Optimization of lipophilic metalloporphyrins modifies disease outcomes in a rat model of parkinsonism

Li-Ping Liang¹, Ruth Fulton¹, Erica L. Bradshaw-Pierce¹, Jennifer Pearson-Smith¹, Brian J. Day¹, 2, and Manisha Patel ¹*

Department of Pharmaceutical Sciences¹, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, Department of Medicine², National Jewish Health, Denver, CO 80202

LL, RF, EB-P, J P-S, BD, and MP, Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO.
BD, Department of Medicine, National Jewish Health, Denver, CO
E B-P, Takeda Pharmaceuticals, San Diego, CA (current affiliation)
Running Title:
Metalloporphyrins modify disease outcomes in parkinsonism

Corresponding author:
Manisha Patel, Ph.D.
12850 East Montview Boulevard
Aurora CO 80045
Tel: (303) 724-3604
Fax: (303) 724-7266
Email: manisha.patel@cuanschutz.edu

37 text pages
3 tables and 10 figures
56 References

Abstract: 220 words
Introduction: 735 words
Discussion: 1050 words

Abbreviations:

Recommended Section: Neuropharmacology
ABSTRACT

Oxidative stress plays a crucial role in the pathogenesis of Parkinson’s disease (PD) and one strategy for neuroprotective therapy for PD is to scavenge reactive species using a catalytic antioxidant. Previous studies in our laboratory revealed that pretreatment of lipophilic metalloporphyrins showed protective effects in a mouse PD model. In this study, we optimized the formulations of these metalloporphyrins to deliver them orally and tested their efficacy on disease outcomes in a second species after initiation of an insult (i.e. disease modification). In this study, a pharmaceutical formulation of two metalloporphyrin catalytic antioxidants, AEOL11207 and AEOL11114 was tested for oral drug delivery. Both compounds showed gastrointestinal absorption, achieved high plasma concentrations, and readily penetrated the blood brain barrier after intravenous or oral delivery. AEOL11207 and AEOL11114 bioavailabilities were calculated to be 24 % and 25 %, respectively at a dose of 10 mg/kg via the oral route. In addition, both compounds significantly attenuated 6-hydroxydopamine (6-OHDA) induced neurotoxic damage, including dopamine depletion, cytokine production and microglia activation in the striata, dopaminergic neuronal loss in the substantial nigra, oxidative/nitrative stress indices (glutathione disulfide and 3-nitrotyrosine) in the ventral midbrain and rotation behavioral abnormality in rats. These results indicate that AEOL11207 and AEOL11114 are orally active metalloporphyrins and protect against 6-OHDA neurotoxicity one to three days post-lesioning suggesting disease-modifying properties and translational potential for PD.
Significance Statement:

Two catalytic antioxidants showed gastrointestinal absorption, achieved high plasma concentrations, and readily penetrated the blood brain barrier. Both compounds significantly attenuated dopamine depletion, cytokine production, microglia activation, dopaminergic neuronal loss, oxidative/nitrative stress indices and behavioral abnormality in a Parkinson’s disease rat model. The results suggest that both metalloporphyrins possess disease-modifying properties which may be useful in treating Parkinson’s disease.
1. INTRODUCTION:

The pathogenesis of dopaminergic neuronal death in the substantia nigra (SN) of Parkinson’s disease (PD) patients is complex and remains to be fully elucidated. Current therapeutic approaches for PD are symptomatic and fall short of halting the disease progression or modify outcomes leading to the need for identifying and investigating novel therapeutic targets and entities. Oxidative stress is thought to be a major mediator leading dopaminergic neuron loss in both sporadic and genetic forms of PD (Zhang et al., 2000; Henchcliffe and Beal, 2008). Dopaminergic neurons in the SN are exposed to oxidative stress from several major sources which include: 1) Dopamine (DA) autooxidation, enzymes such as monoamine oxidase (MAO), tyrosine hydroxylase and mitochondrial aconitase that release H₂O₂ under normal or oxidant stress conditions (Liang et al., 2007; Dias et al., 2013; Zhang et al., 2019). The emitted H₂O₂ can be further catalyzed into more toxic hydroxyl radicals (OH•) by adventitious reduced Fe²⁺ through the Fenton’s reaction. DA can undergo non-enzymatic auto-oxidation reactions resulting in formation of superoxide (O₂⁻) and H₂O₂ as well as reactive quinones (Graham, 1978). 2) Mitochondrial dysfunction, mitochondria complex I inhibition which was found in the postmortem of SN (Schapira et al., 1990) and platelets (Krige et al., 1992) of patients with PD, is also an important source of O₂⁻. Several gene mutations linked with PD such as α-syn, parkin, DJ-1, and PINK1 initiate oxidative stress leading to protein aggregation while simultaneously damaging mitochondrial dynamics, function and integrity (Blesa et al., 2015). 3) Microglia activation, one important hallmark of PD, induces neuroinflammation and releases pro-inflammatory cytokines and nitric oxide (NO) (Beal, 2003). NO readily reacts with O₂⁻ to form highly
reactive peroxynitrite anions (ONOO\(^-\)). Collectively, these pathways suggest that oxidative stress is an important therapeutic target in PD and targeting it with small molecule antioxidant therapy could be a neuroprotective strategy for PD treatment (Zhou et al., 2008; Filograna et al., 2016).

Meso-porphyrin metalloporphyrins are synthetic small molecule catalytic antioxidants with at least four distinct antioxidant properties due to their ability to scavenge O\(_2\)\(^-\), H\(_2\)O\(_2\), ONOO\(^-\) and lipid peroxides (Day, 2004). Our laboratory has previously shown that lipophilic metalloporphyrins such as AEOL11207 and AEOL11114, protect against 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity in mouse model (Liang et al., 2007; Liang et al., 2017). The acute MPTP mouse model replicates many features of PD and is one of the classical models used to elucidate the pathogenesis of dopaminergic neuronal death. However, it typically induces DA neuronal death in just days or a week necessitating pretreatment of therapeutic compounds and is therefore inconsistent with the slow progression of clinical PD that may take several decades. Thus, it does not provide an ideal time window for studying neuroprotection and disease modification (Przedborski and Jackson-Lewis, 1998). In order to accelerate metalloporphyrin clinical development, it is necessary to test their efficacy in additional species and PD animal models. Additionally, rather than pretreatment paradigms, it is important to initiate their treatment after the insult to determine any translational potential and disease modification.

6-hydroxydopamine (6-OHDA) is a hydroxylated analogue of the natural neurotransmitter dopamine and neurotoxin (Blum et al., 2001). Intracerebral infusion of 6-OHDA induces significant DA depletion in the striata and massive dopaminergic
neurons loss in the SN which reproduces the most important biochemical and pathological features of human PD, respectively (Uretsky and Iversen, 1970; Ungerstedt et al., 1974). The rat 6-OHDA model of PD was introduced more than 40 years ago and despite numerous animal models developed for PD, it remains widely used because of the relatively low complexity and excellent reproducibility (Deumens et al., 2002). Intrastriatal infusion of 6-OHDA causes early DA depletion in the striatum, followed by a delayed, progressive dopaminergic neuronal loss in the SN and a substantially stable rotational behavioral response to apomorphine during the 4-8 week period which provides a longer window to evaluate neuroprotective therapies (Sauer and Oertel, 1994; Przedborski et al., 1995; Blandini et al., 2007). Taken together, intrastriatal 6-OHDA is a relatively well accepted PD rat model for therapeutic testing. It offers a better strategy for examining innovative treatments designed to exert neuroprotection and disease modification. The goal of this study was to conduct pharmacokinetics (PK) including oral bioavailability, terminal half-lives (t½), maximum concentration (Cmax) and blood-brain barrier (BBB) permeability of AEOL11207 and AEOL11114 to guide a dosing regimen for assessing their efficacy for disease modification in an intrastriatal 6-OHDA rat model of parkinsonism.

2. MATERIALS AND METHODS

2.1 Reagents

All reagents, including 6-OHDA hydrochloride were purchased from Sigma Aldrich (Sigma-Aldrich Corp., St. Louis, MO). AEOL11207 and AEOL11114 (see Figure 1) were characterized as previously described (Liang et al., 2007; Liang et al., 2017).

2.2 Animals
Animal studies were carried out in accordance with the National Institute of Health Guide for the Care and Use of Laboratory Animals (NIH Publications No. 80-23). All procedures were approved by the Institute Animal Care and Use Committee (IACUC) of the University of Colorado Anschutz Medical Campus. Male Sprague-Dawley (SD) rats (~300 g) purchased from Harlan Laboratories (Indianapolis, IN) were used for all experiments. Following their arrival, rats were housed in groups on a 12/12 light/dark cycle and allowed ad libitum access to food and filtered water. All experiments were performed after following one week of acclimatization of the rats.

2.3 Metalloporphyrins Pharmacokinetic (PK) Analysis

2.3.1 Metalloporphyrin administration for PK analysis. Male SD rats were treated with AEOL11207 or AEOL11114 (10mg/kg) by tail intravenous (i.v.) injection with a 25-gauge needle or per oral (p.o.) route with a 5-inch-long standard rat’s stomach tube. AEOL11207 or AEOL11114 was dissolved in 18 % (v/v) PEG 400, 2 % (v/v) benzyl alcohol and 30 % (v/v) propylene glycol. Following 1h, 6h, 12h, 24h, 48h and 96h after metalloporphyrin administration, rats were deeply anesthetized with sodium pentobarbital (50 mg/kg, i.p.) and blood samples (~0.2 ml) were obtained by cardiac puncture with a 25-gauge needle. Rats were perfused transcardially with 80-100 ml saline to remove blood contamination in their brains and brains were snap-frozen on dry ice. In some studies, blood samples were centrifuged at 13,000 rpm 10 min and ~100 µl of plasma was collected and both brain and plasma samples were stored at - 80°C until use.

2.3.2 Measurement of metalloporphyrin levels. Metalloporphyrin levels were measured using an HPLC equipped with an ultraviolet (UV) detector (Elite LaChrom System;
Hitachi) and a YMC-Pack ODS-A column (4.6 × 150 mm, 3 μm, 120 Å; Waters, Milford, MA, USA) as described previously (Kachadourian et al., 2002). The mobile phase contained 20 mM triethylamine and 20 mM trifluoroacetic acid, pH 2.7 and 70 % acetonitrile with a flow rate of 1 ml/min. Proteins were extracted and precipitated from plasma and brain samples using 50-75 % methanol and 0.05N perchloric acid followed by centrifugation at 16,000 g for 20 min. An aliquot of the supernatant (10 µl) was injected into the HPLC with UV detector set at 450 nm for AEOL11207 assay and 456 nm for AEOL11114 assay, these wavelengths are close to the sort bands for each metalloporphyrin.

2.3.3 Metalloporphyrin PK analysis and modeling. Non-compartmental analysis of AEOL11207 and AEOL11114 plasma concentration was performed using Phoenix WinNonlin 8.1.0. (Certara USA Inc., Princeton, NJ). In order to generate a model that could be used to simulate brain concentrations under different dosing schemes, a semi-physiologic pharmacokinetic model was generated. A compartmental model was used to describe the plasma concentration, which was coupled to a physiologic model for the brain to describe concentration-time data measured in the rat brain. Model fits and simulations were conducted with SAAM II version 2.3.1 (The Epsilon Group, Charlottesville, VA).

The model predictive capability was determined by calculating the median absolute performance error (MAPE %) and the median performance error (MPE %) for time-concentration curves, and by comparison of calculated noncompartmental PK parameters for the actual data sets versus the PBPK model simulations. Performance errors (PE) calculation is shown in equation 3 (Gustafsson et al., 1992).
MAPE %, a measure of prediction accuracy, was calculated as:

$$MAPE\% = \text{median} \left(|PE_1|, |PE_2|, \ldots, |PE_n| \right)$$ \hspace{1cm} \text{Eq. 2}$$

Where \(n \) is the total number of samples for that tissue. MPE %, a measure of prediction bias, was calculated by:

$$MPE\% = \text{median} \left(PE_1, PE_2, \ldots, PE_n \right)$$ \hspace{1cm} \text{Eq. 3}$$

2.4 Metalloporphyrins’ effects on 6-OHDA neurotoxicity

2.4.1 6-OHDA model.
20 µg 6-OHDA hydrochloride (free base) dissolved in 4 µl of 0.2% ascorbate in saline or 4 µl of 0.2% ascorbate in saline (sham) was infused into the left striatum of male SD rats at the following coordinates (in millimeter with respect to bregma and dura): AP -0.5, L 2.5, DV 4.5 (Paxinos and Watson, 1995) at 0.5 µl/min, using a motor-drive injector with a 26-gauge needle. 6-OHDA lesion model was validated in preliminary experiment (see Supplement figure 1).

2.4.2 Measurement of DA levels.
Striatal DA levels were measured using an HPLC (CoulArray system ESA Model 5600; ESA, Boston, MA) equipped with an electrochemical detector (Liang and Patel, 2004). Briefly, rat striata were frozen in liquid nitrogen immediately after harvesting and sonicated in ice-cold 0.2 M perchloric acid (10% w/v) followed by centrifugation at 16,000 g for 15 min at 4°C to precipitate proteins. An aliquot (20 µL) of the supernatant was separated by a column (3 µm, 100 x 4.6 mm, Waters, Milford, MA, USA) ideal for detection of catecholamines with an automatic sampler (ESA Model 540) and the electrochemical detector potentials were set at 0/50/200/300 mV (vs. Pd). The mobile phase was composed of 100 mM citric acid, 2%
methanol, 1 mM EDTA and 5 mg/L sodium octyl sulfate (pH 3.0) and the flow rate set at 0.6 ml/minute.

2.4.3 **Measurement of redox biomarkers.** Glutathione (GSH), glutathione disulfide (GSSG), tyrosine and 3-nitrotyrosine (3-NT) were assayed with an ESA 5600 CoulArray HPLC equipped with eight electrochemical cells following the company instruction (ESA Application Note 70-3993) as described in the literature (Beal et al., 1990) with additional modifications (Liang et al., 2007). The electrochemical cells were set at 400/450/500/570/630/690/810/860 mV (vs. Pd) potentials. An aliquot (20 μl) of the supernatant was separated on a TOSOHAAS (Montgomeryville, PA) reverse-phase ODS 80-TM C-18 analytical column (4.6 mm x 250 mm; 5 μm particle size). A two-component gradient elution system was used with component A of the mobile phase composed of 50 mM NaH₂PO₄ pH 2.7, and component B composed of 50 mM NaH₂PO₄ and 50 % methanol pH 2.7. Mobile phase flow rate was set at 0.8 ml/min. Initial gradient condition was 95 % A, 5 % B for 10 min. and linear gradient to 70 % A, 30 % B was set from 10 to 30 min. The flow rate condition was retained at 70 % A, 30 % B from 30 to 40 min. and back to 95 % A, 5 % B from 40 to 45 min. with an equilibration time running from 45 to 60 min. The levels of 3-NT were expressed as a ratio of 3-NT to tyrosine.

2.4.4 **Tyrosine hydroxylase immunohistochemistry staining and stereological cell counting.** Sections (40-µm) including the whole midbrain region were immunostained with a rabbit antibody to tyrosine hydroxylase (TH) 1:500 (AB152, Chemicon, Temecula, CA) using the ABC method (ABC Elite Kit, Vector Laboratories, Burlingame, CA). Sections were counterstained with cresyl violet following TH staining. The number of TH-positive neurons at every fourth section was quantified with stereological analysis
following previously described methods (West, 1999; Liang et al., 2007; Liang et al., 2017). Stereological method was used to determining the number of DA neurons using a computer-assisted image analysis system consisting of a Nikon Optiphot-2 80i microscope (Nikon Inc., Melville, NY) equipped with a MC-XYZ-LC (Applied Scientific Instrumentation, Eugene, OR) computer-controlled motorized stage. The substantia nigra pars compacta (SNpc) was delineated on each section at low magnification (4 x), followed by systematic sampling at 60 x magnification starting from a random start position using unbiased stereological analysis performed with the optical fractionator from Stereoinvestigator (MicroBrightfield, Williston, VT, USA). The number of TH positive neurons in the ipsilateral site of SNpc of sham rats was expressed as 100%.

2.4.5 Microglial activation immunohistochemical staining. The 20-µM thin brain sections including the whole striatum were immunostained with primary antibody anti-Iba-1, (ionized calcium adaptor molecule 1, Rabbit. Wako, Japan) and a Rhodamine Red conjugated goat anti-rabbit secondary antibody (1:100, Jackson Immuno Research Inc.). Images were captured using a Nikon Eclipse TE2000-U microscope. Iba-1 positive signal of a given area was quantified with Image J software (National Institutes of Health, Bethesda, MD) in three sections, 100 µm apart in the striatum of each animal. The average of the fluorescent relative density in the ipsilateral side of the striatum of sham rats was expressed as 100%.

2.4.6. Multiplex pro-inflammatory cytokine measurement: Levels of tumor necrosis factor alpha (TNF-α), interleukin-1 β (IL-1 β), interleukin-6 (IL-6), keratinocyte chemoattractant/growth-related oncogene (KC/GRO) and interferon gamma (IFN-γ) were measured using a rat multiplex pro-inflammatory cytokine array kit (V-PLEX) from
Meso Scale Discovery (MSD Inc., Rockville, MD, USA) according to the manufacturer's instruction and as described previously (McElroy et al., 2017; Liang et al., 2019). Briefly, striatal tissue was sonicated in 10 % w/v (0.1 g tissue/ml) of a lysis buffer with protease and phosphatase inhibitors and centrifuged at 2000 g for 5 min. at 4 ºC. After a 1h period of blocking, an aliquot of 50 µl of supernatant or standards was loaded in duplicate and incubated at room temperature with shaking (700 rpm) for 2h. Standard curves were prepared with the supplied diluent from a range 0 pg/ml to 40,000 pg/ml. After washing 3 times with phosphate-buffered saline + 0.05% Tween 20, 25 µl of detection mixed antibodies was added and incubated at room temperature with shaking (700 rpm) for an additional 2h. After washing 3 times, the reading buffer was added and the plate was read using MSD QuickPlex SQ 120 instrument (MSD Inc., Rockville, MD, USA) by measuring the intensity of light emitted at 620 nm. The data analyses were performed with DISCOVERY WORKBENCH 4.0 software (MSD Inc., Rockville, MD, USA) using curve-fit models.

2.4.7. Behavioral testing. Apomorphine (0.5 mg/kg in 0.1 % ascorbic acid, i.p.) was used to induce rotational activity in rats. The rotational behavior was measured using an automated rotameter consisting of a rotation bowl and a tether attached to the torso of the rat (San Diego Instruments, San Diego, CA) at 4 weeks post lesion as described previously (Ungerstedt and Arbuthnott, 1970). The number of complete turns performed by the animals was monitored by an automated recording system for 60 min.

2.5 Statistical Analysis

All data are expressed as mean ± S.D. Statistical differences were analyzed by one-way ANOVA with Tukey-Kramer's post-hoc tests. P value less than 0.05 was considered
statistically significant. All analyses were performed using Prism 8 software (Prism 8. GraphPad Software, San Diego, CA).

3. RESULTS:

3.1 Metalloporphyrin PK analysis and modeling to optimize dosing. PK parameters, including Cmax, t½, AUC (area under the curve) and oral bioavailability were calculated by non-compartmental analysis from measured data (Figure 2 and Table 1). Cmax of both AEOL11207 and AEOL11114 achieved high plasma and brain concentrations after p.o. administration suggesting that the compounds were well-absorbed by the gastrointestinal tract. Relative high AUC in brain indicated that the compounds’ ability to penetrate the BBB. A single bolus dose of 10 mg/kg resulted in estimated percentages of oral bioavailabilities calculated by AUC oral /AUC i.v. of AEOL11207 and AEOL11114 to be 23 % and 25 % respectively. The t½ for the compounds could only be estimated due to the lack of a consistent decrease in drug concentration over an adequate sampling time. The estimated t½ for AEOL11207 was 38 hours and for AEOL11114 was 170 hours (Table 1).

A semi-physiologic PK model was generated to describe the oral plasma and brain concentration-time data for both AEOL11207 and AEOL11114 (Figure 3). Oral concentration-time data of both compounds was fit to a 2-compartment model with first-order absorption (Figure 3). The model predictive capability, calculated by percentages of MAPE and MPE indicated that the models for both AEOL11207 and AEOL11114 describe the plasma and brain data reasonably well, though over predicting measured data slightly (Table 2). The model was used to simulate different dosing regimens that could yield a plasma concentration of ~1 µM and brain concentrations in the range of
100-150 nM, which were previously found to be protective in the MPTP mouse model (Liang et al., 2007; Liang et al., 2017). The simulations suggest that both compounds should achieve the desired plasma and brain concentrations when administered orally at either 5 mg/kg p.o. daily or 10 mg/kg p.o. every other day (Figure 4).

3.2 Metalloporphyrins protect against 6-OHDA-induced oxidative/nitrative stress. GSH and its oxidized disulfide form, GSSG widely used as biomarkers of the cellular or tissue redox status (Valko et al., 2007). 3-NT, formed in proteins after the reaction of tyrosine residues with ONOO$^-$ is both an indicator of protein nitration, a posttranslational modification capable of inducing protein dysfunction (Sawa et al., 2000). To determine a therapeutic time window, we first established the time course of GSH, GSSG and 3-NT after 6-OHDA treatment. Given the high millimolar tissue levels of GSH, it was not significantly altered by 6-OHDA treatment. However, GSSG and 3-NT were significantly increased to 190-200 % in the lesioned side of ventral midbrain, with the highest levels being reached at 14 and 28 days after 6-OHDA infusion compared with those of the sham, respectively (Figure 5A). We next assessed the dose-dependence and dosing frequency of AEOL11207 and AEOL11114 capable of preventing 6-OHDA-induced oxidative/nitrative stress. When AEOL11207 and AEOL11114 were administered at a dose of 10 mg/kg, p.o. every other day starting at 1 day post 6-OHDA infusion, 6-OHDA-induced oxidative/nitrative stress was substantially inhibited 14 days post 6-OHDA administration (Figure 5B). Given the oxidative/nitrative stress biomarkers and PK results, a dosing regimen for both AEOL11207 and AEOL11114 of 10 mg/kg via the p.o. route every other day was selected for their ability to alter 6-OHDA-induced DA depletion and TH cell death.
3.3 Metalloporphyrins protect against 6-OHDA-induced striatal DA depletion. Measurement of striatal DA levels revealed that 4 weeks after intrastriatal vehicle infusion (sham), DA levels were 67.98 ± 4.45 nmol/g tissue (mean ± S.D., n=6) compared with DA levels in striata of naïve animals DA: 66.58 ± 8.19 nmol/g tissue, (mean ± S.D., n=4, see Supplement 1) suggesting that the sham treatment did not cause DA depletion, consistent with previous studies (Deumens et al., 2002). Compared to sham rats, striatal DA levels were decreased by 65 % to 70 % in the lesioned side of the striata 4 weeks following 6-OHDA infusion. Compared to vehicle treatment in sham rats, treatment with AEOL11207 and AEOL11114 (initiated 1 day post-lesion for 4 weeks) decreased striatal DA levels by 34.7 % and 40.3 %, respectively. This suggested that the compounds exert a protective effect on dopaminergic terminals in the 6-OHDA model 1 day post-lesion. However, no statistically significant protective effect was found when AEOL11207 or AEOL11114 regimen was initiated 3 days post-lesion as compared with that of the 6-OHDA with vehicle group.

3.4 Metalloporphyrins protect against 6-OHDA-induced DA neuronal loss. The dopaminergic neurons (TH positive neurons) in the SNpc were significantly decreased 40 % to 45 % in the lesioned side compared with those of the sham animals. Treatment with AEOL11207 and AEOL11114 starting on 1 or 3 days post-lesion, significantly attenuated 6-OHDA-induced dopaminergic neuronal loss in the SNpc only decreased to 5 % to 10 % when compared with those of sham animals (Figure 7A and 7B). These results suggest a significant neuroprotective effect of AEOL11207 and AEOL11114 against 6-OHDA toxicity on dopaminergic neurons.
3.5 Metalloporphyrins protect against 6-OHDA-induced microglia activation. To determine whether AEOLs prevent 6-OHDA induced inflammatory effects, immunohistochemistry staining performed with Iba-1, a marker of microglial activation (Kanazawa et al., 2002) was investigated. An increase in average fluorescence density of Iba-1 in the 6-OHDA lesion side of the striata began 3 days and reached ~320% 14 day post 6-OHDA infusion compared to the sham group. The average fluorescence density increased 240% and 229% following AEOL11207 and AEOL11141 10 mg/kg, administered p.o. every other day starting 1 day post lesion compared with that of the sham group, respectively. Relative to the vehicle, AEOL11207 or AEOL11114 treatment attenuated 6-OHDA-induced Iba-1 fluorescence density by 37.2% and 42.1%, respectively (Figure 8).

3.6 Metalloporphyrins protect against 6-OHDA-induced alterations in cytokine production. IL-1β, IL-6, TNF-α, KC/GRO but not IFN-γ levels were significantly elevated in the striata of the rats 3 and 5 days post 6-OHDA infusion (Table 3). IL-1β, IL-6, TNF-α, KC/GRO levels were significantly increased by 1.7-, 61- 34- and 106-fold in the striata 5 days post 6-OHDA infusion compared to sham, respectively. Given the robust increase in the majority of pro-inflammatory cytokines 5 days post 6-OHDA, this time-point was selected to test the ability of metalloporphyrins to alter their production. Compared to vehicle treatment, AEOL11207 and AEOL11114 (initiated day 1 post 6-OHDA infusion) for a period of 5 days, attenuated IL-1β, IL-6, TNF-α and KC/GRO levels in the striata by 40%, 73.5%, 72.4% and 56.3% respectively (Figure 9). Together with their ability to attenuate microglial activation (assessed by Iba-1 staining),
this suggests that these metalloporphyrins exert an anti-inflammatory effect in the 6-OHDA model.

3.7 Metalloporphyrins protect against 6-OHDA-induced behavioral abnormality. Apomorphine induced rotational behavior was measured as another indicator of metalloporphyrins’ neuroprotection. 6-OHDA-lesioned rats were challenged with apomorphine (0.5 mg/kg, i.p.) after 4 weeks and the number of completed rotations was observed and recorded. 6-OHDA produced approximately 240-250 turns during a total of 60 minutes, indicating that lesioning was significant. Rats that received a vehicle infusion (sham) did not display any significant rotational behavior upon apomorphine challenge. 6-OHDA-induced increases in the number of rotations were significantly attenuated by 57.1 % and 53.5 % following AEOL11207 or AEOL11114, respectively when administered at 1 day, However, no statistically significant attenuation was observed when the compounds were started 3 days post lesion, as compared to the 6-OHDA with vehicle group (Figure 10).

4. DISCUSSION
In this study we optimized two metalloporphyrins for favorable oral bioavailability, BBB permeability and in vivo efficacy in a rat 6-OHDA model of PD. Using this dosing paradigm, we demonstrated that initiation of treatment with metalloporphyrins 1 or 3 day after the insult resulted in inhibition of dopamine depletion, neuroinflammation (increased cytokine levels and microglia activation in the striata), dopaminergic neuronal loss in the SNpc, oxidative/nitrative stress indices (GSSG and 3-NT formation) in the ventral midbrain and rotation behavioral abnormality 4 weeks after intrastriatal 6-OHDA infusion in rats. Attenuation dopaminergic neuronal loss (1 and 3 days) as well as
behavioral deficits (1 day) post lesion with AEOL11207 and AEOL11114 suggest that both metalloporphyrins have translational potential and disease modifying effects.

In this study, AEOL11207 and AEOL11114 were found to have good gastrointestinal absorption, oral bioavailability, BBB access and extended plasma concentrations in rats. The pharmacokinetic analysis results from this study indicate that both compounds achieved a brain Cmax in the range of 100-150 nM with a relatively low dose of drug (5 mg/kg every day or 10 mg/kg every other day via oral administration). Our previous studies have shown that 100-150 nM levels of AEOL11207 and AEOL11114 are protective against indices of neurotoxicity, including DA depletion in the striata, dopaminergic neuronal loss in the SNpc and oxidative/nitrative stress (GSSG and 3-nitrotyrosine formation) in the ventral midbrain of MPTP treated mice (Liang et al., 2007; Liang et al., 2017). By using 6-OHDA model, we were able to demonstrate disease-modifying effects of these compounds in a second species and animal model of PD with similar concentrations of drug levels being achieved in the brain. Furthermore, the new formulation of the compounds, combined with the use of the 6-OHDA lesion model revealed additional advantages to these compounds that were not present in our earlier work. First, the compounds were shown to be protective even when administered after the initial neurological insult. In contrast, the compounds had to be administered prior to MPTP injury in order to achieve similar levels of protection in the MPTP mouse model (Liang et al., 2007; Liang et al., 2017). Secondly, a new formulation was selected which enables the oral route of administration and provides a relatively longer duration of drug action. This study shows that the rats were able to tolerate doses of the metalloporphyrins with this formulation. The maximum tolerated dose was about 60
mg/kg which is higher than the dosing required for in vivo efficacy (5 mg/kg every day or 10 mg/kg every other day via oral route). In our previous work, the compounds were dissolved in 1 or 5 % DMSO solution (Liang et al., 2007; Liang et al., 2017) which could be toxic to PD patients over the course of long-term therapy.

Oxidative damage to dopaminergic neurons in the SNpc is considered to be one of the major pathogenic factors leading to neurodegeneration and motor disturbances in PD (Jenner, 2003). 6-OHDA is a hydroxylated analogue of DA, which is actively transported into dopaminergic neurons via a dopamine transporter on the nerve terminals. It then selectively kills dopaminergic neurons via auto-oxidization to generate quinones, O$_2^-$, H$_2$O$_2$ and lipid peroxyl radicals (Cohen and Heikkila, 1974; Sachs and Jonsson, 1975). 6-OHDA treatment has been shown to deplete striatal GSH levels (Perumal et al., 1992) and increase the levels of malondialdehyde (Kumar et al., 1995), which further supports the role of oxidative stress in 6-OHDA toxicity. Previously, we have shown several key antioxidant properties of AEOL11207 and AEOL11114 based on their abilities to scavenge H$_2$O$_2$, O$_2^-$, and lipid peroxides (Liang et al., 2007; Castello et al., 2008; Liang et al., 2017), which likely underlie their protective effects against 6-OHDA neurotoxicity. Metalloporphyrins are a class of synthetic catalytic antioxidants that overcome many limitations of natural SOD/catalase enzymes such as large size, short circulation half-life and antigenicity. These compounds act stoichiometrically and are much more potent than dietary antioxidants such as ascorbate (vitamin C) and α-tocopherol (vitamin E) (Patel, 2016). This result further supports antioxidant therapy as a modality in preventing and combating aggressive dopaminergic neuronal degeneration in vivo.
Massive microglia activation has been observed in the progressive dopaminergic degenerative processes associated with PD autopsy specimens (Croisier et al., 2005) and animal models, including MPTP, 6-OHDA, rotenone and paraquat (Yokoyama et al., 2011). Increased microglial activation has also been detected in both SN and striatum in the 6-OHDA model (He et al., 2001; Depino et al., 2003). Furthermore, a significant decrease in dopaminergic neuronal loss parallels a progressive increase in microglia activation over time after 6-OHDA injection in rats monitored with positron emission tomography (PET) imaging (Cicchetti et al., 2002). Studies have shown that microglia activation plays a major role in DA neuronal degeneration through the release of large amounts of cytotoxic molecules, including a variety of proinflammatory cytokines and ROS (Phani et al., 2012). Proinflammatory cytokines are also mediators of apoptosis which plays an important role in dopaminergic neuronal death in PD patients (Nagatsu and Sawada, 2005; Sawada et al., 2006). Therefore, inhibiting aberrant neuroinflammation and microglial activation has been a recognized strategy to preserve and protect dopaminergic neurons (Wu et al., 2002). Prior studies have demonstrated elevations in several key proinflammatory cytokines including TNF-α, IL-1β, and IL-6, in the cerebrospinal fluid and the striata of PD patients (Mogi et al., 1994a; Mogi et al., 1994b; Blum-Degen et al., 1995; Muller et al., 1998). Furthermore, released cytokines were accompanied by NO production, which was sensitive to attenuation, by NO synthase inhibition in primary mixed neuronal/glial cell cultures (Chao et al., 1996; Hu et al., 1997). Our results indicate a large elevation in several proinflammatory cytokines together with microglia activation which were both significantly attenuated by metalloporphyrins likely due to their ability to exert an antioxidant effect. It is consistent
with the possible mechanism(s) of another metalloporphyrin, AEOL10150, protecting against seizure-induced oxidative/nitrative stress, microglia activation and proinflammatory cytokines release (McElroy et al., 2017; Liang et al., 2019).

In summary, two glyoxylate metalloporphyrin catalytic antioxidants, AEOL11207 and AEOL11114 were identified as having significant ability to protect against 6-OHDA induced neurotoxic damage in the PD rat model that is consistent with the previous results in the MPTP mouse PD model (Liang et al., 2017). Both compounds are orally active, readily penetrate the BBB and may be useful for chronic neurologic diseases such as PD.

Authorship Contributions:

- Participated in research design: Liang, Day, and Patel
- Conducted experiments: Liang, Fulton, and Pearson-Smith
- Contributed new reagents or analytic tools: Bradshaw-Pierce and Day
- Performed data analysis: Liang, Bradshaw-Pierce, and Day
- Wrote or contributed to the writing of the manuscript: Liang, Bradshaw-Pierce, Pearson-Smith, Day, and Patel
References

Funding:

This study was supported by the Michael J. Fox Foundation Novel Approaches to Drug Discovery (NADD) Award 2012-2013 (M.P.).

Conflict of interest statement:

Drs. Day and Patel are inventors on US patents related to these metalloporphyrins.
Figure 1 Structures of Metalloporphyins. AEOL11114 Molecular Weight: 802.99 and AEOL11207 Molecular Weight: 650.80

Figure 2 The concentration of AEOL11207 or AEOL11114, dissolved in a new pharmaceutical formulation (18% PEG 400, 2% benzyl alcohol and 30% propylene glycol), in the plasma (A) and brains (B) of rats 1h, 6h, 24h, 48h and 96h after a single dose of AEOL11207 or AEOL11114 10 mg/kg by tail intravenous (i.v.) or per oral (p.o.) administration. Points represent mean ± S.D. Each point is the average of 3 animals.

Figure 3 A semi-physiologic pharmacokinetic model was fit to AEOL11207 (A) and AEOL11114 (B) plasma and brain oral concentration-time data.

Figure 4 Dosing scheme simulations for AEOL11207 (A) and AEOL11114 (B). The semi-physiologic pharmacokinetic model was used to simulate plasma and brain concentration-time data under different dosing regimens. Simulations were used to establish a dose and dosing schedule of AEOL11207 that would achieve a plasma C_{min} of ~ 1 µM and brain C_{min} in the range of 100-150 nM and used to establish a dose and dosing schedule of AEOL11114 that would achieve a plasma C_{min} of ~ 1 µM (803 µg/L) and brain C_{min} in the range of 100-150 nM (80-120 µg/L).

Figure 5 A GSH, GSSG and 3-NT in the ipsilateral site of the ventral midbrain of rats 3, 7, 14 and 28 days post 6-OHDA 20 µg in 4 µl saline solution containing 0.02% ascorbic acid or same volume 0.02% ascorbic acid in saline (sham) intrastriatal infusion. Bars represent mean ± S.D. * p<0.01 vs. sham, one-way ANOVA test with Tukey-Kramer's post-hoc tests, GSH [F(4-31)=1.36, p=0.269]; GSSG [F(4-31)=10.96, p<0.001]; 3-NT [F(4-31)=14.39, P<0.001]; n=6-12 rats per group.
Figure 5B GSH, GSSG and 3-NT in the ipsilateral site of the ventral midbrain of rats 14 days with vehicle (18% PEG 400, 2% benzyl alcohol and 30% propylene glycol), AEOL11207 or AEOL11114 10 mg/kg, p.o. every other day starting at 1 day post 6-OHDA intrastriatal infusion or sham. Bars represent mean + S.D. * p<0.01 vs. sham + vehicle, # p<0.05 vs. 6-OHDA + vehicle, one-way ANOVA with Tukey-Kramer's post-hoc tests, GSH [F(3-20)=2.79, p=0.067]; GSSG [F(3-20)=19.82, p<0.0001]; 3-NT [F(3-20)=10.86, P=0.0002]; n=6 rats per group.

Figure 6 Dopamine levels in the ipsilateral site of the striata of rats 4 weeks with vehicle, AEOL11207 or AEOL11114 10 mg/kg, p.o. every other day starting at 1 day (A) or 3 days (B) post 6-OHDA intrastriatal infusion or sham. Bars represent mean + S.D. * p<0.01 vs. sham + vehicle, # p<0.01 vs. 6-OHDA + vehicle, one-way ANOVA with Tukey-Kramer's post-hoc tests, 1 day [F(3-24)=42.41, p<0.0001]; 3 day [F(3-26)=31.51, p<0.0001]; n=6-12 rats per group.

Figure 7 Percentage of dopaminergic neurons (TH positive neurons) in the ipsilateral site of the substantia nigra pars compacta (SNpc) of rats 4 weeks with vehicle, AEOL11207 or AEOL11114 10 mg/kg, p.o. every other day starting at 1 day (A) or 3 days (B) post 6-OHDA 20µg intrastriatal infusion or sham. Stereological neuronal counts were performed using unbiased stereological analysis. The number of TH positive neurons in the ipsilateral site of SNpc with sham treatment rats as 100%. Bars represent mean + S.D. * p<0.01 vs. sham + vehicle, # p<0.05 vs. 6-OHDA + vehicle, one-way ANOVA with Tukey-Kramer's post-hoc tests, 1 day [F(3-31)=7.164, p=0.0006]; 3 day [F(3-29)=5.246, p=0.0051]; n=6-12 rats per group.
Figure 8 Panel 1: Representative microglia activation (Iba-1 staining) images in the ipsilateral site of the striata of rats 14 days after sham with vehicle (A) or 6-OHDA with vehicle (B), AEOL11207 (C) or AEOL11114 (D) 10 mg/kg, p.o. every other day starting 1 day post 6-OHDA intrastratal infusion or sham. The insets on the low right corner of each picture are the enlarged image from the white rectangle.

Figure 8 Panel 2: Quantitative analysis of microglia activation fluorescence density in the ipsilateral site of the striata of rats 14 days with vehicle, AEOL11207 or AEOL11114 10 mg/kg, p.o. every other day starting 1 day post 6-OHDA intrastratal infusion or sham. The microglia activation fluorescence density in each given area of striata was estimated with Image J. The fluorescence density average in the ipsilateral site of the striata with sham treatment rats as 100%. Bars represent mean + S.D. *p<0.01 vs. sham + vehicle, #p<0.05 vs. 6-OHDA + vehicle, one-way ANOVA with Tukey-Kramer’s post-hoc tests, 1 day [F(3-20)=13.08, p<0.0001]; n=6 rats per group.

Figure 9 IL-1β, IL-6, TNF-α and KC/GRO levels in the striata injected with 6-OHDA 5 days after vehicle, AEOL11207 or AEOL11114 (10 mg/kg, p.o.) dosed every other day starting at 1 day post 6-OHDA intrastratal infusion or sham. Bars represent mean + S.D. * p<0.01 vs. sham + vehicle, # p<0.01 vs. 6-OHDA + vehicle, one-way ANOVA with Tukey-Kramer’s post-hoc tests, IL-1β [F(3-20)=7.531, p=0.0015]; IL-6 [F(3-20)=9.820, p=0.0003]; TNF-α [F(3-20)=12.72, p<0.0001]; KC/GRO [F(3-26)=10.04, p=0.0003]; n=6 rats per group.

Figure 10 The rotation behavior of rats 4 weeks with vehicle, AEOL11207 or AEOL11114 10 mg/kg, p.o. every other day starting at 1 day (A) or 3 days (B) post 6-OHDA 20 µg intrastratal infusion or sham. Rats were tested with systemic apomorphine.
administration (0.5 mg/kg in 0.1% ascorbic acid, i.p.). The number of turns was recorded by an automated recording system for 60 min. Bars represent mean ± S.D. * p<0.01 vs. sham + vehicle, # p<0.05 vs. 6-OHDA + vehicle, one-way ANOVA with Tukey-Kramer’s post-hoc tests, 1 day [F(3-21)=7.693, p=0.0012]; 3 day [F(3-21)=3.961, p=0.0220]; n=6-7 rats.
Table 1. Summary of non-compartmental analysis results of metalloporphyrins

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>% F</th>
<th>t½ (hour)</th>
<th>Cmax (µM)</th>
<th>AUC (_{0-96}) (µM*hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma</td>
<td>AEOL11207 i.v.</td>
<td>21.0</td>
<td>436</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p.o.</td>
<td>23</td>
<td>38</td>
<td>2.53</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>AEOL11114 i.v</td>
<td>11.2</td>
<td>540</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p.o.</td>
<td>25</td>
<td>169</td>
<td>3.78</td>
<td>134</td>
</tr>
<tr>
<td>Brain</td>
<td>AEOL11207 i.v</td>
<td>0.32</td>
<td>15.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p.o.</td>
<td>0.21</td>
<td>9.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AEOL11114 i.v</td>
<td>0.40</td>
<td>19.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p.o.</td>
<td>0.14</td>
<td>8.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

i.v. (intravenous), p.o. (per oral), % F (% bioavailability), t½ (terminal half-lives), Cmax (maximum concentration), AUC (area under the curve). The terminal half-lives in the plasma were estimated.
Table 2. Model predictive values

<table>
<thead>
<tr>
<th></th>
<th>MAPE %</th>
<th>MPE %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Plasma</td>
<td>Brain</td>
</tr>
<tr>
<td>AEOL11207</td>
<td>7.6</td>
<td>21.9</td>
</tr>
<tr>
<td>AEOL11114</td>
<td>26.9</td>
<td>17.7</td>
</tr>
</tbody>
</table>

MAPE %: median absolute performance error; MPE %: the median performance error.

The detail calculation protocol see Methods section.
Cytokine levels in the rat striatum 3 or 5 days post 6-OHDA infusion. Data are expressed as pg/g tissue (units) and depicted as mean ± S.D, * p<0.01 vs. sham, one-way ANOVA with Tukey-Kramer’s post-hoc tests, N=4-6.
Figure 1

AEOL 11207

AEOL 11114
Figure 2

(A) Plasma

- AEOL11207 i.v.
- AEOL11114 i.v.
- AEOL11207 p.o.
- AEOL11114 p.o.

(B) Brain

- AEOL11207 i.v.
- AEOL11114 i.v.
- AEOL11207 p.o.
- AEOL11114 p.o.

μM vs. Time (h) for Plasma

pmol/g tissue (nM) vs. Time (h) for Brain
Figure 3

A AEOL11207

Plasma

Concentration (µg/L)

Time (h)

0 24 48 72 96

Brain

Concentration (µg/L)

Time (h)

0 24 48 72 96

B AEOL11114

Plasma

Concentration (µg/L)

Time (h)

0 24 48 72 96

Brain

Concentration (µg/L)

Time (h)

0 24 48 72 96
Figure 5

B

GSH

- Sham + Vehicle
- 6-OHDA + Vehicle
- 6-OHDA + AEOL11207
- 6-OHDA + AEOL11114

GSSG

3-NT

μmol/g tissue

nmol/g tissue

3-NT/Tyrosine x 1000

*

Downloaded from jpet.aspetjournals.org on February 4, 2022

This article has not been copyedited and formatted. The final version may differ from this version.
Figure 9

IL-1β
- Sham+Vehicle
- 6-OHDA+Vehicle
- 6-OHDA+AEOL11207
- 6-OHDA+AEOL11114

IL-6

TNF-α

KC/GRO

pg/g tissue

pg/g tissue

pg/g tissue

pg/g tissue

* *

#
Figure 10

Rotation

A 1 day

- * Sham+Vehicle
- 6-OHDA+Vehicle
- 6-OHDA+AEOL11207
- 6-OHDA+AEOL11114

B 3 day

- * 6-OHDA+AEOL11114