% CI (mol/L)</th>
<th>Fold shift</th>
</tr>
</thead>
<tbody>
<tr>
<td>M3 (3)</td>
<td>DMSO</td>
<td>2.4E-07</td>
<td>1.5E-07-3.9E-07</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>10 μmol/L ASP8302</td>
<td>1.1E-09</td>
<td>5.2E-10-2.3E-09</td>
<td>218.2</td>
</tr>
<tr>
<td>M1 (3)</td>
<td>DMSO</td>
<td>4.2E-08</td>
<td>1.4E-08-1.3E-07</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>10 μmol/L ASP8302</td>
<td>5.4E-08</td>
<td>2.6E-08-1.1E-07</td>
<td>0.8</td>
</tr>
</tbody>
</table>

b. Chimeric receptors

<table>
<thead>
<tr>
<th>Construct (N)</th>
<th>Test compound</th>
<th>EC$_{50}$ (mol/L)</th>
<th>95% CI (mol/L)</th>
<th>Fold shift</th>
</tr>
</thead>
<tbody>
<tr>
<td>M3_TM2_M1 (3)</td>
<td>DMSO</td>
<td>2.5E-08</td>
<td>1.7E-08-3.6E-08</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>10 μmol/L ASP8302</td>
<td>3.5E-08</td>
<td>1.4E-08-8.6E-08</td>
<td>0.7</td>
</tr>
<tr>
<td>M3_TM4_M1 (2)</td>
<td>DMSO</td>
<td>1.7E-06</td>
<td>ND</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>10 μmol/L ASP8302</td>
<td>3.1E-06</td>
<td>ND</td>
<td>0.5</td>
</tr>
<tr>
<td>M3_TM5_M1 (3)</td>
<td>DMSO</td>
<td>4.3E-08</td>
<td>7.6E-09-2.5E-07</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>10 μmol/L ASP8302</td>
<td>3.0E-10</td>
<td>4.4E-11-2.0E-09</td>
<td>143.3</td>
</tr>
<tr>
<td>M1_TM5_M3 (3)</td>
<td>DMSO</td>
<td>5.9E-08</td>
<td>8.2E-09-4.3E-07</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>10 μmol/L ASP8302</td>
<td>5.3E-08</td>
<td>1.3E-08-2.2E-07</td>
<td>1.1</td>
</tr>
<tr>
<td>M1_TM4_M3 (3)</td>
<td>DMSO</td>
<td>5.2E-08</td>
<td>1.4E-08-1.9E-07</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>10 μmol/L ASP8302</td>
<td>1.1E-09</td>
<td>4.7E-10-2.7E-09</td>
<td>47.3</td>
</tr>
<tr>
<td>M3_ECL2_M1 (3)</td>
<td>DMSO</td>
<td>1.5E-07</td>
<td>2.7E-08-8.8E-07</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>10 μmol/L ASP8302</td>
<td>1.1E-09</td>
<td>3.5E-10-3.2E-09</td>
<td>136.4</td>
</tr>
<tr>
<td>M1_ECL2_M3 (3)</td>
<td>DMSO</td>
<td>5.8E-08</td>
<td>2.2E-08-1.5E-07</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>10 μmol/L ASP8302</td>
<td>5.5E-08</td>
<td>1.5E-08-2.0E-07</td>
<td>1.1</td>
</tr>
<tr>
<td>M3_TM4_M1_TM5_M3 (3)</td>
<td>DMSO</td>
<td>5.6E-07</td>
<td>1.1E-07-2.8E-06</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>10 μmol/L ASP8302</td>
<td>3.8E-07</td>
<td>9.0E-08-1.6E-06</td>
<td>1.5</td>
</tr>
<tr>
<td>M1_TM4_M3_TM5_M1 (3)</td>
<td>DMSO</td>
<td>6.4E-08</td>
<td>3.5E-08-1.2E-07</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>10 μmol/L ASP8302</td>
<td>1.1E-09</td>
<td>1.0E-10-1.2E-08</td>
<td>58.2</td>
</tr>
</tbody>
</table>

EC$_{50}$ values for the carbachol concentration-response curve (CRC) were calculated by Sigmoid-E_{max} non-linear regression analysis. EC$_{50}$ values are expressed as the geometric mean and 95% confidence interval (CI) of three or four independent experiments. The fold-shift values were calculated by dividing the EC$_{50}$ value of carbachol concentration-response curve in the absence of ASP8302 by those in the presence of ASP8302.
TM: transmembrane; ECL: extracellular loop; M1: muscarinic M₁ receptor; M3: muscarinic M₃ receptor; DMSO: dimethyl sulfoxide; EC₅₀: half-maximal effective concentration; Eₘₙₐₓ: maximum efficacy; N: number of trials; NA: not applicable; ND: not done
Table 3

Positive allosteric modulating activity of ASP8302 on carbachol-induced intracellular Ca2+ changes in CHO-K1 cells expressing human mutagenetic muscarinic receptors (four amino acid mutations)

<table>
<thead>
<tr>
<th>Chimeric receptor (N)</th>
<th>Test compound</th>
<th>(EC_{50}) (mol/L)</th>
<th>95% CI (mol/L)</th>
<th>Fold shift</th>
</tr>
</thead>
<tbody>
<tr>
<td>M3_ECL2_F210L_K213E_E228Q_T230I (2)</td>
<td>DMSO</td>
<td>3.7E-07</td>
<td>ND</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>10 (\mu)mol/L ASP8302</td>
<td>3.3E-07</td>
<td>ND</td>
<td>1.1</td>
</tr>
<tr>
<td>M3_ECL2_F210A (3)</td>
<td>DMSO</td>
<td>1.4E-07</td>
<td>3.5E-08-5.9E-07</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>10 (\mu)mol/L ASP8302</td>
<td>9.4E-10</td>
<td>5.3E-10-1.7E-09</td>
<td>148.9</td>
</tr>
<tr>
<td>M3_ECL2_K213A (3)</td>
<td>DMSO</td>
<td>3.4E-07</td>
<td>1.8E-07-6.3E-07</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>10 (\mu)mol/L ASP8302</td>
<td>2.6E-09</td>
<td>7.2E-10-9.5E-09</td>
<td>130.8</td>
</tr>
<tr>
<td>M3_ECL2_E228A (3)</td>
<td>DMSO</td>
<td>3.0E-07</td>
<td>1.2E-07-8.0E-07</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>10 (\mu)mol/L ASP8302</td>
<td>1.4E-09</td>
<td>1.2E-09-1.7E-09</td>
<td>214.3</td>
</tr>
<tr>
<td>M3_ECL2_T230A (3)</td>
<td>DMSO</td>
<td>3.3E-07</td>
<td>1.5E-07-7.6E-07</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>10 (\mu)mol/L ASP8302</td>
<td>1.1E-07</td>
<td>6.1E-08-1.9E-07</td>
<td>3.0</td>
</tr>
<tr>
<td>M1_ECL2_I187T (3)</td>
<td>DMSO</td>
<td>8.6E-08</td>
<td>2.5E-08-2.9E-07</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>10 (\mu)mol/L ASP8302</td>
<td>3.3E-09</td>
<td>1.7E-09-6.2E-09</td>
<td>26.1</td>
</tr>
<tr>
<td>M5_ECL2_T192A (3)</td>
<td>DMSO</td>
<td>2.9E-07</td>
<td>4.4E-08-2.0E-06</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>10 (\mu)mol/L ASP8302</td>
<td>8.1E-08</td>
<td>2.3E-08-2.8E-07</td>
<td>3.6</td>
</tr>
</tbody>
</table>

\(EC_{50} \) values for the carbachol concentration-response curve (CRC) were calculated by Sigmoid-\(E_{\text{max}} \) non-linear regression analysis. \(EC_{50} \) values are expressed as the geometric mean and 95% confidence interval (CI) of three or four independent experiments. The fold-shift values were calculated by dividing the \(EC_{50} \) value of carbachol CRC in the absence of ASP8302 by those in the presence of ASP8302.

ECL: extracellular loop; M1: muscarinic M\textsubscript{1} receptor; M3: muscarinic M\textsubscript{3} receptor; M5: muscarinic M\textsubscript{5} receptor; DMSO: dimethyl sulfoxide; \(EC_{50} \): half-maximal effective concentration; \(E_{\text{max}} \): maximum efficacy; N: number of trials; NA: not applicable; ND: not done
Figure 1
Figure 2
Figure 3

![Graph showing the change in intracellular Ca²⁺ mobilization (%)]

- 1 µmol/L ASP8302
- 0.3 µmol/L ASP8302
- 0.1 µmol/L ASP8302
- DMSO

Log [CCh], mol/L

Change in intracellular Ca²⁺ mobilization (%)

-12 -11 -10 -9 -8 -7 -6 -5 -4
Figure 4

![Graph showing specific binding as a function of log concentration for ASP8302, ACh, and Atropine.](image-url)
Figure 5

![Graph showing specific binding as a function of log [ACh], mol/L.]

Legend:
- ACh + DMSO
- ACh + 1 μmol/L ASP8302
- ACh + 3 μmol/L ASP8302
- ACh + 10 μmol/L ASP8302
Figure 6
Figure 7

a.

b.

<table>
<thead>
<tr>
<th>Receptor</th>
<th>Amino acid sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>M₁</td>
<td>L E Q I</td>
</tr>
<tr>
<td>M₃</td>
<td>F K E T</td>
</tr>
<tr>
<td>M₅</td>
<td>L K E T</td>
</tr>
</tbody>
</table>
Figure 8

a.

![Graph showing Agonist concentration vs. % of pre contraction for control and ASP8302 treatments.](image)

b. and c. Graphs showing % of pre contraction by 10 μmol/L CCh and 30 μmol/L ACh for DMSO and ASP8302 treatments, respectively.
This article has not been copyedited and formatted. The final version may differ from this version.