ORIGINAL ARTICLE SUBMISSION

TITLE PAGE

Title:
Distinct uptake kinetics of Alzheimer’s disease amyloid beta 40 and 42 at the blood-brain barrier endothelium

Author names and affiliation:
Nidhi Sharda, Kristen M. Ahlschwede, Geoffry L. Curran, Val J. Lowe and Karunya K. Kandimalla
N.S. and K.K.K.: Department of Pharmaceutics and the Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
K.M.A.: Department of Pharmaceutical Sciences, Rosalind Franklin University of Medicine and Science, College of Pharmacy, North Chicago, IL, USA
G.L.C and V.J.L.: Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN, USA
G.L.C and K.K.K.: Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
Note: N.S.: Current affiliation: Department of Clinical Pharmacology & Pharmacometrics, Bristol-Myers Squibb, Princeton, NJ, USA

Primary Laboratory of origin
Kandimalla Laboratory
9-149 Weaver Densford Hall
Department of Pharmaceutics and the Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
Alzheimer’s disease (AD), Amyloid beta 40 (Aβ40), Amyloid beta 42 (Aβ42), Blood-brain barrier (BBB), Human brain microvascular endothelial (hCMEC/D3), Single photon emission computed tomography/computed tomography (SPECT/CT),

Recommended section: Metabolism, Transport, and Pharmacogenomics
ABSTRACT:

Blood-brain barrier (BBB) endothelial cell lining the cerebral microvasculature maintain dynamic equilibrium between soluble amyloid beta (Aβ) levels in the brain and plasma. The BBB dysfunction prevalent in Alzheimer’s disease contributes to the dysregulation of plasma and brain Aβ and leads to the perturbation of ratio between Aβ42 and Aβ40, two most prevalent Aβ isoforms in Alzheimer’s patients. We hypothesize that BBB endothelium distinguishes between Aβ40 and Aβ42, distinctly modulates their trafficking kinetics between plasma and brain and thereby contributes to the maintenance of healthy Aβ42/Aβ40 ratios. To test this hypothesis, we investigated Aβ40 and Aβ42 trafficking kinetics in hCMEC/D3 monolayers (human BBB cell-culture model) in vitro as well as in mice in vivo. While the rates of uptake of fluorescein labeled Aβ40 and Aβ42 (F-Aβ40 and F-Aβ42) were not significantly different on the abluminal side, the luminal uptake rate of F-Aβ42 was substantially higher than F-Aβ40. Since, higher plasma Aβ levels were shown to aggravate BBB dysfunction and trigger cerebrovascular disease, we systematically investigated the dynamic interactions of luminal 125I-Aβ peptides and their trafficking kinetics at BBB using single-photon-emission-computed-tomography/computed-tomography (SPECT/CT) imaging in mice. Quantitative modeling of the dynamic imaging data thus obtained showed that the rate of uptake of toxic 125I-Aβ42 and its subsequent BBB transcytosis is significantly higher than 125I-Aβ40. It is likely that the molecular mechanisms underlying these kinetic differences are differentially affected in Alzheimer’s and cerebrovascular diseases, impact plasma and brain levels of Aβ40 and Aβ42, engender shifts in Aβ42/Aβ40 ratio, and unleash downstream toxic effects.
Significance Statement:

Dissecting the binding and uptake kinetics of Aβ40 and Aβ42 at the BBB endothelium will facilitate the estimation Aβ40 versus Aβ42 exposure to the BBB endothelium and allow us to assess the risk of BBB dysfunction by monitoring Aβ42 and Aβ40 levels in the plasma. This knowledge, in turn, will aid in elucidating the role of these predominant Aβ isoforms in aggravating BBB dysfunction and cerebrovascular disease.
INTRODUCTION

Alzheimer’s disease research thus far has been predominantly neurocentric with limited effort focused on investigating the influence of systemic and non-neuronal systems on the disease progression. Specifically, pathophysiological mechanisms driving the neurovascular unit (NVU) dysfunction is one of the underexplored areas. The vascular components of the NVU, constituting of the blood-brain barrier (BBB) endothelium and pericytes, interface with neurons and astrocytes in the brain parenchyma (Bell et al., 2007; Deane et al., 2009). These vascular and neuronal components are seamlessly integrated into a cohesive unit such that disruption to one component influences the integrity and function of the other (Zlokovic, 2010; Erickson and Banks, 2013).

The two-hit hypothesis of Alzheimer’s disease (AD) proposed by Zlokovic (Zlokovic, 2011) emphasized this interconnectivity and posited that the pathological manifestations in Alzheimer’s brain are secondary and subsequent to the primary insult sustained by the BBB endothelium. Vascular risk factors, such as metabolic syndrome and inflammatory changes in the periphery, may constitute the first hit and result in BBB dysfunction. Since the BBB endothelium plays a central role in maintaining dynamic equilibrium between plasma and brain Aβ levels (Bowman and Quinn, 2008; Deane et al., 2009), the BBB dysfunction could affect Aβ levels in plasma and brain and alter Aβ42/Aβ40 ratios (Marques et al., 2009). These changes are thought to render the second hit by triggering neuropathological symptoms in the brain and accelerating cognitive decline (Toledo et al., 2013; Fandos et al., 2017).

Another important, yet under investigated dimension of this hypothesis is the role of plasma Aβ in exacerbating neurocognitive changes. Literature reports indicate that increase in plasma Aβ levels and shifts in Aβ42/Aβ40 ratios intensify BBB dysfunction, propel the positive
feedback loop, and accelerate neurodegenerative changes (DeMattos et al., 2001; Marchi et al., 2004; Ascolani et al., 2012; Erickson and Banks, 2013; Eisele et al., 2014; Koizumi et al., 2016; Poljak and Sachdev, 2017; Govindpani et al., 2019). Recently, Aβ40 and Aβ42 were suggested to have distinct effects on this positive feedback loop. Higher Aβ40 concentration in plasma was shown to be associated with an elevated risk of dementia compared to Aβ42 (van Oijen et al., 2006). On the other hand, Aβ42 in the brain was shown to trigger substantially greater neurodegeneration (Younkin, 1998; Cleary et al., 2005) and tau hyperphosphorylation (Lacor et al., 2007; Ryan et al., 2009; Hu et al., 2014) than Aβ40. However, differing by only two amino acids and being recognized by the same receptors on the luminal side [receptor for advanced glycation end products (RAGE)] and on the abluminal side [low density lipoprotein receptor-related protein 1 (LRP1)], it is unclear how Aβ40 and Aβ42 could manifest these differential effects.

We addressed this question by investigating the kinetics of Aβ40 and Aβ42 interactions and their subsequent uptake at the BBB endothelium. This knowledge is expected to help determine the extent of Aβ40 versus Aβ42 exposure to the BBB endothelium, assess the risk of BBB dysfunction, and associate it with the downstream neuropathological changes.
MATERIALS AND METHODS

Reagents and Lab supplies: 125I was obtained from Perkin-Elmer Life and Analytical Sciences (Boston, MA). Plasticware was obtained from Corning Life Sciences (Tewksbury, MA), USA Scientific (Ocala, FL) or Denville Scientific Inc. (South Plainfield, NJ).

Synthesis of native, fluorescein labeled and radioiodinated Aβ peptides: Aβ40, fluorescein labeled Aβ40 (F-Aβ40), Aβ42, and F-Aβ42 were synthesized as described earlier (Kandimalla et al., 2005; Omtri et al., 2012; Agyare et al., 2013; Swaminathan et al., 2018) and Aβ monomers were prepared according to the procedure described by Klein (Klein et al., 2004). Briefly, Aβ peptides were accurately weighed, dissolved in ice cold 1,1,1,3,3,3 hexafluoroisopropanol (HFIP) (MP Biomedicals, Santa Ana, CA), and incubated at room temperature for 60 min. The resultant solutions were chilled on ice, aliquoted appropriately, and allowed to dry overnight. The HFIP traces were further removed by vacuum evaporation, and the dried films were stored at -20 °C. Before each experiment, the Aβ films were dissolved in anhydrous dimethyl sulfoxide (DMSO), diluted in Ham’s F-12 medium (Mediatech, Manassas, VA), and centrifuged at 18,000 rpm to remove any insoluble Aβ aggregates. Radiiodination of Aβ40 and Aβ42 was conducted using the chloramine-T procedure as described in our previous publications (Poduslo et al., 1997; Kandimalla et al., 2005). Free radioactive iodine was removed by dialysis against 0.01 M phosphate-buffered saline (PBS) at pH 7.4 (Sigma-Aldrich, St. Louis, MO). The extent of radiolabeling of Aβ peptides was determined by trichloroacetic acid (TCA) precipitation. The radiiodinated Aβ preparations were used in the experiments only if the TCA precipitable counts were greater than 95 % of the total counts. The specific activity of 125I-Aβ40 and 42 was determined to be in the range of 45-48 µCi/µg.
Cell culture: All cell culture experiments were performed on transformed cell lines in BCL-2 hood as required by the Institutional Biological Safety Committee at the University of Minnesota, MN. Human brain microvascular endothelial (hCMEC/D3) cells were a gift from Dr. Pierre-Oliver Couraud (INSERM U1016, Institut Cochin, Paris, France). The hCMEC/D3 cells were grown in endothelial cell growth basal (EBM-2) medium (Lonza, NJ) supplemented with 1 ng/mL human basic fibroblast growth factor (PeproTech, NJ), 10 mM HEPES, 1 % chemically defined lipid concentrate (Gibco, NY), 5 µg/mL ascorbic acid, 1.4 µM hydrocortisone, 1 % penicillin-streptomycin (MP Biomaterials, OH) and 5 % of fetal bovine serum (FBS). Polarized hCMEC/D3 cell monolayers were cultured on collagen (Corning, MA) coated 6 well plates or Transwell® filters (Corning Costar™, MA) under 5 % CO₂ at 37 °C. Trans-endothelial electrical resistance (TEER), representative of tight junctional integrity of the monolayers, was measured using chopstick electrodes attached to EVOM meter (World Precision Instruments, Sarasota, FL). The TEER values of hCMEC/D3 monolayers were found to be around 70-80 Ω cm².

Flow cytometry: Following the treatment with F-Aβ, hCMEC/D3 cell monolayers were washed thoroughly with PBS, gently trypsinized with trypsin-EDTA for 30 sec and neutralized with FBS. The dislodged cells were washed twice using ice cold PBS, fixed with 4 % paraformaldehyde (PFA) solution and the intracellular fluorescence was quantified using BD FACSCalibur™ flow cytometer. The F-Aβ40 and F-Aβ42 intracellular fluorescence intensities were measured using 488 nm laser fitted with 530/30 filter. Data was acquired with BD CellQuest™ Pro and analyzed using FlowJo software. Intracellular fluorescence units (IFU) are presented as geometric means ± geometric standard deviation.
Kinetics of F-Aβ40 or F-Aβ42 uptake at BBB endothelium in vitro

F-Aβ uptake kinetics as a function of concentration: Polarized hCMEC/D3 cell monolayers were incubated with increasing concentrations of F-Aβ40 or F-Aβ42 (0.06 µM to 0.9 µM) for 30 min at 37 °C or 4 °C. The cells were harvested and analyzed using flow cytometry as described. The observed intracellular fluorescence (geometric mean ± geometric SD) was plotted as a function of F-Aβ concentration (µM).

F-Aβ uptake kinetics as a function of time: Polarized hCMEC/D3 monolayers grown on Transwell® filters were incubated with 0.45 µM of F-Aβ40 or F-Aβ42 on either luminal (L) or abluminal (A) side for various lengths of time (15-60 min) and the intracellular uptake was assessed by flow cytometry. The observed geometric mean was plotted as a function of time, and rate of uptake was estimated by fitting the data to linear regression model using GraphPad Prism® software.

Kinetics of Aβ40 and Aβ42 uptake at the BBB endothelium in vivo

Animals: The B6SJLF1 mice, which will be hereafter referred to as wild-type mice (WT), were procured from Jackson Laboratory (Bar Harbor, ME). The mice were housed in virus-free barrier facility with 12-hour light and dark cycle and were provided with pellet food and purified water ad libitum. Male and female mice between ages of five and eight months were randomly distributed among various groups (n=3 each for plasma PK and brain SPECT/CT, respectively, for Aβ40 and Aβ42). All animal studies were conducted in a single blinded fashion and only the details required for conducting the studies were provided to the experimenters. All animal experiments were conducted as per the National Institutes of Health guidelines for the care and
use of laboratory animals, and protocols approved by the Mayo Clinic Institutional Animal Care and Use Committee, Rochester, MN. Data in this manuscript are reported according to the ARRIVE guidelines.

Plasma pharmacokinetic (PK) studies using Gamma counter: WT mice were anesthetized using a mixture of isofluorane and oxygen (1.5 % and 4 L/min). Femoral vein and femoral artery were catheterized under general anesthesia. Single IV bolus dose of 125I-Aβ40 or 125I-Aβ42 equivalent to 100 µCi/100µL was administered through the femoral vein. The blood was sampled (20 µL) from the femoral artery at various time points of 0.25, 1, 3, 5, 10 and 15 min. The recovered plasma was subjected to tricholoacetic acid (TCA) precipitation and the 125I radioactivity in the precipitate and supernatant was assayed using gamma counter (Cobra II; PerkinElmer Life and Analytical Sciences, Boston, MA). The radioactivity in the precipitate was deemed to be associated with the intact protein.

Brain uptake studies using dynamic Single Photon Emission Computed Tomography coupled with computed tomography (SPECT/CT): A 500 µCi dose of 125I-Aβ40 and 125I-Aβ42 in 100 µL was administered to WT mice via femoral vein. Brain uptake of 125I-Aβ radioactivity was determined by dynamic planar imaging (Gamma Medica-Ideas Pre-Clinical Imaging, Northridge, CA) using a low energy and high resolution parallel-hole collimator with 12.5 cm FOV and 13:36 min acquisition time. Over 64 projections (10 sec per projection) were obtained with a reported resolution 1 to 2 µm. Then CT scans were acquired on a continuous circular orbit with a 50 µm slice thickness. A total of 256 images at 80 kVp and 0.28 mA current were acquired at a reported resolution of 43 µm. Dynamic SPECT and CT images were processed and analyzed.
using Biomedical Image Quantification and Kinetic Modeling Software version 2.85 (PMOD Technologies, Switzerland).

Evaluation of Aβ interactions with the BBB and subsequent brain uptake by Logan and Patlak plots. Logan and Patlak approaches describe ways to linearize the blood-to-brain distribution of 125I-Aβ, without making any assumptions on the particular arrangement or the number of compartments involved. While the Logan plot describes reversible kinetics with a slope parameter attributed to the distribution volume (V_T) (Logan et al., 1990), the Patlak plot describes irreversible kinetics predicting the influx clearance (K_i) (Patlak et al., 1983). The initial interactions between plasma and the BBB endothelium, described by dynamic SPECT/CT data, during the first 5 min following IV bolus injection were assumed to reflect the reversible kinetics at the surface of the BBB and the subsequent transfer beyond 5 min was assumed to reflect irreversible uptake into brain parenchyma (> 5 min). Therefore, first five minutes (0-5 minutes) SPECT/CT data was used to construct the Logan plot and the 5-40 minutes data was used to construct the Patlak plot. Plasma observations were simulated for individual animals with the plasma PK parameters predicted using experimental data.

The Logan equation for reversible kinetics is:

$$\frac{\int_0^t A_{\text{brain}} \, dt}{A_{\text{brain}}(t)} = V_T \cdot \frac{\int_0^t C_p \, dt}{A_{\text{brain}}(t)} + b$$

(1)

where, $A_{\text{brain}}(t)$ is the amount of 125I-Aβ radioactivity associated with the brain as measured by SPECT/CT (μCi) at time t; $\int_0^t A_{\text{brain}} \, dt$ is the area under the brain radioactivity-time curve from time ‘0’ to ‘t’ (μCi. min); $C_p(t)$ is the plasma 125I-Aβ concentration at t (μCi/mL); $\int_0^t C_p \, dt$ is the
area under the plasma concentration-time curve from time ‘0’ to ‘t’ (µCi/mL.min); \(V_T \) is the slope of the linear equation referred to as the distribution volume (mL); and \(b \) is the intercept of the linear equation (min). The Logan plot was generated by plotting \(\frac{\int_0^t A_{\text{brain}}\,dt}{A_{\text{brain}}(t)} \) as a function of \(\frac{\int_0^t C_p\,dt}{A_{\text{brain}}(t)} \).

To assess the influx of \(^{125}\text{I-}\text{Aβ40} \) or \(^{125}\text{I-}\text{Aβ42} \) from plasma into the brain, Patlak plot was constructed by the following equation:

\[
\frac{A_{\text{brain}}(t)}{C_p(t)} = K_i \frac{\int_0^t C_p\,dt}{C_p(t)} + V_0
\]

(2)

where, \(K_i \), the influx clearance into the brain (mL/min) was determined as the slope parameter. \(V_0 \), is the intercept of the linear equation referring to the volume of the vascular compartment (mL).

Thus, the Logan plot is linear when transient equilibrium between the plasma and BBB endothelium is attained (lag time), and remains linear until the ligand is associated with BBB endothelium and displays reversible kinetics. This linearity is lost when the ligand entered brain compartment, irreversibly.

Resolution of Aβ interactions with the BBB by PK compartmental modeling. A three-compartment model comprising of plasma and highly perfused tissues; other peripheral organs and tissues; and BBB endothelium as well as the brain parenchyma, was constructed. Forward and reverse rate constants describing the transfer between plasma and tissue are \(k_{12} \) and \(k_{21} \) respectively, whereas the transfer rate constants between plasma and BBB endothelium are designated as \(k_{13} \) and \(k_{31} \). The elimination rate constant from the plasma compartment was \(k_{10} \).
It was assumed that the short time exposure to the BBB endothelium (< 5 min) was insufficient to produce detectable levels within the BBB endothelium and the brain compartment; hence, elimination from the brain, which includes enzymatic degradation and brain clearance, was assumed to be negligible. This assumption is valid as the macromolecule such as Aβ is expected to traffic the overall thickness of BBB endothelium, around 2-3 µm (Li et al., 2010), via receptor-mediated endocytosis, which is expected to take well over 15 min. For example, it takes about 30 min for 68 % of transferrin to reach from luminal to the abluminal side of the BBB, whereas, in 5 min only a modest amount of 10-12 % was claimed to reach the abluminal side (Khan et al., 2018). Further, it is known that Logan plot remains linear only until the kinetics are reversible. While the first 5 min signifies the reversible interactions of Aβ peptide with its receptor on the luminal surface of the BBB, the Aβ peptide enters into the irreversible cellular compartment beyond 5 min, and later into the brain parenchyma. This is coincided with the loss of linearity in the Logan plot beyond 5 min as the assumption of reversible uptake is no longer valid (supplementary Figure 1). Based on these observations, 0-5 min data was used for the Logan plot (reversible kinetics at BBB endothelium), whereas 5-40 min data (irreversible kinetics into the cellular compartments and brain parenchyma) was used to construct the Patlak plot. Additionally, uniform mixing is assumed in all compartments and elimination from BBB and the tissue compartment was assumed to be negligible when compared to the elimination from the central compartment.

The initial estimates were obtained for both Aβ40 and Aβ42 based on the in vitro uptake studies (k_{13} and k_{31}) and the PK parameters ($k_{12}, k_{21}, k_{10}, V$) predicted by fitting the model described by the following differential equations to in vivo plasma and brain data. Initial conditions were $C_{plasma} = \frac{Dose}{V}$ and $C_{tissue} = C_{BBB} = 0$; where, Dose refers to the total dose.
administered in radioactivity units (µCi), \(V \) stands for apparent volume of distribution in milliliters (mL), \(C_{\text{plasma}} \), \(C_{\text{tissue}} \) and \(C_{\text{BBB}} \) represent the concentrations in plasma, tissue and blood brain barrier, respectively.

\[
\frac{dC_{\text{plasma}}}{dt} = -(k_{10} + k_{13} + k_{12}) \cdot C_{\text{plasma}} + k_{21} \cdot C_{\text{tissue}} + k_{31} \cdot C_{\text{BBB}} \tag{3}
\]

\[
\frac{dC_{\text{tissue}}}{dt} = k_{12} \cdot C_{\text{plasma}} - k_{21} \cdot C_{\text{tissue}} \tag{4}
\]

\[
\frac{dC_{\text{BBB}}}{dt} = k_{13} \cdot C_{\text{plasma}} - k_{31} \cdot C_{\text{BBB}} \tag{5}
\]

Various kinetic parameters were predicted by simultaneously fitting the model to plasma and brain radioactivity obtained by gamma counter and SPECT/CT imaging, respectively and the goodness-of-fit was assessed.

Statistical analyses:

The observed data is expressed as mean ± standard deviation, whereas predicted parameters are presented either as parameter estimate ± standard error or parameter estimate (percent coefficient of variance). Statistical significance (*p<0.05, **p<0.01 and ***p<0.001) of the differences between Aβ40 and Aβ42 kinetics was ascertained by Student’s t-test conducted using Prism version 5 (Graph pad software, La Jolla, CA).
RESULTS

We investigated the kinetics of Aβ40 and Aβ42 uptake and transcytosis at the BBB *in vitro* in hCMEC/D3 cell monolayers. The *in vitro* findings were then verified in mice *in vivo* by employing dynamic imaging methods coupled with quantitative modeling techniques.

Distinct uptake kinetics of F-Aβ40 and F-Aβ42 at the BBB endothelium in vitro (*Fig. 1, Table I*). F-Aβ peptides demonstrated saturable uptake by polarized hCMEC/D3 cell monolayers grown on 6-well plates at 37 °C. However, F-Aβ uptake at 4 °C, when energy dependent endocytic mechanisms were inhibited, was linearly dependent on the donor concentration (*Fig. 1B*). In addition, both F-Aβ40 and F-Aβ42 accumulated linearly over time in hCMEC/D3 cell monolayers grown on Transwell® filters, and their cellular accumulation was higher following luminal exposure (*Fig. 1D*) than upon abluminal exposure (*Fig. 1E*). Importantly, slopes of F-Aβ40 or F-Aβ42 uptake by hCMEC/D3 cell monolayers versus time were not significantly different upon abluminal exposure (*Table I*). However, upon luminal exposure, the slope of F-Aβ42 (1.79 ± 0.12 IFU/min) was found to be significantly (Student’s t-test, p***<0.001) greater than that of F-Aβ40 (0.55 ± 0.04 IFU/min).

* Determination of ¹²⁵I-Aβ kinetics at the BBB and brain in vivo using graphical model analyses* (*Fig. 2, Table II*). Dynamic imaging methods allow us to temporally separate ¹²⁵I-Aβ interactions with the BBB and analyze those using Logan and Patlak plots. The Logan plot describes the reversible interaction of ¹²⁵I-Aβ with the BBB endothelium, which is assumed to occur within the first five minutes of IV bolus administration. Beyond five minutes, irreversible entry of ¹²⁵I-Aβ into the BBB endothelium and brain parenchyma predominates and the
corresponding kinetics could be described by the Patlak plot. The Logan plot analysis demonstrated distinct reversible kinetics of 125I-Aβ40 and 125I-Aβ42 and predicted significantly (***p<0.001) higher V_T for 125I-Aβ42 (55.8 ± 1.2 µL) than for 25I-Aβ40 (39.7 ± 0.07 µL) (Fig. 2B, Table II). Beyond 5 min, linearity of the Logan plots was lost, which may represent switch from reversible 125I-Aβ interactions with the BBB to irreversible 125I-Aβ uptake into the BBB endothelium and brain parenchyma (Supplementary fig 1). The irreversible 125I-Aβ kinetics were described by the influx clearance (K_i) assessed by the Patlak plots (Fig. 2C, Table II). The K_i for 25I-Aβ42 (0.33 ± 0.07 µL/min) was found to be significantly (*p<0.05) higher than that of 125I-Aβ40 (0.17 ± 0.03 µL/min).

Differences between 125I-Aβ40 and 125I-Aβ42 interactions with the BBB endothelium (Fig. 3, Table III). Upon IV bolus administration in WT mice, 125I-Aβ concentrations were assessed in plasma and the brain (Fig. 3A). The brain concentrations were assayed by dynamic SPECT/CT imaging within 5 min following 125I-Aβ administration and are assumed to be associated with the BBB endothelium. The compartmental model described in Fig. 3B was simultaneously fitted to the plasma and BBB concentrations of 125I-Aβ40 (Fig. 3C) or 125I-Aβ42 (Fig. 3D). The goodness-of-fit was established based on the Akaike criterion and the residual plots. The plasma PK parameter estimates (Table III) thus obtained for k_{12}, k_{21} and k_{10} showed statistically significant differences between 125I-Aβ40 and 125I-Aβ42. Additionally, the predicted volume of distribution (V) of 125I-Aβ42 (16.47 ± 1.28 mL) was significantly greater than that of 125I-Aβ40 (5.15 ± 0.37 mL). Moreover, influx (k_{13}) and efflux (k_{31}) rate constants between plasma and BBB, estimated from the dynamic SPECT/CT imaging data, were found to be significantly different between 125I-Aβ40 and 125I-Aβ42. Since, these peptides do not appreciably permeate the
BBB and reach the brain parenchyma in significant amounts within the first 5 min, k_{13} and k_{31} are expected to describe the interactions of 125I-Aβ40 or 125I-Aβ42 with their luminal receptors. The dissociation constant k_d, which is represented as the ratio of k_{31} to k_{13}, was also found to be substantially lower for 125I-Aβ40 (107.5) than for 125I-Aβ42 (355.5).
DISCUSSION

Cerebrovascular diseases such as small vessel disease, white matter hyper-intensities, and cerebral amyloid angiopathy were reported to contribute to approximately 40% of all dementias, including Alzheimer’s disease (AD). Although, underlying mechanisms are not completely understood, plasma Aβ appears to aggravate BBB dysfunction in cerebrovascular diseases (Goos et al., 2012). It was claimed that the BBB dysfunction associated with these pathologies leads to a reduction in Aβ clearance from the brain and augment neuropathological changes, manifested as amyloid burden, tau tangles and neuronal loss (Kisler et al., 2017). In the Rotterdam study, higher plasma Aβ levels were found to be associated with the greater incidence of cerebrovascular disease and cognitive decline in AD patients as well as in non-demented elderly participants (Hilal et al., 2017). Plasma Aβ40 levels were shown to be strongly associated with diffuse small vessel disease (Gomis et al., 2009), whereas higher plasma Aβ42 levels were found to be associated with white matter hyperintensity volume and greater incidence of infarcts on MRI (Gurol et al., 2006; Toledo et al., 2011). Additionally, chronic exposure of plasma Aβ40 and Aβ42 to the BBB endothelium was shown to produce vasoconstriction (Suhara et al., 2003; Rice et al., 2012) and vasomotor dysfunction (Park et al., 2013); cerebral blood flow changes (Niwa et al., 2000); and BBB leakage (Wan et al., 2015). However, the toxicokinetics of plasma Aβ and the differential impact of Aβ40 and Aβ42 on the BBB dysfunction are not well understood.

The endocytosis of Aβ40 and Aβ42 at the BBB endothelium was reported to be mediated by the receptor for advanced glycation end products (RAGE) on the luminal side and low-density-lipoprotein receptor related protein 1 (LRP1) on the abluminal side. The Aβ40 demonstrated greater affinity to LRP1 and possibly to RAGE than Aβ42 (Deane et al., 2004,
2009, 2012). Our studies in WT mice have shown that the efflux of 125I-\(\text{A}\beta40\) in the abluminal to luminal (A-L) direction is 1.5-fold greater than that of 125I-\(\text{A}\beta42\), but the influx of 125I-\(\text{A}\beta42\) in the luminal to abluminal (L-A) direction is about 4-fold greater than that of 125I-\(\text{A}\beta40\) (Swaminathan et al., 2018). Hence, the differences between the transcytosis of \(\text{A}\beta40\) and \(\text{A}\beta42\) at the BBB endothelium could not be completely explained based on their affinities with the receptors. Our hypothesis is that the toxic exposure of \(\text{A}\beta\) peptides to the BBB is a consequence of changes in \(\text{A}\beta\) binding to the BBB endothelium, uptake, and their subsequent transcytosis.

We tested this hypothesis by investigating the uptake of \(\text{A}\beta40\) and \(\text{A}\beta42\) in the polarized hCMEC/D3 endothelial monolayers, which is a well-characterized human BBB model (Weksler, 2005; Poller et al., 2008). Although, polarized hCMEC/D3 monolayer model is known to have leakier tight junctions, its human origin would allow us to employ this model to investigate molecular mechanisms associated with cerebrovascular pathology in AD patients. Moreover, we employed hCMEC/D3 monolayers only to investigate the intra-endothelial accumulation of \(\text{A}\beta\) proteins, which gives us an estimate of BBB exposure to \(\text{A}\beta40\) versus \(\text{A}\beta42\). However, we did not investigate \(\text{A}\beta\) transcytosis in hCMEC/D3 monolayers, as it could be confounded by the leakier paracellular spaces in this model. Like previously reported by us (Kandimalla et al., 2009) and others (Deane et al., 2003), \(\text{A}\beta\) uptake by BBB endothelial cells is saturable and was significantly inhibited at 4 °C. Based on this evidence, \(\text{A}\beta\) peptides are internalized by the BBB endothelium most likely by receptor mediated endocytosis. However, it was recently shown that \(\text{A}\beta\)-mediated decrease in claudin-5 and occludin expression may allow for size-selective paracellular movement of \(\text{A}\beta\) monomers, whereas the higher molecular weight \(\text{A}\beta\) oligomers may still encounter diffusional resistance and thus accumulate in the brain interstitial space (Keaney et al., 2015). Although it is not clear if this is facilitated by the ability
of Aβ to transiently modulate actin cytoskeleton rearrangement in healthy brains, the study suggests the existence of such coordinated Aβ clearance processes at the BBB.

In our *in vitro* experiments, we observed that the unidirectional uptake of both Aβ40 and Aβ42 is polarized and is significantly greater in the L-A direction than in the A-L direction. We further observed that the rate of Aβ42 accumulation is higher than that of Aβ40 in L-A direction, whereas the rate of accumulation is similar for both Aβ40 and Aβ42 in the A-L direction.

To explore these *in vitro* findings, conventional methodologies using steady state measurements (Shibata *et al.*, 2000), microdialysis (Cirrito *et al.*, 2003), or capillary depletion techniques are inadequate, as they are not amenable to determining unidirectional rates of uptake in the L-A direction or vice versa. Hence, dynamic SPECT/CT imaging techniques were employed to determine the rates L-A transcytosis of Aβ40 versus Aβ42. Further, quantitative techniques were employed to temporally resolve initial interactions kinetics of 125I-Aβ peptides with BBB endothelium from the transcytosis. Kinetics of 125I-Aβ with the BBB endothelium during the first five minutes following intravenous administration was described by the Logan plot, which assumes that 125I-Aβ on/off kinetics with the luminal receptors at these earliest time points are reversible. Moreover, the linearity of the Logan plot is lost at later time points (5-40 min), which is likely due to the entry of the tracer into the brain parenchyma- a kinetically irreversible compartment. The irreversibility 125I-Aβ accumulation in the brain parenchyma at later time points satisfies the assumptions of the Patlak plot; hence, Patlak plots were employed to describe the transcytosis of 125I-Aβ.

The slope of the Logan plot, which describes the distribution volume (V_T), was higher for 125I-Aβ42 than for 125I-Aβ40. Moreover, the influx clearance (K_i) into the irreversible brain compartment indicated by the slope of Patlak plot was higher for 125I-Aβ42 than that of 125I-
Aβ40. In fact, Logan slope (V_T) and Patlak slope (K_i) represent two complimentary parameters of L-A transcytosis. Higher V_T value of 125I-Aβ42 suggests robust interaction of Aβ42 with the BBB endothelium compared to 125I-Aβ40. Similarly, higher K_i of 125I-Aβ42 compared to 125I-Aβ40 is indicative of greater brain influx of 125I-Aβ42 compared to 125I-Aβ40. These global trends were further resolved into individual rates by simultaneously fitting plasma and brain data to a compartmental model.

Distinct plasma-to-BBB transfer rate constants for 125I-Aβ40 and 125I-Aβ42 were predicted by the compartmental model. The influx rate constant (k_{13}) of 125I-Aβ42 was higher than that of 125I-Aβ40. Moreover, the product of k_{13} and V, which refers to influx clearance CL_i from plasma-to-BBB, was predicted to be higher for 125I-Aβ42 compared to that of 125I-Aβ40. This is in line with the Patlak plot predictions of higher K_i for 125I-Aβ42 than that of 125I-Aβ40. Moreover, the ratio of k_{31} to k_{13} (k_{31}/k_{13}), an estimate of the dissociation constant (k_d), is higher for 125I-Aβ42 compared to 125I-Aβ40. These results indicate that despite the higher affinity of 125I-Aβ40 to the luminal BBB receptors compared to that of 125I-Aβ42, the L-A transcytosis of 125I-Aβ40 was lower. It is not uncommon for macromolecules to demonstrate greater affinity for the receptors (Thomas, 2000) but show ineffective transcytosis; hence, reduction of receptor affinity is often pursued as a strategy to improve the transcytosis of such molecules (Bien-Ly et al., 2014). While it is possible that the lower ability of 125I-Aβ40 to transcytose across the BBB endothelium is due to its greater receptor affinity, it may also result from the ability of vasculotropic Aβ40 to inhibit its own exocytosis (Agyare et al., 2013), most likely by interfering with the SNARE assemblies (Sharda et al., 2020). It would be interesting to evaluate how these distinct profiles impact the clearance of abluminal Aβ and Aβ plaques in the brain. These aspects are currently being investigated in our laboratory.
Although our current study highlights the differences in the kinetics of luminal Aβ40 and Aβ42, it does not predict any molecular mediators that could potentially lead to these differences. In addition, we did not investigate the impact of plasma protein [albumin, ApoE, ApoJ, soluble LRP (sLRP), soluble RAGE (sRAGE), etc.] binding on the systemic clearance and BBB uptake of Aβ40 versus Aβ42. Another methodological constraint that warrants careful interpretation of the kinetic data is the use of supraphysiological 125I-Aβ doses in SPECT/CT imaging studies to enhance the brain signal. While 10-11 μg of 125I-Aβ was administered as an IV bolus injection in SPECT/CT studies, 2-2.2 μg 125I-Aβ was injected in the plasma PK studies. Based on the volumes of distribution of Aβ40 and Aβ42, these doses are expected to generate plasma concentrations of 2 μg/ml for Aβ40 and 0.6 μg/ml for Aβ42 in SPECT studies. Similarly, in PK studies Aβ40 and Aβ42 plasma concentrations are expected to be around 0.4 and 0.12 μg/ml, respectively. Despite substantial differences in plasma Aβ concentrations, differences between Aβ40 and Aβ42 uptake rates at the BBB were consistent, as observed in our earlier studies (Swaminathan et al., 2018). These results suggest that the relative differences in Aβ40 and Aβ42 uptake at the BBB remain consistent across a wide range of plasma concentrations, including at the plasma Aβ levels observed in Alzheimer’s patients and transgenic mice.

In summary, Aβ40 and Aβ42 exhibit differential trafficking kinetics at the BBB endothelium under normal physiological conditions. While luminal Aβ40 demonstrated greater affinity to the BBB endothelium compared to Aβ42, rate of Aβ42 uptake from plasma and its subsequent transcytosis into the brain is significantly higher than that of Aβ40. During Alzheimer’s progression and in cerebrovascular disease, the physiological machinery that orchestrate Aβ trafficking at the BBB could be disrupted and result in anomalous Aβ exposure to the BBB endothelium. This in turn could unleash downstream toxic effects on the cerebral microvasculature and aggravate neurocognitive changes.
Acknowledgements:

Authors would like to acknowledge Dr. Rajesh S. Omtri posthumously for his contribution to the project in terms of experimentation and valuable discussions. The authors would also like to acknowledge the technical help from Mrs. Teresa Decklever in conducting SPECT/CT studies.

Author contribution statement:

Participated in research design: Sharda and Kandimalla

Conducted experiments: Sharda, Ahlschwede and Curran

Contributed new reagents or analytical tools: Lowe and Kandimalla

Performed data analysis: Sharda, Ahlschwede and Kandimalla

Wrote or contributed to the writing of the manuscript: Sharda and Kandimalla. The final manuscript was reviewed by all the authors.

Conflict of Interest:

Dr. Lowe consults for Bayer Schering Pharma, Piramal Life Sciences and Merck Research and receives research support from GE Healthcare, Siemens Molecular Imaging, AVID Radiopharmaceuticals and the NIH (NIA, NCI).
References

5:655–660.

Footnotes

This work was supported by the Minnesota Partnership Grant # 15.31

This work is part of the Ph.D. dissertation submitted to the University of Minnesota

Reprint requests:

Karunya K. Kandimalla

Department of Pharmaceutics and the Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA

Email: kkandima@umn.edu
Figure Legends:

Figure 1. Distinct uptake kinetics of F-Aβ40 and F-Aβ42 in hCMEC/D3 cells. A. Experimental design describing B. total (37 °C, filled) and non-specific (4 °C, open) uptake of F-Aβ40 (circle) or F-Aβ42 (square) in hCMEC/D3 cells incubated with increasing concentrations of F-Aβ peptides. Data is presented as geometric mean ± geometric S.D. C. Experimental design describing the accumulation of F-Aβ40 (filled square) and F-Aβ42 (open square) in polarized hCMEC/D3 cell monolayers over time in D. luminal-abluminal (L-A) and E. abluminal-luminal (A-L) direction. Linear regression slopes (Table I) were estimated and compared using Student’s t-test (***p < 0.001).

Figure 2. Kinetics of BBB interactions (Logan plot) and brain uptake (Patlak plot) of 125I-Aβ40 and 125I-Aβ42 in WT mice. A. Experimental design; B. Distribution volumes (V_T) of 125I-Aβ40 (filled circle) and 125I-Aβ42 (filled square) determined by the Logan plot; and C. Brain influx clearance rates (K_i) of 125I-Aβ40 (open circle) and 125I-Aβ42 (filled square) determined by the Patlak plot. Corresponding slopes (Table II) are presented as the mean ± standard error. The statistical significance between 125I-Aβ40 and 125I-Aβ42 was assessed by Student’s t-test (*p<0.05 and *** p<0.001).

Figure 3. Distinct plasma-BBB uptake kinetics of 125I-Aβ40 and 125I-Aβ42 in WT mice. A. Experimental design; B. Three compartment pharmacokinetic model describing plasma kinetics and interactions with the BBB endothelium of C. 125I-Aβ40 and D. 125I-Aβ42. Plasma: filled circles represent observed values and dashed lines correspond to the predicted data. BBB: open circles represent observed values and solid lines show predicted data. Corresponding model
predicted parameters of 125I-Aβ40 and 125I-Aβ42 are presented (Table III) as mean (per cent coefficient of variance). Significance determined by Student’s t-test (*$p < 0.05$, **$p<0.01$, ***$p<0.001$)
Tables:

Table I. Kinetics of F-Åβ40 and F-Åβ42 uptake by polarized hCMEC/D3 cell monolayers

<table>
<thead>
<tr>
<th>Slope parameter (IFU/min)</th>
<th>F-Åβ40</th>
<th>F-Åβ42</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminal-Abluminal (L-A)</td>
<td>0.55 ± 0.04</td>
<td>1.79 ± 0.12</td>
<td>***</td>
</tr>
<tr>
<td>Abluminal-Luminal (A-L)</td>
<td>0.11 ± 0.003</td>
<td>0.11 ± 0.01</td>
<td>N.S.</td>
</tr>
</tbody>
</table>

Data presented as Slope ± SD. Significance determined by Student’s t-test (***p<0.001) IFU stands for intracellular fluorescence units.
Table II. Graphical model predicted slope parameters of 125I-Aβ40 and 125I-Aβ42

<table>
<thead>
<tr>
<th>Graphical model</th>
<th>Slope parameter (units)</th>
<th>F-Aβ40</th>
<th>F-Aβ42</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logan Plot</td>
<td>Distribution volume, V_T (µL)</td>
<td>39.7 ± 0.07</td>
<td>55.8 ± 1.2</td>
<td>***</td>
</tr>
<tr>
<td>Patlak Plot</td>
<td>Influx clearance, K_i (µL/min)</td>
<td>0.17 ± 0.03</td>
<td>0.33 ± 0.07</td>
<td>*</td>
</tr>
</tbody>
</table>

Data presented as Slope ± SE. Significance determined by Student’s t-test (*p < 0.05, ***p < 0.001)
Table III. Pharmacokinetic model predicted parameters of 125I-Aβ40 and 125I-Aβ42

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>125I-Aβ40</th>
<th>125I-Aβ42</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_{12}</td>
<td>min^{-1}</td>
<td>0.59 (15)</td>
<td>1.32 (29)</td>
<td>*</td>
</tr>
<tr>
<td>k_{21}</td>
<td>min^{-1}</td>
<td>0.50 (6)</td>
<td>1.37 (10)</td>
<td>***</td>
</tr>
<tr>
<td>k_{10}</td>
<td>min^{-1}</td>
<td>0.44 (13)</td>
<td>0.19 (10)</td>
<td>**</td>
</tr>
<tr>
<td>k_{13}</td>
<td>min^{-1}</td>
<td>0.004 (15)</td>
<td>0.009 (12)</td>
<td>***</td>
</tr>
<tr>
<td>k_{31}</td>
<td>min^{-1}</td>
<td>0.43 (13)</td>
<td>3.2 (11)</td>
<td>***</td>
</tr>
<tr>
<td>k_d or k_{31}/k_{13}</td>
<td>unitless</td>
<td>107.5</td>
<td>355.5</td>
<td>-</td>
</tr>
<tr>
<td>V</td>
<td>mL</td>
<td>5.15 (7)</td>
<td>16.47 (8)</td>
<td>***</td>
</tr>
<tr>
<td>CL_i or $k_{13} \times V$</td>
<td>mL/min</td>
<td>0.02</td>
<td>0.15</td>
<td>-</td>
</tr>
</tbody>
</table>

Data presented as mean (coefficient of variance expressed as per cent). Significance determined by Student’s t-test (*p < 0.05, **p<0.01, ***p<0.001).

k_d and CL_i calculated as described using mean parameter estimates. No significance was determined.
Figure 1.
37 °C or 4 °C

F-AB treatment

Luminal Exposure, 37 °C

Abluminal Exposure, 37 °C

OR

Intracellular fluorescence by flow-cytometry

B

Intracellular Fluorescence (Geometric mean ± S.D.)

Concentration (μM)

D

Intracellular Fluorescence (Geometric mean ± S.D.)

Time (minutes)

E

Intracellular Fluorescence (Geometric mean ± S.D.)

Time (minutes)
A

Plasma PK

\[^{125}\text{I-}\alpha \beta \]

15 min plasma sampling

\[^{125}\text{I-}\alpha \beta \]

femoral

Brain/BBB Uptake

\[^{125}\text{I-}\alpha \beta \]

40 min SPECT/CT imaging

femoral

B

Reversible Kinetics, 0-5 min
(Logan Plot)

\[
C_p \quad \longleftrightarrow \quad C_1
\]

(Plasma) (BBB)

Reversible equation here.

C

Irreversible Kinetics, 5-40 min
(Patlak Plot)

\[
C_p \quad \longleftrightarrow \quad C_1 \quad \rightarrow \quad C_2
\]

(Plasma) (BBB) (Brain)

Irreversible equation here.
Figure 3.
Pharmacokinetic Modeling

A

Plasma PK

\[^{125}\text{I}-\text{A}\beta \]

15 min plasma sampling

Brain/BBB Uptake

\[^{125}\text{I}-\text{A}\beta \]

5 min SPECT/CT Imaging

B

Pharmacokinetic Modeling

\[k_{10} \]

\[k_{13} \]

\[k_{31} \]

1. Plasma

2. Tissue

3. BBB

C

\[^{125}\text{I}-\text{A}\beta40 \text{ Conc. (}\mu\text{Ci/mL}) \]

- Plasma (observed)
- Plasma (predicted)
- BBB (observed)
- BBB (predicted)

D

\[^{125}\text{I}-\text{A}\beta42 \text{ Conc. (}\mu\text{Ci/mL}) \]

- Plasma (observed)
- Plasma (predicted)
- BBB (observed)
- BBB (predicted)