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Abbreviations 

AD                Alzheimer's disease 

APP               amyloid precursor protein  

ApoE              Apolipoprotein E  

BDNF             brain-derived neurotrophic factor 

CASS4            Cas scaffolding protein family member 4  

CSF               Cerebrospinal fluid 

EVs               extracellular vesicles  
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FGF               fibroblast growth factor 

IL                 Interleukin 

iNOS               Inducible nitric oxide synthase  

iPSCs              Induced pluripotent stem cells 

MSCs              Mesenchymal stem cells 

NSCs              Neural stem cells 

Oct4               Octamer-binding transcription factor 4 

INPP5D            Phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase 1  

Sox2               sex determining region Y-box 2 

TNF               Tumor necrosis factor 

TREM2            triggering receptor expressed on myeloid cells 2  

Section: Chemotherapy, Antibiotics, and Gene Therapy 
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Abstract 

Alzheimer's disease (AD) is a neurodegenerative disease with complex pathological 

and biological characteristics. Extracellular β-amyloid deposits, such as senile plaques, 

and intracellular aggregation of hyperphosphorylated tau, such as neurofibrillary 

tangles, remain the main neuropathological criteria for the diagnosis of AD. There is 

currently no effective treatment for the disease, and many clinical trials have failed to 

prove any benefits of new therapeutics. More recently, there has been increasing 

interest in harnessing the potential of stem cell technologies for drug discovery, 

disease modeling, and cell therapies, which have been utilized to study an array of 

human conditions, including AD. The recently developed and optimized induced 

pluripotent stem cells (iPSCs) technology is a critical platform for screening anti-AD 

drugs and understanding mutations that modify AD. Neural stem cells (NSCs) 

transplantation has been investigated as a new therapeutic approach to treat 

neurodegenerative diseases. Mesenchymal stem cells (MSCs) also exhibit 

considerable excitement to treat neurodegenerative diseases by secreting growth 

factors and exosomes, attenuating neuroinflammation. This review highlights recent 

progress in stem cell research and the translational applications and challenges of 

iPSCs, NSCs, and MSCs as treatment strategies for AD. Even though these treatments 

are still in relative infancy, these developing stem cell technologies hold considerable 

promise to combat AD and other neurodegenerative disorders. 

Keywords: Alzheimer's disease; stem cells 
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Significance 

Alzheimer's disease (AD) is a neurodegenerative disease that results in learning and 

memory defects. Although some drugs have been approved for AD treatment, only 

less than 20% of AD patients benefit from these drugs. Stem cell-based therapies, 

including iPSCs, NSCs, MSCs, provide promising therapeutic strategies for AD. 

Introduction 

Alzheimer's disease (AD) is the most common cause of dementia, named first in 1906 

by Alois Alzheimer. Currently, the presence of extracellular β-amyloid deposits, such 

as senile plaques, and the intracellular accumulation of hyperphosphorylated tau, such 

as neurofibrillary tangles, are still the main neuropathological criteria for the 

diagnosis of AD (Kent et al., 2020; Scearce-Levie et al., 2020). Early-onset AD 

emerges in patients younger than 65 years of age, accounting for less than 5% of all 

cases, and most cases of late-onset AD occur after the age of 65 (Sabayan and Sorond, 

2017). Patients with AD will inevitably die within 5-12 years of the onset of AD 

symptoms (Bruni et al., 2020). The clinical manifestations of AD are progressive. 

Typical features are early neuroinflammation, learning and memory impairments, 

followed by complex attention, visuospatial function, executive function, praxis, 

language, gnosis, behavior, and/or social impairment (Scheltens et al., 2016; 

Arvanitakis et al., 2019; Lempriere, 2019). In recent years, although significant 

progress has been made in clarifying key aspects of the biology, the etiological 

mechanisms of AD are still far from being fully understood (Jafari et al., 2020; Kim et 

al., 2020). New treatment strategies and drugs attempting to slow or halt cognitive 
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deficiency and neuronal loss of AD are proposed every year (Roberson and Mucke, 

2006; Benek et al., 2020). The USA Food and Drug Administration has only approved 

five drugs for the clinical treatment of AD, and these include the cholinesterase 

inhibitors tacrine, galantamine, donepezil, rivastigmine, and the glutamate receptor 

antagonist memantine. However, these five pharmacological agents can only relieve 

symptoms without affecting the main pathological features of AD (Kumar et al., 2015; 

Stakos et al., 2020). In addition, the effects of these drugs vary from person to person; 

no more than 20% of patients have a moderate efficiency, while more than 60% of 

patients have tolerance, non-compliance, and side effects (Serretti et al., 2007; 

Zetterberg and Bendlin, 2020). Therefore, effective therapeutic strategies for AD are 

of great priority. 

In the past years, there has been increasing interest in harnessing the potential of stem 

cell technology for drug discovery, disease modeling, and cell therapies (Mancuso et 

al., 2019; Lee et al., 2020; Yang et al., 2020). The most commonly used stem cell 

types in AD research are induced pluripotent stem cells (iPSCs), brain-derived neural 

stem cells (NSCs), and bone marrow mesenchymal stem cells (MSCs) (Yang et al., 

2013; Chen et al., 2014; Penney et al., 2020). Stem cell-based therapies might be a 

better approach than traditional therapies, as it could reduce neuronal loss, increase 

synaptic connections, and improve the microenvironment in the brain fundamentally. 

The mechanisms of action (Figure 1) include 1. Replacement of injured or lost 

neuronal cells: stem cells can differentiate into cholinergic neurons, which could 

integrate with the host, repair neural circuits, and eventually replace the lost neurons 
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(Telias and Ben-Yosef, 2015); 2. Secretion of neurotrophic factors: stem cells can 

secrete neurotrophic factors, such as brain-derived neurotrophic factor (BDNF) and 

fibroblast growth factor (FGF), to promote cell survival, increase synaptic 

connections, and improve cognitive function (Blurton-Jones et al., 2009); 3. 

Anti-amyloid protein production: stem cell transplantation reduces amyloid-beta (Aβ) 

levels and reduces Aβ toxic reactions, which is beneficial for the survival of 

transplanted cells and cognitive recovery (Bae et al., 2013); 4. Anti-inflammatory 

response: stem cell transplantation reduces the expression of proinflammatory factors 

interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, inducible nitric oxide 

synthase (iNOS), and exerts neuroprotective effects (Lin et al., 2018); 5. Promote the 

activation of endogenous stem cells: transplantation of exogenous stem cells improves 

the microenvironment of brain, which facilitates the survival of endogenous stem 

cells and stimulates their activation (Philips and Robberecht, 2011); 6. Improve the 

metabolic activity of neurons in the brain: stem cell transplantation increases the 

connection and metabolism between neurons and improves cognitive function 

(Blurton-Jones et al., 2014). Progress in stem cell-based therapy provides us a new 

perspective for treating neurodegenerative disease, especially in AD. In this review, 

we underline some key insights into the disease mechanisms derived from studies of 

iPSCs, NSCs, and MSCs, discuss the pros and cons of these stem cell types as 

therapeutics. Additionally, we review new research to track stem cell therapy, 

highlight the most relevant stem cell trials in AD and other neurological disorders, 

and discuss the potential applications, as well as the major challenges and future 
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directions in cell-replacement therapy of AD. 

The pathogenesis of AD 

AD is the most common neurodegenerative disorder causing dementia and is 

characterized by memory deficit and cognitive decline (Hampel et al., 2018; Ong et 

al., 2018). Early-onset familial AD (FAD) occurs in people aged 40-60, and sporadic 

late-onset AD (SAD) occurs after the age of 70 (Jeong, 2017). For the 

neuropathological diagnosis of AD, cerebrospinal fluid (CSF) or positron emission 

tomography (PET) imaging biomarkers can be used as surrogate markers for Aβ and 

tau deposition in brains (Brier et al., 2016; Leuzy et al., 2016). Studies of cognitive 

function and changes in CSF and neuroimaging biomarkers in FAD and SAD have 

determined that the disease is at a preclinical stage at least 10 to 20 years before the 

onset of clinical symptoms (Olsson et al., 2016; Tarawneh et al., 2016). The disease is 

characterized by the early deposition of Aβ in early-onset nerves and other cortical 

areas, including the default pattern network, followed by regional cortical 

hypometabolism, decreased hippocampal volume, accumulation of tau pathology, and 

the onset of symptomatic cognitive impairment. Plasma neurofilament light chain 

(NfL) and CSF are emerging biomarkers that track the general level of 

neurodegeneration in all forms of neurodegenerative dementia (Di Stefano et al., 2016; 

Han et al., 2016; Rabinovici, 2016; Pascoal et al., 2017). 

Apolipoprotein E (ApoE) may affect amyloid pathology by directly binding Ab in the 

plaque, regulating AD risk. ApoE can have a regulatory effect on tau pathology and 

tau-related neurodegeneration and may independently affect neurons and neuronal 
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networks (Li et al., 2019; Mentis et al., 2020). Reactive astrocyte and microglia 

hyperplasia are prominent pathological features of the AD brain, and the activation of 

the immune system is a critical regulator of AD pathology (Sabatino et al., 2019; 

Heneka, 2020).  

Although significant progress has been made in the understanding of the pathology of 

AD, we have yet to discover disease-relief therapies that are effective in humans. The 

pathological biology of AD is very complicated. The older the age, the greater the 

possibility that other age-related diseases and AD pathology will cause cognitive 

decline (Congdon and Sigurdsson, 2018; Si et al., 2018; Teipel et al., 2018; 

Cummings, 2019). The ongoing in-depth research in this area is critical to making  

discoveries that will eventually reveal novel treatments that can truly change the 

course of the disease. 

Stem cell treatment in AD modeling 

Some drugs have been approved to slow down cognitive deficiency and neuronal loss 

in AD. Although these drugs can improve some AD symptoms, only less than 20% of 

AD patients will benefit, while over 60% of patients develop tolerance and side 

effects (Serretti et al., 2007; Zetterberg and Bendlin, 2020). With rapid growing 

achievements in stem cell research, stem cell-based therapy provides a new option for 

AD treatment. 

Applications of iPSCs in AD modeling 

Mouse fibroblast cells were first shown to be reprogrammed into iPSCs in 2006 by 

applying four transcription factors, including sex-determining region Y-box 2 (Sox2), 
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cMyc, Octamer-binding transcription factor 4 (Oct4), and Kruppel-like factor 4 

(Takahashi and Yamanaka, 2006). The next year, this technology was applied to 

human somatic cells to generate iPSCs successfully (Takahashi et al., 2007). Since 

then, considerable efforts have followed to optimize this technology and reprogram 

cells by newly defined or fewer factors and more efficient delivery systems (Chuah 

and Zink, 2017; Di Lullo and Kriegstein, 2017; Pournasr and Duncan, 2017; Devalla 

and Passier, 2018). Lineage specifiers involved in the ectodermal specification and 

mesendodermal specification can synergistically induce pluripotency without Oct4 

and Sox2 (Aoi, 2008; Nakagawa et al., 2008; Chia et al., 2010; Buganim and Jaenisch, 

2012). A growing number of novel reprogramming factors have been identified as 

maternal and pluripotency-associated factors, such as Esrrb, Tet1, Sall4, and PR 

domain-containing 14 (Maherali et al., 2008; Doege et al., 2012; Moon et al., 2012; 

Hu et al., 2014; Chen et al., 2015). Manipulation of microRNAs (miRs) can replace 

traditional reprogramming factors to increase the efficiency of reprogramming 

somatic cells into iPSCs (Judson et al., 2009; Anokye-Danso et al., 2011). Besides, 

the differentiation into iPSCs has been extended to various cell types, including 

human keratinocytes, fibroblasts, mature B lymphocytes, liver and stomach cells, 

human amniotic fluid-derived cells, glia cells, pancreatic-β cells, as well as microglia, 

neurons, astrocytes, endothelial cells, oligodendrocytes, and brain pericytes (Stadtfeld 

et al., 2008; Tsai et al., 2010; Watanabe et al., 2011; Zhou et al., 2011; Meng et al., 

2012; Montserrat et al., 2012). Moreover, co-culture models of multiple brain cell 

types have been developed to simulate the complex interactions between neuronal 
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cells in vivo. Improvements of differentiation methods to increase the maturity, yield, 

and purity of brain cell types, and the developments of co-culture and 

three-dimensional (3D) models to better imitate the pathologies of AD remain in 

development (Choi et al., 2014). Further improving these reprogramming strategies 

and models has promising potential to facilitate neurodegenerative disease research 

and clinical applications (Figure 2). 

Age is the primary risk factor for neurodegenerative diseases, including AD; therefore, 

using stem cells to study AD may seem counterintuitive. However, in the very early 

stages of differentiation, neurons differentiated from iPSCs with FAD mutations, or 

iPSCs from AD patients, exhibit AD-related phenotypes (Ochalek et al., 2017; 

Ortiz-Virumbrales et al., 2017; Wezyk et al., 2018). These alterations parallel the 

stages of AD progression, which are understudied in vivo. Genome-wide association 

studies have shown that alterations in many different genes can promote the 

development of AD, and different genetic changes in patients with AD shared 

pathological manifestations in some cases (De Strooper and Karran, 2016). 

Generating specific individual brain cells of iPSCs has potential applications for 

patient-specific treatment (Chen et al., 2016; Cota-Coronado et al., 2019). 

Neurons. Numerous neurodegenerative diseases that occur during aging attest that 

brain neuronal cells, as non-dividing cells, face major challenges in maintaining 

normal function and health during the multiple decades of life. A better understanding 

of the mechanisms may help ensure the health and survival of neurons. With the 

development and application of iPSCs technology, more and more literature has been 
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published demonstrating FAD or SAD modeling using iPSCs (Chambers et al., 2009). 

iPSCs can differentiate into neural progenitor cells, after which the neural progenitor 

cells are patterned to different neuronal lineages (Maroof et al., 2013; Nicholas et al., 

2013). There are numerous neuron subtypes, including dopaminergic neurons, 

glutamatergic neurons, GABAergic neurons, and cholinergic neurons (Soldner et al., 

2009; Zhang et al., 2013; Begum et al., 2015; Sun et al., 2016). Glutamatergic 

neurons harboring mutated APPV717I were observed to have elevated β-secretase 

cleavage of APP and increased levels of both Aβ and tau phosphorylation (Muratore 

et al., 2014). In contrast, neurons harboring mutated APPA673T were found to have 

reduced β-secretase cleavage of APP and production of Aβ (Maloney et al., 2014). 

Neurons expressing mutated APPK670N/M671L or APPV717I exhibited impaired 

low-density lipoprotein endocytosis, reduced mitophagy, cellular uptake defects, and 

degradation pathway impairment compared to neurons carrying APP duplications 

(Knappenberger et al., 2004; Israel et al., 2012; Fang et al., 2019). Patients with Down 

syndrome (DS) develop early-onset dementia. The DS-iPSC neurons accumulate tau 

hyperphosphorylation and Aβ deposits, similar to that caused by mutations in FAD 

(Shi et al., 2012; Chang et al., 2015; Dashinimaev et al., 2017; Ovchinnikov et al., 

2018). Glutamatergic neurons derived from PSEN1null and PSEN1ΔE9 mutations 

iPSCs have been shown to gain γ-secretase function via loss- or gain-of-function 

without loss of other functions (Knappenberger et al., 2004; Wang et al., 2018). 

Neurons from iPSCs harboring mutated PSEN1V89L, PSEN1A246E, and 

PSEN1L150P showed to be more sensitive to oxidative stress and Aβ-induced toxicity 
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than those from healthy individuals (Armijo et al., 2017; Ochalek et al., 2017). iPSCs 

derived from SAD often share the same phenotypes with those with FAD mutations. 

In addition to the elevated tau phosphorylation and Aβ accumulation, the SAD- iPSC 

neurons show activation of ER, elevated DNA damage, enlarged endosomes, 

activation of oxidative stress pathways, and mitochondrial dysfunction (Duan et al., 

2014; Birnbaum et al., 2018). 

Astrocytes. Astrocytes are the most abundant cell type in brains, which play essential 

roles in providing energetic, trophic, physical, and metabolic support to other brain 

cells (Molofsky and Deneen, 2015; Weber and Barros, 2015; Liddelow et al., 2017). 

Multiple protocols have been developed to differentiate iPSCs into astrocytes 

(Krencik et al., 2011; Emdad et al., 2012). Altered marker protein localization and 

decreased morphological complexity were exhibited in astrocytes harboring both 

SAD-linked APOE4 and FAD-linked PSEN1M146L mutations (Jones et al., 2017). 

Increased reactive oxygen species production, impaired fatty acid oxidation, elevated 

release, and reduced uptake of Aβ42 were observed in astrocytes carrying the 

PSEN1ΔE9 mutation (Oksanen et al., 2017; Konttinen et al., 2019). When co-cultured 

with human neurons, astrocytes derived from iPSCs promote the maturation and 

survival of neurons. However, the effects can be impaired by APOE4 and PSEN1ΔE9 

mutations (Kuijlaars et al., 2016; Zhao et al., 2017). Moreover, the APOE4 mutated 

astrocytes exhibit a reduced ability to internalize Aβ42 and extensive gene expression 

alterations compared with APOE3-mutated astrocytes (Zhao et al., 2017; Lin et al., 

2018). 
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Microglia. Microglia are brain immune cells that play numerous roles, including 

clearance of dying cells, synaptic pruning, and regulation of neuroinflammation in the 

brain (Salter and Beggs, 2014; Heppner et al., 2015). In the past ten years, numerous 

microglial genes have been identified as risk factors for AD by improved sequencing 

technologies. These genes include Cas scaffolding protein family member 4 (CASS4), 

triggering receptor expressed on myeloid cells 2 (TREM2), 

Phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase 1 (INPP5D), sialic 

acid-binding immunoglobulin-like lectin (Siglec) 3, SPI1, and HLA-DRB1 (Guerreiro 

et al., 2013; Jonsson et al., 2013; Lambert et al., 2013; Huang et al., 2017). These 

findings indicate that microglial dysfunction might contribute to the development of 

AD. Microglia induced from healthy individuals iPSCs are capable of Aβ uptake, 

synaptic pruning, and phagocytosis. After exogenous Aβ treatment, the microglia 

showed altered gene expression and secreted various cytokines (Muffat et al., 2016; 

Abud et al., 2017). Microglia derived from SAD patient iPSCs exhibited elevated 

release of specific cytokines and altered phagocytosis after lipopolysaccharide 

treatment (Xu et al., 2019). Microglia carrying mutated APOE4 showed an impaired 

ability to internalize Aβ, extensive gene expression, and reduced morphological 

complexity compared with isogenic APOE3 controls (Lin et al., 2018).  

Oligodendrocytes. The function of oligodendrocytes is to generate a myelin sheath 

that wraps the axons of nerve cells and forms the white matter of the brain. 

Oligodendrocytes also mediate inflammation, providing trophic support and 

contributing to metabolism regulation in the brain (Simons and Nave, 2015; Dimou 
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and Simons, 2017). Oligodendrocyte dysfunction and white matter loss were observed 

in mice and patients with AD, which could lead to neuronal dysfunction (Desai et al., 

2010; Bartzokis, 2011). Recent studies have reported the induction of 

oligodendrocytes from 3D organoid models (Hu et al., 2009; Wang et al., 2013; 

Madhavan et al., 2018). However, there are no studies on human systems to examine 

AD-related oligodendrocyte function. Selected critical AD studies utilizing iPSCs are 

summarized in Table 1. 

Applications of NSCs in AD modeling 

Transplantation of NSCs has been investigated as a prospective therapeutic approach 

for neurodegenerative diseases, including AD. NSCs are one type of multipotent stem 

cells that can differentiate into neurons, oligodendrocytes, microglia, and astrocytes 

(Massirer et al., 2011; Martinez-Morales et al., 2013; Berger et al., 2020; Si et al., 

2020). NSCs can be extracted from brain tissues, differentiated from iPSCs and 

embryonic stem cells, or reprogrammed from somatic cells (Hermann and Storch, 

2013; Wen and Jin, 2014; Shahbazi et al., 2018). Transplanted NSCs are capable of 

secreting neurotrophic factors and replacing damaged neural circuitry to alter lesion 

protein levels or counter symptomatic deterioration (Liu et al., 2013; Liu et al., 2014; 

Telias and Ben-Yosef, 2015; Kim et al., 2018). The neurotrophic factors NSCs secrete 

have been shown to improve memory function, and NSCs overexpressing 

β-degrading enzyme have been shown to reduce the aggregation of Aβ (Tang et al., 

2008; Wu et al., 2016; Marsh and Blurton-Jones, 2017). 

The 3xTg mouse is a FAD-related triple-transgenic mouse model, which carries three 
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mutations: APP Swedish, PSEN1 M146V, and MAPT P301L (Oddo et al., 2003; 

Billings et al., 2005). After human-derived NSCs transplantation in 3xTg mice, Aβ 

and tau protein levels remained unchanged, but the memory function and synaptic 

density improved, indicating that the transplantation of human-derived NSCs may 

only reverse symptoms (Chen et al., 2014; Ager et al., 2015). Mathew et al. showed 

that mouse-derived NSCs transplantation in 3xTg mice produced similar results as 

human-derived NSCs. After transplantation, cognitive impairment was rescued and 

synaptic density was enhanced without altering the Aβ and tau levels (Blurton-Jones 

et al., 2014). Transplantation of modified NSCs carrying Neprilysin showed to be 

more effective in delivery than vector-delivered Neprilysin, indicating NSCs can act 

as effective delivery vehicles (Kim et al., 2013; Blurton-Jones et al., 2014). A 

different source of NSCs may release various neurotrophins and have a distinct 

neurogenesis. BDNF is a member of the neurotrophin family and is involved in the 

mouse-derived NSCs recovery of synaptic connectivity, but it remains unknown 

which trophic factors are involved in synaptogenesis of human-derived NSCs (Ager et 

al., 2015). Studies on mouse-derived NSCs showed that cognitive improvement 

depends mainly on the precise differentiation of NSCs, whereas lineage-specific 

differentiation of human-derived NSCs had limited effect on cognitive function 

(Blurton-Jones et al., 2014; Chen et al., 2014). Tg2576 mice harbor the human 

Swedish APP mutation (isoform 695; KM670/671NL) (Hsiao et al., 1996; 

Kawarabayashi et al., 2001; King and Arendash, 2002), and reduced Aβ production 

and acetylcholinesterase were observed after NSCs transplantation into these mice. 
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Further, many astrocytes expressing α7 nicotinic receptors were found to repair 

damaged neurons, and the endogenous neurogenesis was enhanced in the transplant 

region of Tg2576 mice (Lilja et al., 2015). Anti-inflammatory cytokine levels were 

significantly higher in microglial cells and could inhibit Aβ production and promote 

Aβ clearance rate when NSCs were transplanted into Tg2576 mice at early stages of 

disease. Moreover, synaptic density, VEGF, and neurogenesis were increased after 

transplantation. Timely intervention is essential since these results were not obtained 

when NSCs were transplanted into Tg2576 mice at later stages (Kim et al., 2015; 

Haiyan et al., 2016). APP/PS1 mice are widely used as an AD mouse model and 

harbor both the Swedish and PSEN1 (L166P) mutations (Maia et al., 2013). Enhanced 

synaptic formation without a change in Aβ levels was observed after transplantation 

of NSCs into APP/PS1 mice (Li et al., 2016). In contrast, McGinley’s study suggested 

that NSC transplantation reduces Aβ levels by regulating microglial activation (Zhang 

et al., 2015; McGinley et al., 2018). Administration of NSCs in APP/PS1 mice also 

resulted in enhanced levels of tropomyosin receptor kinase B (TrkB) and BDNF. The 

expression of the NMDA receptor 2B subunit, which plays a critical role in memory 

and learning function, was also increased, resulting in improved the cognitive 

function (Zhang et al., 2014). Cholinergic-like neurons derived from NSCs were also 

introduced into APP/PS1 mice. This showed that cholinergic acetyltransferase's 

concentration and activity were elevated, and there was an increase in functional 

dendrites (Gu et al., 2015). In another study, astrocytes and microglia activity was 

decreased, which regulates the Toll-like receptor 4 signaling pathway, leading to a 
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decrease in neuroinflammatory response and the improvement of cognitive function 

(Zhang et al., 2016). Another AD mice model is the 5xFAD mouse, which harbors 

five mutations: the PSEN1, Florida (I716V), Swedish (K670 N/M671 L), London 

(V717I), M146 L, and L286 V mutations (Oakley et al., 2006; Jawhar et al., 2012). 

These mice are immune-deficient, allowing long-term safety and efficacy evaluation 

of NSCs transplantation. A clinical-grade NSCs line failed to differentiate and had no 

impact on synapses after successful engraftment into 5xFAD mice for up to five 

months. The protein levels of BDNF and Aβ did not change and no improvement in 

behavior impairment was observed (Marsh et al., 2017). In contrast, rapid 

differentiation and reconstruction of functional neural circuits were observed after 

transplantation of reprogrammed NPCs from human mononuclear cells. BDNF levels 

increased, and improvement in behavior impairment was observed after 5 to 6 months 

(Zhang et al., 2019). These two studies indicate that, compared with normal NSCs, 

reprogrammed somatic cells might have greater neural lineage-specific differentiation 

capacity. Selected AD studies utilizing NSCs are summarized in Table 2. 

Application of MSCs in AD modeling 

MSCs are a type of pluripotent stem cell with self-renewing, immunomodulatory 

properties, that have limited differentiation capacity (Song et al., 2020). MSCs can 

differentiate into chondrocytes, osteocytes, fibroblasts, and adipocytes (Ankrum et al., 

2014; Si et al., 2019). Unlike iPSCs and NSCs, MSCs are not expected to replace the 

impaired neurons and incorporate into neuronal networks because it is controversial 

whether MSCs can differentiate into ectodermal or endodermal cells (Robert et al., 
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2020; Varderidou-Minasian and Lorenowicz, 2020). MSCs can be distinguished from 

other cell types by the expression of CD105, CD90, CD73, and CD44, and by the lack 

of CD14, CD45, CD19, CD11b, CD34, and human leukocyte antigen DR isotype 

expression (Bari et al., 2019; Elahi et al., 2020). MSCs can be harvested from many 

tissues, including adipose tissue, umbilical cord tissue, bone marrow, fetal tissues, 

placental tissues, dental pulp, and peripheral blood (Keane et al., 2017; Sa da 

Bandeira et al., 2017). MSCs have neuroprotective effects in addition to antifibrotic, 

anti-inflammatory, anti-bacterial, anti-tumorigenic, chemo-attractive, anti-apoptotic, 

pro-angiogenic, and tissue repair effects (Pierro et al., 2017; Naji et al., 2019). There 

are multiple mechanisms behind the neuroprotective effects of MSCs. MSCs can 

secrete neurotrophic growth factors such as BDNF and glial cell-derived neurotrophic 

factor (GDNF) to improve the survival of neuronal cells (Teixeira et al., 2017; Hao et 

al., 2018). It is well known that MSCs can modulate the immune system, and 

neuroinflammation has been reported to play a pathomechanistic role in 

neurodegenerative diseases. When MSCs enter the neuroinflammatory milieu, they 

will release pro-inflammatory and anti-inflammatory factors, and activated T cells can 

interact with neuronal cells to reduce neuronal death (Ransohoff, 2016). Secreted 

biological factors such as messenger RNA, proteins, or microRNA via extracellular 

vesicles (EVs) are other mechanisms to improve neuronal survival (Richards et al., 

2016). Finally, a novel hypothesis to the neuroprotective effects of MSCs is that 

MSCs improve neuronal health by donating their mitochondria to neurons carrying 

dysfunctional mitochondria (Zhao et al., 2013; Glenn and Whartenby, 2014). 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on February 8, 2021 as DOI: 10.1124/jpet.120.000324

 at A
SPE

T
 Journals on A

pril 9, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


20 

 

In the APP/PS1 mouse model of AD, bone marrow-derived MSCs were transplanted 

via tail vein injection. These mice were found to have a reduction in microglial 

numbers without alteriation in the numbers of amyloid plaques (Naaldijk et al., 2017). 

In contrast, a study by Carter et al. showed a significant decrease after intracerebral 

injection of bone marrow-derived MSCs compared with controls treated with PBS 

two months post-injection. The synaptic transmission-related proteins such as 

synapsin 1 and dynamin 1 were considerably enhanced in AD mice brains compared 

with control groups after treatment with bone marrow-derived MSCs (Bae et al., 

2013). In another study, human umbilical cord-derived MSCs were induced to 

neuron-like cells and transplanted into the APP/PS1 AD mouse model. In this model, 

increased synapsin 1 levels, improved cognitive function, and reduced Aβ deposition 

were found. The "alternatively activated" microglia (M2-like microglia) and 

interleukin-4, an anti-inflammatory cytokine associated with M2-like microglia, were 

increased. Further, the pro-inflammatory cytokines tumor necrosis factor-α and 

interleukin-4 were decreased significantly (Yang et al., 2013). Neprilysin and 

insulin-degrading enzyme, two Aβ-degrading factors, increased after treatment with 

neuron-like cells from human umbilical cord-derived MSCs (Lee et al., 2012). One 

study reported that MSC transplantation improved AD cognition, and that the 

pathology may be mediated through modulating tissue repair factors and 

inflammatory events (Lee et al., 2010). The Wnt signaling pathway has been reported 

to be involved in the MSCs-regulated neurogenesis in an AD mouse model. Se et al. 

found that the expression of GFAP, nestin, Ki-67, HuD, and SOX2 significantly 
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increased in Aβ-treated neural progenitor cells co-cultured with MSCs as compared to 

Aβ treatment alone. Additionally, β-catenin and Ngn1 expression were enhanced in 

Aβ-treated neural progenitor cells co-cultured with MSCs (Oh et al., 2015). In AD 

mouse models, the MSC's effects on mitochondrial function have not yet been studied. 

Selected AD studies utilizing MSCs are summarized in Table 3. 

Challenges and Future Perspectives 

The development of stem cell technologies allows the use of differentiated human 

cells for mutagenesis and drug screening (Hirschi et al., 2014; Sproul, 2015). In the 

past few decades, many promising preclinical and early clinical findings were 

obtained. However, many challenges remain regarding the application of stem cells as 

therapeutic approaches in AD. The development of stem cell technologies also raises 

the attractive possibility of personalized and regenerative medicine (Sproul, 2015; 

Chen et al., 2016; Cota-Coronado et al., 2019). Genomic instability of iPSCs, 

however, is a serious issue for both experimental studies and regenerative medicine. 

Limited passage numbers and regular checks of genomic alterations in iPSC lines are 

the most commonly used methods to prevent issues (Kwon et al., 2017; Zhang et al., 

2018). Even though the use of integration-free delivery systems have reduced the 

genomic alterations in iPSCs, it remains an active topic of investigation to reduce 

genomic instability (Rebuzzini et al., 2016; Yoshihara et al., 2017). Expanding brain 

cell subtypes generated from iPSCs, improving differentiation protocols of iPSCs, and 

developing more suitable and complex 3D co-culture systems are important goals for 

iPSC research. How to improve the reproducibility and consistency of cell subtypes 
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obtained from iPSCs also remains unknown. Despite the use of the same protocol, 

there is considerable variability in gene expression and cellular morphology (Mills et 

al., 2013; Volpato et al., 2018). To minimize such variability, better standardization of 

growth conditions and differentiation techniques, adoption of rigorous statistical 

analyses, and more thorough reporting of methodologies should be established (Lin, 

2011; Sullivan et al., 2018). Another challenge is how to generate iPSC-derived brain 

cells that can adequately mimic the growth and maturation of various cell types in the 

brain. Signals from other cell types are critical during this process to shape their 

identity (Cahoy et al., 2008; Gosselin et al., 2014; Bohlen et al., 2017). To resemble 

cell counterparts more closely, we need to better understand the critical signals 

involved in the process. The 3D co-culture systems are important models for stem cell 

application in neurodegeneration research, promoting the development of hallmark 

pathologies in AD that cannot be found in 2D cultures (Camp et al., 2015; Sloan et al., 

2017). The 3D co-culture systems also provides a platform to help develop a better 

understanding of the complex, interrelated functions and interactions between all cell 

types in the brain. An ideal 3D co-culture system for AD should include each type of 

glial cell, all neuronal subtypes, and the blood-brain barrier components (Choi et al., 

2014). In many cases, only some aspects of brain function are established in a reduced 

system model. In the deeper layers, organoids often show dysfunction and cell death, 

and the introduction of functional vasculature would likely improve this situation. The 

“bioreactors” used in culture may also improve the health of the cells (Marion et al., 

2009; Corti et al., 2012; Baxter et al., 2015; Huh et al., 2016; Mertens et al., 2018).  
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The iPSC models to mimic AD have been questioned since the age- and 

environment-dependent epigenetic and cellular signatures may be lost during 

reprogramming (Roessler et al., 2014). To overcome this problem, somatic cells are 

reprogrammed directly into neuronal cells, bypassing the iPSC stage. The 

reprogrammed have improved capability to retain age-related transcriptomic and 

cellular alterations compared to iPSCs (Victor et al., 2018). There are also limitations 

for direct reprogramming due to the low yield of reprogrammed cells and poor 

reprogramming efficiency (Mertens et al., 2018). Unlike iPSCs, the beneficial role of 

NSCs in AD is to increase the levels of neurotrophic factors, restore local neuron 

populations, and increase synaptic density rather than modulate pathological protein 

levels (Zhang et al., 2004; Zheng et al., 2017; Omole and Fakoya, 2018). However, 

how long this phenomenon can persist with altering the pathological protein levels 

and what role NSCs may play in this process remains unknown. As stem cell 

techniques continue to be refined, novel stem cell-based therapies can be adequately 

validated and may reveal effective therapeutics that lead to further targeted drug 

development for AD, ultimately moving the field forward. 

Although the literature is replete with therapeutic interventions pursued based on 

expert opinion and patient acceptance, stem cell transplantation risks cannot be 

ignored. There is an successful example that a patient received multiple injections of 

different source-derived allogeneic stem cells to reduce neurologic deficits from a 

middle cerebral artery stroke(Berkowitz et al., 2016). Despite fewer safety concerns 

than allogeneic stem cells, applications of autologous stem cells may raise notably 
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adverse events. A reported case showed that hematopoietic stem cells injection into 

kidneys of a patient with renal failure were associated with tumor development and 

ultimately led to nephrectomy(Thirabanjasak et al., 2010). However, we firmly 

believe that by resolving the unique challenges in clinic, stem cell therapies can 

provide an important, safe and effective strategy to patients who need.  
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Figure legends 

Figure 1. Stem cell mechanisms of action to treat AD. (1) Replace the injured or 

lost neuronal cells, (2) Secretion of neurotrophic factors, (3) Anti-amyloid protein 

production, (4) Anti-inflammatory response, (5) Promote the activation of endogenous 

stem cells, (6) Improve the metabolic activity of neurons in the brain.   

Figure 2. Potential applications of developing iPSCs technology in AD modeling 

and drugs discovery. iPSCs edited from somatic cells can differentiate into multiple 

neuronal cells, which can simulate the complex interactions between neuronal cells in 

vivo by 3D co-culture. These reprogramming strategy and models have promising 

potential to facilitate neurodegenerative disease research, drug discovery and clinical 

applications. 
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Table 1. Summary of selected important AD studies utilizing iPSCs. 
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Table 2. Summary of selected important AD studies utilizing NSCs. 
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Table 3. Summary of selected important AD studies utilizing MSCs. 
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