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Abstract  

We have created a novel glutathione S-transferase Pi 1 (gstp1) knockout (KO) zebrafish model 

and used it for comparative analyses of redox homeostasis, response to drugs that cause 

endoplasmic reticulum (ER) stress and induce the unfolded protein response (UPR). Under basal 

conditions, gstp1 KO larvae had higher expression of antioxidant nuclear factor erythroid 2–

related factor 2 (Nrf2) accompanied by a more reduced larval environment and a status consistent 

with reductive stress. Compared to wild type (WT), various UPR markers were decreased in KO 

larvae, but treatment with drugs that induce ER stress caused greater toxicities and increased 

expression of Nrf2 and UPR markers in KO; tunicamycin (TuM) and 02-{2,4-dinitro-5-[4-(N-

methylamino) benzoyloxy] phenyl} 1-(N,N-dimethylamino) diazen-1-ium-1,2-diolate (PABA/NO) 

activated IRE1/XBP1 pathways, while thapsigargin (ThG) caused greater activation of 

PERK/ATF4/CHOP pathways. These results suggest that this teleost model is useful in predicting 

how GSTP regulates organismal management of oxidative/reductive stress and is a determinant 

of response to drug-induced ER stress and the UPR. 

Significance Statement 

A new zebrafish model has been created to study the importance of Gstp1 in development, redox 

homeostasis and response to drugs that enact cytotoxicity through ER-stress and induction of the 

UPR.  
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Introduction 

Zebrafish have been used as surrogate species for predicting pharmacologically or toxicologically 

active compounds in man (Zon and Peterson, 2005). More than 50% of the enzymes involved in 

drug metabolism are conserved between zebrafish and humans (Li et al., 2010). Glutathione S-

transferases (GST/GST (human protein/gene); Gst/gst (zebrafish protein/gene)) are a 

multifunctional family of enzymes with roles in phase II xenobiotic metabolism, ligand binding, 

kinase regulation and protein thiolase activities (Board and Menon, 2013), where substrate 

interactions involve a glutathione (GSH; G-site) and a substrate-binding site (H-site). 

Evolutionarily, GSTs are conserved throughout the plant and animal kingdoms, with three distinct 

sub-families, cytosolic, mitochondrial and microsomal (Frova, 2006), with cytosolic further divided 

into seven distinct classes, alpha, mu, omega, pi, theta, zeta, and sigma in mammals, or rho in 

teleost fish (Glisic et al., 2015). GST enzymatic activity is detected during the first 4 h of zebrafish 

development as well as in all adult organs. Two zebrafish gstp genes, gstp1 and gstp2 are 

syntenic with their human orthologues, but in zebrafish, gstp1 is predominantly expressed during 

development, while gstp2 is a minor constituent (Glisic et al., 2015). At the amino acid level, Gstp1 

shares ~60% identity with Gstp1/GSTP1 from mouse/human and is perhaps the most versatile of 

the GST family, catalyzing GSH conjugation with select electrophilic chemicals, the forward 

reaction of protein S-glutathionylation (Townsend et al., 2009a; Zhang et al., 2018) and through 

protein–protein interactions, regulating c-Jun N-terminal kinase (JNK) mitogen-activated protein 

kinase (MAPK) signaling pathways (Okamura et al., 2015). GSTP has been found to be over-

expressed in a range of human tumors (Howie et al., 1990) and mice lacking gstp1/2 are more 

sensitive to chemicals that impact redox homeostasis (Henderson and Wolf, 2011) and also 

develop phenotypes of augmented immunity and increased myeloproliferation (Gate et al., 2004; 

Zhang et al., 2014). In addition to these intrinsic phenotypes, we have previously shown that 

GSTP contributes to redox regulation in the oxidative environment of the ER and that in turn, can 
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influence the UPR (Ye et al., 2017). This is relevant since certain drugs induce cytotoxicity through 

UPR induction with concomitant imbalance in redox homeostasis (Saito et al., 2009). The 

maintenance of redox homeostasis is crucial for the fate of vertebrates. Excess reactive oxygen 

species (ROS) or reducing equivalents can directly influence normal development and lead to 

pathologies (Grek and Townsend, 2014; Perez-Torres et al., 2017). As an inverse imbalance of 

oxidative stress, reductive stress (an excess of reducing equivalents), has emerged as an 

essential physiological parameter in both pro- and eukaryotes (Rajasekaran et al., 2007; Mavi et 

al., 2020). While the condition is characterized by elevated intracellular reducing equivalents, 

conversely by impacting mitochondrial functions and/or accumulating misfolding proteins in the 

ER (Peris et al., 2019; Wu et al., 2019), it can cause release of ROS, which can then activate Nrf2 

(Guang et al., 2019). 

In the present study, we used CRISPR gene editing to create gstp1 KO zebrafish embryo/larvae, 

characterizing basal parameters of redox homeostasis and measured their comparative 

sensitivity to ER-stress and UPR-inducing drugs. Our data show that while gstp1 KO fish develop 

normally they demonstrate increased sensitivities to drug-induced oxidative stress and ER stress. 

Moreover, endogenous baseline components of redox homeostasis were increased in gstp1 KO 

larvae while the baseline expression of UPR proteins decreased. In this scenario, we reason that 

the absence of gstp1 may enhance reductive stress, thereby influencing drug responses. 
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Materials and Methods 

Zebrafish husbandry        

Zebrafish (Danio rerio) were maintained at 28.5°C in a recirculating, filtered water system 

(Techiplast, USA) in reverse-osmosis-purified water supplemented with Instant Ocean salts (60 

mg/L) on a 14-h light: 10-h dark lighting cycle and fed regular food twice per day (10 mg/fish/meal, 

the tested amount of food that can be completely consumed within 10 min). All methods for this 

article were performed in accordance with relevant guidelines and regulations of the NIH Guide 

for the Care and Use of Laboratory Animals and Medical University of South Carolina’s Division 

of laboratory animal resources (DLAR) (Park and Kim, 2019). All experiments on zebrafish were 

approved by the Institutional Animal Care and Use Committee (IACUC) of the Medical University 

of South Carolina (IACUC protocol #3364).  

Generation of gstp1 KO zebrafish 

Mix of guide RNA targeting exon3 in gstp1 (GGACAAAGACCAGCAGCTGA, 50 ng/µL) and Cas9 

RNA (100 ng/µL) was injected to 1-cell stage zebrafish embryos. Injected embryos were raised 

in the facility. F0 fish were outcrossed with wild type zebrafish and progeny with indels were 

identified by PCR (35 cycle, 64oC annealing temperature) with Forward (5’-

CCTGGAATCATGTGCTCCCTGCAG-3’) and Reverse (5’-ACAGGTGGCTTTCAAGTCGCCCT-

3’) primers and confirmed by sequencing. In this paper, we used mutant line with 11 bp deletions 

that resulted in premature stop at 33 amino acid loci. 

Zebrafish toxicity tests 

We used 4-day post fertilization (dpf) zebrafish larvae to determine acute toxicity because by this 

point, morphogenesis and the development of functioning primary organ systems is completed. 

In addition, gstp1 expression remains constant throughout the larval stage. Drug concentrations 
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used in the acute toxicity tests are: Tunicamycin (TuM), 0, 2, 4, 6, 8, 10, 12 µM; Thapsigargin 

(ThG), 1, 0.5, 1, 1.5, 2, 2.5, 3 µM; 02-{2,4-dinitro-5-[4-(N-methylamino) benzoyloxy] phenyl} 1-

(N,N-dimethylamino) diazen-1-ium-1,2-diolate (PABA/NO), 0, 2.5, 5, 7.5, 10, 12.5, 15 µM.. Larvae 

with >95% viability were chosen for experiments and randomly distributed into 24-well plates with 

10 larvae per well and varying concentrations of drugs in triplicate wells for 24 hours. Zebrafish 

observations were made directly in the 24-well plate using an inverted dissecting microscope. 

Acute toxicity was further determined based on daily observations of abnormal abdomens, mild 

blood pooling/congestion and bent, short bodies. For the duration of the experiments, dead larvae 

were removed daily from the wells. Numbers of dead zebrafish within 24 hours for each drug 

concentration were recorded and survival rates (%) calculated. GraphPad Prism 5 (log [inhibitor] 

vs normalized response-variable slope nonlinear model) was used to calculate 50% lethal 

concentration (LC50) values for each drug.  

Quantitative polymerase chain reaction (qPCR) 

For the qPCR studies, total RNA was isolated from 20 larvae/group with Trizol® Reagent 

(Invitrogen, Cat. 15596-026). The same amount of RNA was mixed to make pooled RNA as a 

template for complementary DNA synthesis. Oligo-dT primed complementary DNA was prepared 

by using superscript III First-Strand kit (Invitrogen, Cat.18080-051). Real-Time qPCR was 

performed with a Bio-rad, CFX96 Real-time system with 1 cycle of 98°C for 30 s, 45 cycles of 

95°C for 15 s, and 60°C for 30 s using 50 ng cDNA, with 4 pmoles of each gene-specific primer 

per 20 μL reaction (Supplementary Table S1), and SsoAdvanced™ Universal SYBR® Green 

Supermix (Bio-rad, Cat. 172-5274). We used qPCR primers employed in a previous study (Park 

and Kim, 2019), or newly designed and tested. Glyceraldehyde-3-phosphate dehydrogenase 

(gapdh) was used as reference and relative quantification was calculated using double delta Ct 

method. The qPCR was assessed in at least triplicate replicates for each gene.  
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GST activity 

GST activity was performed as previously described (Brautigam et al., 2018). 30 embryos (5 dpf), 

either control or treated with drugs, were collected and transferred to 300 μL of ice-cold 

homogenization buffer followed by gentle sonication on ice for 3×10 s with 10 s cooling in between 

(Fisher Scientific, CL-18). The lysates were centrifuged at 13,000 rpm for 10 min and 

supernatants collected and protein quantified using the BCA assay. The colorimetric GST activity 

assay was performed in a total volume of 100 μL at 22 °C in 0.1 M potassium phosphate buffer 

pH 7.5 with 5 mM GSH and 0.5 mM 1-Chloro-2,4-dinitrobenzene (CDNB), with absorbance once 

every 15 sec at 340 nm using a plate reader to obtain at least 18 time points. Enzymatic reactions 

were started by adding 50 µg homogenate and non-enzymatic background reaction rates were 

subtracted. 

GSH and GSH disulfide (GSSG) levels 

GSH and GSSG levels were measured as previously described (Park et al., 2019a). 30 embryos 

(5 dpf), either control or treated with drugs, were homogenized on ice in 300 µL of homogenization 

buffer. Protein determinations and protein concentrations were adjusted to 1 mg/mL, and then 

lysates were divided to two parts (for total thiol and GSH). One part was used to measure total 

thiol; the other part was subject to sulfosalicylic acid cell extraction (final 0.6%) to lyse the cells, 

placed at -80°C to freeze and thawed and centrifuged at 4000 g for 5 min to precipitate protein. 

The supernatants were kept for measuring reduced GSH; supernatants were neutralized 

(triethanolamine to the supernatant (1:16 ratio) to pH ~7. 2.5 μg of total thiol lysate or reduced 

GSH supernatant (volume to 10 μL) were added to thiol fluorescent probe IV (final 5 μM in PBS) 

and shaken for 15 min before reading fluorescent intensities at Ex/Em 400/465 nm. The 

concentration of thiol was quantified using GSH standards. Protein thiol can be measured by total 

thiol (reduced GSH + protein thiol) subtract by reduced GSH. For measuring GSSG, the 
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supernatant was incubated with the reduction system containing NADPH and glutathione 

reductase at 37 °C for 20 min. GSSG was calculated based on the results from reduced GSH and 

total thiol; the ratio of GSH/GSSG =	 ["#$]
(['()*+	)-.(+]/["#$])/2

. 

Intracellular ROS 

Intracellular ROS was measured as previously described (Park et al., 2019b). 30 embryos (5 dpf) 

either control or drug treated were homogenized on ice in 300 µL of homogenization buffer. 

Protein concentrations were adjusted to 1 mg/mL and 25 μL transferred to 96-well plates suitable 

for fluorescence measurements. Fluorescence was measured at 480 nm excitation/530 nm 

emission. Details were essentially according to the manufacturer’s instructions (Cell Biolabs, San 

Diego, CA). Each sample, including unknowns and standards, were assayed in triplicate. 

Immunoblotting 

Immunoblotting was performed as previously described (Zhang et al., 2019). 30 embryos (5 dpf) 

either control or treated with drugs, were collected and transferred to 300 μL of ice-cold 

homogenization buffer followed by gentle sonication on ice for 3×10 s with 10 s cooling in 

between. The lysate was centrifuged at 16000 g for 10 min, supernatant collected, and protein 

quantified using the BCA assay. Equal amounts (60 μg) of protein were electrophoretically 

separated by SDS PAGE (Bio-Rad) and transferred onto low fluorescent polyvinylidene fluoride 

membranes (Millipore) by the Trans-Blot Turbo Transfer System (Bio-Rad). PVDF was incubated 

in the Odyssey blocking buffer (LI-COR) for 1 hour to reduce non-specific binding and then probed 

with appropriate primary antibodies at 4°C overnight. Immunoblots were then developed with 

infrared (IR) fluorescence IRDye secondary antibodies (LI-COR) at a dilution of 1:15,000, imaged 

with a 2-channel (red and green) IR fluorescent Odyssey CLx imaging system (LI-COR) and 

quantified with ImageJ software (FIJI). 
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Statistical analysis 

All measurements were collected from at least 3 independent experiments. Statistical analysis 

was performed using GraphPad Prism 6.0 and Microsoft Excel. Significant differences were 

determined using 2 tailed t tests and one-way analysis of variance (ANOVA) followed by Newman-

Keuls as a post-test. 
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Results 

Zebrafish contain two homologs of human GSTP1 

The annotated zebrafish genome (GRCz11, www.ensembl.org) confirmed that gstp exists as two 

genes, gstp1 and gstp2 that share high amino acid identities (87%), each located on chromosome 

14. These two isoforms (NM_131734.3, gstp1; and NM_001020513.1, gstp2) share ~60% identity 

at the amino acid level with the human homologue GSTP1, found on chromosome 11 

(Supplemental Fig. S1). During embryo development, gstp1 is expressed in all organs, while 

gstp2 is below the levels of standard detection. Gstp1 is also the most prevalent and abundant of 

the zebrafish GST isozymes. 

Generation and characterization of gstp1 mutant zebrafish. 

CRISPR/Cas9 targeting gstp1 caused an 11 bp deletion in exon 3 of gstp1, which led to a stop 

codon at the 33 amino acid locus (Fig. 1A). Loss of functional gstp1 did not alter the gross 

morphology of either embryos or larvae (Supplemental Fig. S2A). There were no obvious defects 

during embryogenesis, hatching or early adult growth, with normal survival and fecundity, 

circumstances similar to gstp1/2 KO mice (Henderson et al., 1998). Since gstp1/2 KO mice have 

hematopoietic changes, we performed in situ hybridization against globin, a marker for 

erythrocytes, revealing no significant changes in the number of red blood cells in gstp1 KO 

embryos (Supplemental Fig. S2B). Expression of gstp1 remains constant from hatching until the 

late larval stages, so to measure any functional consequences of the KO, 4 dpf larvae of each 

genotype were assessed for expression of the gstp gene and protein and enzyme activity. Gene 

and protein expression were absent in the KO larvae, which also showed lower GST activity levels 

(Fig. 1B-D), where residual CDNB activity will be a consequence of the other GST isozymes.  

Drug sensitivities in WT and gstp1 KO larvae. 
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Larvae were exposed to three drugs known to cause ER stress, albeit by distinct mechanisms, 

TuM, ThG and PABA/NO. Lethality curves are presented in Figure 2. 4 dpf from WT and gstp1 

KO larvae were used to ascertain maximum tolerable concentration (MTC) of the drugs. These 

values were 10 μM (TuM), 2.5 μM (ThG) and 12.5 μM (PABA/NO). For subsequent experiments, 

concentrations decreasing geometrically from the MTC were used and the LC50 values shown in 

Table 1. Despite the differences in drug administration conditions, these values are comparable 

with those for gstp1/2 KO cells and mice, and phosphomannomutase 2 (PMM2) mutation 

zebrafish larvae (Table 1) (Ye et al., 2017; Mukaigasa et al., 2018; Cheng et al., 2019; Liu et al., 

2019; Xia et al., 2020). Overall, the data showed that deletion of gstp1 enhances the cytotoxic 

effects of TuM, ThG or PABA/NO. 

Malformation caused by drugs in WT and gstp1 KO larvae. 

Using bright-field microscopy, we identified no apparent differences in development between WT 

and KO early larvae (Fig. 3A). Following 16-h drug treatments, the majority of the KO larvae 

showed significant pericardial edema and curvature of spine and tail (ThG); pericardial edema 

and yolk sac edema (PABA/NO). However, in WT larvae these effects were absent or mild in 

nature (Fig. 3A&B). Following 24-h treatments, excess malformation caused by ThG and 

PABA/NO occurred in a time dependent manner, the effects in WT larvae remained less 

substantial than in KO (Fig. 3D&E). Distinct from the other two drugs, TuM caused no 

malformations before 24 h, at which time, pericardial edema was more pronounced in KO than 

WT larvae (Fig. 3A&B; D&E). However, overall body lengths were unaffected by any of the drugs 

(Fig. 3C&F). Thus, at most of the treatment time points, TuM had a diminished impact on ratios 

of abnormal vs normal development features compared to either ThG or PABA/NO. 

Impact of gstp1 KO phenotype on redox pathways.  
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We reasoned that basic parameters of GSH homeostasis were likely to be altered by GSTP 

deletion. As such, we compared WT and gstp1 KO larvae for alterations in expression of redox 

pathway constituents, both before and after drug treatments. Figures 4-6 illustrate that gstp1 KO 

larvae had: increased baseline values for GSH, protein thiol, GSH/GSSG ratios and gene 

expression of glutamate-cysteine ligase catalytic subunit (gclc) and glutathione reductase (gr) and 

decreased GSSG and ROS levels (Fig. 4); increased gene expression of nrf2a, sod2 (Fig. 5 and 

Table 2); higher baseline expression of Nrf2 protein and increased Nrf2 and SOD1 protein levels 

following each drug (Fig. 6).  Drug treatments produced a coordinated increase in GSH (Fig. 4A, 

G, M); protein thiol (Fig. 4D, J, P); ratios of GSH/GSSG (Fig. 4C, I, O); ROS (Fig. 4E, K, Q); and 

gene expression of gclc, glutamate-cysteine ligase modifier subunit (gclm) and gr (Fig. 4F, L, R); 

and decreased GSSG (Fig. 4B, H, N). The shift in the ratio of GSH/GSSG toward a more reduced 

state, plus the presence of higher ROS in gstp1 KO larvae following drug treatments would be 

consistent with some form of reductive stress preceding resultant increases in oxidative stress. 

ER stress/UPR gene and protein expression patterns. 

In both mice and zebrafish, gstp1 gene expression is influenced by induced ER stress (Ye et al., 

2017) (Mukaigasa et al., 2018), so we compared drug effects in the WT and KO larvae. We chose 

UPR sensors and their target genes, as well as subsequent genes associated with mitochondrial 

injury and ER stress-induced apoptosis (baxb, bida and bim). Relative to WT larvae, gstp1 KO 

was linked with lower baseline expressions of: bip (0.51-fold), ire1 (0.73-fold), atf6 (0.35-fold), 

xbp1-u (0.80-fold), xbp1-s (0.61-fold), atf4 (0.79-fold), chop (0.70-fold) and gadd45a (0.74-fold), 

indicating connectivity between gstp1 and UPR in zebrafish (Fig. 5, Table 2). In both WT and KO 

larvae, TuM and PABA/NO produced a coordinated increase in expression of UPR-associated 

genes including, bip, dnajc3, grp94, ire1, xbp1-u, xbp1-s, atf4, chop, gadd45a, edem1, baxb, bida 

and bim. In addition, significant induction of gadd45a was found in KO larvae, while TuM and 

PABA/NO decreased its expression in WT larvae. However, in the KO larvae, ThG enhanced 
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expression of bip, dnajc3, grp94, perk, atf4, and chop; diminished the upregulation of ire1, edem1, 

baxb, bida and bim. These data confirmed that manipulation of gstp1 expression directly 

influenced ER stress/UPR in zebrafish.  

Immunoblots identified key UPR protein expression differences between WT and gstp1 KO larvae 

(Supplemental Fig. S3). Gstp1 KO was associated with lower baseline expression of IRE1 and 

XBP1s. Figure 7 shows that drug treatments produced a coordinated increase in all UPR proteins, 

except IRE1 and XBP1-s. Independent of baseline expression patterns, TuM and PABA/NO 

significantly increased IRE1, XBP1-s and Bax in gstp1 KO larvae, while ThG decreased their 

expression, but increased CHOP. Induction of BiP was caused by each of the three drugs in both 

WT and KO larvae. These results indicate while minor differences for each drug exist, in general, 

the absence of gstp1 makes the larvae more vulnerable to ER stress/UPR. Consistent with the 

toxicity assays and gene expression data, drug treatments induced oxidative and ER stress for 

the majority of the markers of interest in KO larvae, particularly the IRE1/XBP1 UPR pathway for 

TuM and PABA/NO, and the PERK/ATF4/CHOP pathway for ThG.   
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Discussion 

Since zebrafish are useful surrogates for the study of certain aspects of human drug response 

(Ding et al., 2020; Mohd Sakeh et al., 2020), our goal with the present work was to generate and 

characterize a novel gstp1 deficient model to establish its role in redox homeostasis and drug 

response. Zebrafish Gstp1 shares with human GSTP1 conserved residues in the substrate 

binding site (H-site), including Tyr8, Phe9, Val11, Ile105 and Tyr109 (Suzuki et al., 2005) each 

important in GSH-conjugation with various substrates (Maher, 2005). During the developmental 

process, the physiological roles of Gstp1 are well conserved among vertebrates, including teleost 

fish and mammals (Abunnaja et al., 2017).  Unlike mammals that express both GSTP1 and 

GSTP2 in a tissue specific manner, in zebrafish, Gstp1 is the predominant isoenzyme of this class 

and it is constitutively expressed at high levels in all tissues, especially throughout early 

development, while Gstp2 is essentially undetectable (Glisic et al., 2015). Gstp2 does have a high 

catalytic constant for CDNB (Glisic et al., 2015) and this accounts for the residual CDNB activity 

we measured in gstp1 KO larvae. Gstp1 was expressed early during zebrafish embryogenesis, 

similar to GSTP1 in mammalian embryogenesis (Raijmakers et al., 2001; Tierbach et al., 2018), 

implying that Gstp1 shares similar functions in both. Homozygous zebrafish mutants were fertile 

and displayed no overt morphological phenotypes under normal rearing conditions. As with mice, 

gstp1/2 KO was not embryonic lethal, nor was there any intrinsic impact on early embryonic 

development or growth patterns. However, our results revealed that gstp1 KO larvae did contain 

higher basal levels of GSH, GSH/GSSG and Nrf2, with lower levels of basal ER stress, evidenced 

by decreases in expression of UPR-associated proteins, suggestive of conditions of reductive 

stress in these larvae.  

Abrogation of gstp1/2 in mice was shown to cause increased ER stress and enhanced sensitivity 

to various drugs through activation of the UPR (Ye et al., 2017) and compared to the KO cells, 

WT gstp1/2 bone marrow dendritic cells (BMDDC) were more resistant to these drugs (Zhang et 
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al., 2020). Consistent with the mouse data, gstp1 KO zebrafish larvae were shown to be more 

sensitive than WT larvae to TuM, ThG and PABA/NO. TuM is an N-linked glycosylation inhibitor, 

causing accumulation of misfolded proteins in the ER resulting in UPR (Oda et al., 2008) and also 

actuates GSTP translocation from the cytosol to the ER (Ye et al., 2017). TuM shifted the ratio of 

GSH/GSSG towards the more reduced state, producing reductive stress-induced mitochondrial 

dysfunction and ROS augmentation, thereby increasing Nrf2, IRE1, XBP1-s and Bax expression. 

Taken together, these results suggest that gstp1 protects larvae from oxidative and ER stress 

and death via IRE1/XBP1/Bax pathway, implicating gstp1 in pathways relevant to reductive 

stress, where its absence enhances reductive stress induced cell death.  

ThG is an inhibitor of the Ca2+ ATPase (SERCA), causing disruption of Ca2+ homeostasis and 

UPR (Sehgal et al., 2017). Cells from gstp1/2 KO mice showed increased sensitivity to ThG (Ye 

et al., 2017). Our present results showed that although ThG was more cytotoxic and induced 

oxidative and ER stress in gstp1 KO larvae, its effects were distinct from TuM. Instead of activating 

IRE1/XBP1 axis, ThG increased expression of PERK, ATF4 and CHOP compared to WT larvae, 

confirming a distinct mechanism of action. PABA/NO is a GST-activated prodrug that releases 

nitric oxide (NO) causing nitrosative and oxidative stress that in mice targets protein disulfide 

isomerase (PDI) causing accumulation of misfolded proteins and activation of the UPR 

(Townsend et al., 2009b; Xiong et al., 2012). Our results showed PABA/NO, to some extent, 

mimicked TuM in gstp1 KO larvae. For example, in gstp1 KO larvae it was more cytotoxic, 

increased GSH levels and GSH/GSSG ratios and ROS and raised levels of Nrf2, IRE1, XBP1-s 

and Bax. Activation of PABA/NO may have been influenced by the absence of gstp1, but over the 

long incubation period, spontaneous and other GST isoform activation will have compensated 

(Townsend et al., 2009b). With respect to drug induced developmental effects, at 24-h time point, 

exposure of larvae to either TuM or PABA/NO caused pericardial edema, while ThG caused 

severe pericardial edema and curvature of the spine and tail (Figure 3D), again reflecting the 
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distinctive mechanisms of action. Although deficiencies in gstp1/2 in mice have been linked with 

altered hematopoiesis (Gate et al., 2004) in zebrafish the unaltered hemoglobin results suggest 

dissimilarities between the species. This may be explained by the indications that microsomal 

GST (Brautigam et al., 2018) and a melanin umbrella, rather than bone has a more specific role 

in regulation of teleost marrow functions (Kapp et al., 2018).  

Overall, our results indicate that gstp1 KO larvae are more susceptible to UPR following TuM, 

ThG or PABA/NO, although the basal levels of UPR in gstp1 KO larvae are significantly lower 

than those in WT larvae. Taken together, this new zebrafish model has enabled us to clarify the 

roles of gstp1 in redox homeostasis and drug and stress response and show that while there are 

some differences from mammals, there are also significant similarities. 
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Figure Legends 

Figure 1.  Generation of gstp1 KO zebrafish. (A) Gstp1cri mutant has 11 bp deletion. Deleted 

nucleotides are shown in red in WT. Relative levels of mRNA expression (B) and protein 

expression (C) of Gstp1/2 in WT and gstp1 KO zebrafish. (D) GST activity in WT and gstp1 KO 

zebrafish. **p < 0.01, ***p < 0.001 vs. WT by 2 tailed t tests. 

Figure 2. Drug toxicities in WT and gstp1 KO zebrafish larvae. Dose-dependent survival 

curves for WT and gstp1 KO zebrafish larvae. Larvae at 4 dpf were exposed to (A) TuM, (B) ThG 

and (C) PABA/NO for 24 h. Each point is the average of triplicate measurements and each 

measurement contains data from 10 larvae ± standard deviations (SD) (μM). 

Figure 3. Zebrafish larvae malformation assays. A. D. Representative views of larval 

malformations caused by TuM, ThG and PABA/NO after 16 h and 24 h. Total malformations (B. 

E.) and body length (C. F.) for 16 h and 24 h are presented as mean ± SD for three replicates per 

treatment (n=10 random larvae per replicate) in scatter plots. 

Figure 4. Drug effects on redox homeostasis.  

TuM: (A) GSH levels, (B) GSSG levels, (C) GSH/GSSG ratios, (D) Protein thiol, (E) Intracellular 

ROS, and (F) mRNA expression of gclc, gclm and gr. Data are derived from three independent 

experiments presented as means ± SD in scatter plots. *p < 0.05 vs. WT untreated control, 

#p < 0.05, ##p < 0.01 vs. KO untreated control by one-way ANOVA followed by Newman-Keuls 

as a post-test. 

ThG: (G) GSH levels, (H) GSSG levels, (I) GSH/GSSG ratios, (J) Protein thiol, (K) Intracellular 

ROS, and (L) mRNA expression of gclc, gclm and gr. Data are derived from three independent 

experiments presented as means ± SD in scatter plots. *p < 0.05, **p < 0.01 vs. WT untreated 
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control, #p < 0.05, ##p < 0.01 vs. KO untreated control by one-way ANOVA followed by Newman-

Keuls as a post-test. 

PABA/NO: (M) GSH levels, (N) GSSG levels, (O) GSH/GSSG ratios, (P) Protein thiol, (Q) 

Intracellular ROS, and (R) mRNA expression of gclc, gclm and gr. Data are derived from three 

independent experiments presented as means ± SD in scatter plots. *p < 0.05 vs. WT untreated 

control, #p < 0.05, ##p < 0.01 vs. KO untreated control by one-way ANOVA followed by Newman-

Keuls as a post-test. 

Figure 5. Heat map showing drug-induced changes in expression of oxidative stress and 

ER stress response genes. Larvae at 4 dpf were exposed to TuM (4 μM), ThG (0.75 μM) and 

PABA/NO (4 μM) for 24 h.  Shown are fold-changes in gene expression after drug treatment 

relative to WT untreated larvae with mean values set at 1. Relative gene expression quantification 

was based on the CT method (2∆∆Ct), with normalization of the raw data to the housekeeping gene 

(gapdh). Data are derived from three independent experiments presented as means ± SD in 

heatmap. *p < 0.05, **p < 0.01, ***p < 0.001 vs. the WT untreated control, #p < 0.05, ##p < 0.01, 

###p < 0.001 vs. the KO untreated control by one-way ANOVA followed by Newman-Keuls as a 

post-test. 

Figure 6. Oxidative stress protein expression. Larvae at 4 dpf were exposed to TuM (4 μM), 

ThG (0.75 μM) and PABA/NO (4 μM) for 24 h. A. Proteins were separated by SDS-PAGE and 

evaluated by immunoblots. B. Protein expression before and after treatment was quantified by 

ImageJ software. Fold-changes in protein expression after drug treatment relative to WT 

untreated larvae with mean values set at 1. Relative protein expression quantification was 

normalized to GAPDH. Data are derived from three independent experiments, presented as 

means ± SD in the scatter plots. *p < 0.05, **p < 0.01 vs. the WT untreated control, #p < 0.05 vs. 

KO untreated control by one-way ANOVA followed by Newman-Keuls as a post-test. 
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Figure 7. ER stress/UPR protein expression. Larvae at 4 dpf were exposed to TuM (4 μM), 

ThG (0.75 μM) and PABA/NO (4 μM) for 24 h. A-C. Protein expression before and after treatment 

was quantified by ImageJ software. Fold-changes in protein expression after drug treatment 

relative to WT untreated larvae with mean values set at 1. Relative protein expression 

quantification was normalized to GAPDH. Data are derived from three independent experiments 

presented as means ± SD in scatter plots. *p < 0.05, **p < 0.01, ***p < 0.001 vs. the WT untreated 

control, #p < 0.05, ##p < 0.01, ###p < 0.001 vs. KO untreated control by one-way ANOVA followed 

by Newman-Keuls as a post-test. 

 

 

 

 

 

 

 

 

 

 

 

 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on January 29, 2021 as DOI: 10.1124/jpet.120.000417

 at A
SPE

T
 Journals on A

pril 17, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


 26 

Table 1. LC50 values in zebrafish and mice. 

Drugs 

Gstp1 zebrafish, 

μmol/L 

BMDDCs mouse, μmol/L (Ye 

et al., 2017) Mice, 

mg/kg 

PMM2 

mutation 

zebrafish, 

μmol/L 
WT KO WT KO 

TuM 7.97±0.77 5.96±0.69 0.256±0.006 0.113±0.011 
2 (Xia et 

al., 2020) 

6 (Mukaigasa 

et al., 2018) 

ThG 1.47±0.12 0.98±0.09 0.122±0.028 0.017±0.001 

0.2 

(Cheng 

et al., 

2019) 

2 (Mukaigasa 

et al., 2018) 

PABA/NO 8.12±0.82 6.05±0.58 NA NA 
2 (Liu et 

al., 2019) 
NA 

BMDDCs, bone marrow-derived dendritic cells; LC50, 50% lethal concentrations. 
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Table 2. Drug-induced changes in gene expression of oxidative stress and ER stress/UPR 

in WT and gstp1 KO zebrafish larvae. 

 WT  KO 

 Ctrl TuM ThG PABA/NO  Ctrl TuM ThG PABA/NO 

nrf2a 1.00±0.04 1.46±0.11* 1.03±0.04 1.25±0.09*  1.01±0.09 1.67±0.08# 1.43±0.05# 1.52±0.01# 

sod2 1.00±0.09 1.17±0.10 0.99±0.10 1.27±0.11*  0.90±0.15 1.70±0.19# 1.27±0.03# 1.92±0.17# 

gstp1/2 1.00±0.06 1.72±0.07* 1.69±0.30 1.68±0.13*  0.31±0.01* 0.75±0.03# 0.49±0.06# 0.75±0.03# 

bip 1.00±0.06 2.87±0.28* 1.11±0.05 1.27±0.04*  0.51±0.04* 1.50±0.14# 0.51±0.04# 1.39±0.01# 

dnajc3 1.00±0.17 1.66±0.17* 1.79±0.07 1.00±0.03  0.83±0.11 2.88±0.38# 1.60±0.18# 1.92±0.23# 

grp94 1.00±0.08 2.31±0.11* 1.33±0.12* 1.32±0.14*  0.95±0.06 2.41±0.19# 1.27±0.09# 1.77±0.07# 

ire1 1.00±0.02 1.17±0.01 1.56±0.15* 1.18±0.06  0.73±0.02* 1.18±0.06# 0.79±0.10 1.43±0.11# 

perk 1.00±0.20 1.45±0.18 0.91±0.10 0.77±0.01  0.82±0.03 0.71±0.08 1.38±0.04# 0.79±0.01 

atf6 1.00±0.20 1.00±0.19 0.91±0.20 0.82±0.02  0.35±0.23* 0.47±0.01 0.48±0.19 0.33±0.01 

xbp1-u 1.00±0.06 1.04±0.06 1.11±0.02 1.17±0.05  0.80±0.04* 0.97±0.05# 0.61±0.02# 0.90±0.10 

xbp1-s 1.00±0.07 1.17±0.27 1.13±0.03 1.16±0.06  0.61±0.04* 1.78±0.03# 0.48±0.02# 1.27±0.05# 

atf4 1.00±0.05 1.07±0.04 1.15±0.03 0.88±0.06  0.79±0.07* 1.61±0.13# 1.38±0.07# 1.27±0.03# 

chop 1.00±0.03 1.08±0.04 1.16±0.06 0.99±0.07  0.70±0.03* 1.26±0.04# 1.35±0.09# 1.32±0.09# 

gadd45a 1.00±0.04 0.83±0.05 0.47±0.10* 0.91±0.02  0.74±0.01* 1.18±0.07# 1.08±0.12# 1.52±0.09# 

edem1 1.00±0.07 1.25±0.13 1.67±0.09* 1.43±0.20  1.06±0.07 1.90±0.18# 1.44±0.20 1.61±0.21# 

baxb 1.00±0.18 0.96±0.02 2.44±0.24* 1.32±0.20  1.10±0.04 1.67±0.11# 1.62±0.10# 2.20±0.10# 

bida 1.00±0.03 1.09±0.12 2.01±0.26* 0.97±0.00  0.97±0.17 1.78±0.29# 1.43±0.28 2.15±0.21# 

bim 1.00±0.14 0.96±0.11 2.53±0.08* 1.35±0.12*  1.14±0.03 1.83±0.22# 1.30±0.13 2.11±0.22# 

*p < 0.05 vs. the WT untreated control, #p < 0.05 vs. the KO untreated control by one-way ANOVA 

followed by Newman-Keuls as a post-test. See Fig. 5 for detailed-statistical significance. 
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