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Abstract: 

Women are at significantly greater risk of developing stress related disorders such as 

depression. The increased risk begins during puberty and continues throughout life until 

menopause, suggesting a role for ovarian hormones in this increased susceptibility. Importantly, 

inflammation has been gaining momentum in its role in the pathogenesis of depression. Herein, 

clinical and preclinical studies have been reviewed to better understand how sex differences 

within the immune system may contribute to exaggerated risk of depression in females. First, 

studies that investigate the ability of psychological stress episodes to engage the inflammatory 

systems both in the brain and periphery are reviewed with a special focus on sex-specific effects. 

Moreover, studies are discussed that identify whether imbalanced inflammatory milieu 

contributes to the development of depression in males versus females, and if these effects are 

regulated by estradiol. Importantly, we propose a locus coeruleus-norepinephrine-cytokine 

circuit as a conduit through which stress could increase stress susceptibly in females. Finally, the 

anti-inflammatory capacity of traditional and non-traditional antidepressants is investigated with 

the goal of providing a better understanding of pharmacotherapeutics to enhance strategies to 

personalize antidepressant treatments between the sexes. The studies reviewed herein strongly 

support the need for further studies to elucidate if females are exquisitely sensitive to anti-

inflammatory compounds as adjuvants to traditional therapies. 

 

Significance Statement: Women are at significantly increased risk of developing stress-related 

disorders such as depression. In this review, literature from clinical and preclinical studies are 

integrated to define sex differences in stress-induced inflammatory responses as a potential 
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source for the etiology of sex differences in depressive disorders. Moreover, anti-inflammatory 

capacity of traditional and non-traditional antidepressants are reviewed to inform on potential 

pharmacotherapeutic strategies to personalize antidepressant therapy in a sex-dependent manner. 
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1. Introduction 

Depression is one of the most debilitating diseases in the United States (Almeida, 2005) 

and globally is considered a significant source of disability (Reddy, 2010).  Despite 

improvements in overall health and life expectancy in the US, the incidence of depressive 

disorders has steadily increased since the 1990’s (Murray et al., 2013), and recently has been 

reported to occur in 7.3% of adults and 12.7% of adolescents in the US (Weinberger et al., 2017) 

and other countries including Canada (Patten et al., 2006). While reports from the World Health 

Organization identifies that depression can be precipitated by medications, illnesses, substance 

use disorders or genetics, research in humans and animals identify that exposure to stress 

remains a significant risk factor for the development of major depression (Krishnan and Nestler, 

2008). However, it should be noted that rather than definitive mechanisms that promote 

depression in humans, our knowledge is largely limited to a list of factors that increase the risk of 

developing depression. Beyond stressful life experiences increasing risk of depression, there is 

also a robust sex difference whereby women are nearly twice as likely as men to suffer from 

depression (Kessler et al., 1993; Weissman et al., 1993; Marcus et al., 2005). In fact, this 

differential risk of depression is recognized globally in developed countries, suggesting that the 

female sex bias may be routed more from biological sex differences rather than race, diet, 

education or other factors (Rai et al., 2013). Despite the recognition that the incidence of 

depression is biased towards females, the etiology of this sex difference is unclear which 

impedes progress for the development of precision medicine. 

Despite evidence of exaggerated inflammation associated with major depression and 

several proof-of-concept studies demonstrating the efficacy of anti-inflammatory therapy as 

antidepressants, there remain several key questions that will be discussed in this mini-review 
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using evidence from human and rodent studies. First, studies that investigate the ability of 

psychological stress episodes to engage the inflammatory systems both in the brain and 

periphery will be reviewed. Moreover, studies identifying whether imbalanced inflammatory 

milieu contributes to the development of depression will be discussed. Throughout this mini-

review we will provide an introduction to available literature defining the sex differences in 

stress-induced inflammatory responses as a potential source for the etiology of sex differences in 

stress-related disorders. Finally, recent advances in strategies to treat depression will be reviewed 

with the goal of providing a better understanding of pharmacotherapeutics resulting in 

modifications to immune levels in depression to enhance strategies for precision medicine. 

2. Recruitment of the innate immune response following psychological stress  

2.1 Inflammatory response to experimental models of stress in men and women 

Meta-analysis of studies conducting controlled, acute psychological stressors in humans 

identified consistent and robust increases in circulating inflammatory factors (Steptoe et al., 

2007). The Trier Social Stress Test (TSST) has been used for more than two decades as a way to 

reliably evaluate the response to social stressors in humans in a controlled laboratory setting 

(Kirschbaum, 1993). This model induces stress by placing participants in a situation where they 

are required to make an interview-style presentation, followed immediately by an unexpected 

mental arithmetic test. This test is conducted in front of a panel of judges lacking any feedback 

or encouragement, eliciting a highly stressful experience (Kirschbaum et al., 1993; Allen et al., 

2017). The TSST has been shown to elicit elevated levels of both IL-6 and TNF-α in healthy 

controls (Gaab et al., 2005). Moreover, patients suffering from depression exhibit significantly 

increased TSST-induced IL-6 levels above that of non-depressed controls (Pace et al., 2006). 

Another study using the TSST compared the immune responses between men and women, 
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showing that women in the luteal phase of their menstrual cycle demonstrated increased LPS-

induced cytokine production in blood samples collected following stress, whereas men exhibited 

a reduction (Rohleder et al., 2001). A similar study focused on female participants who used oral 

contraceptives, comparing them to participants who were in the luteal phase of their menstrual 

cycle (Rohleder et al., 2003). The findings from this study showed that women who used 

contraceptives had higher levels of IL-6 after exposure to TSST. Contraceptive users also had a 

blunted glucocorticoid sensitivity when compared to women in the luteal phase of their 

menstrual cycle (Rohleder et al., 2003). It has also been demonstrated that women and men 

exhibit differing time courses of stress-induced cytokine release. For example, in a study using a 

mental arithmetic stress task, the paced auditory serial addition task (PASAT), male participants 

exhibited stress induced IL-6 release that peaked 30 minutes after the PASAT but returning 

towards baseline by 60 minutes. Female participants, on the other hand, did not exhibit stress-

induced increases in IL-6 until 60 minutes after the PASAT (Edwards et al., 2006). Taken 

together, the distinct inflammatory response to social stress in females may underlie the 

increased sensitivity women demonstrate to social stressors and may promote the increased risk 

of stress-related psychiatric disorders (Slavich and Irwin, 2014; Slavich and Sacher, 2019). 

2.2 Inflammatory response to preclinical models of stress in male and female rodents 

Preclinical studies have also shed considerable light on immune system activation in 

response to social and psychological stress in experimental models and therefore this concept 

will only be briefly reviewed below (for reviews see: (Bekhbat and Neigh, 2018; Finnell and 

Wood, 2018; Rainville and Hodes, 2019). For example, in response to foot shock (Blandino et 

al., 2013; Jones et al., 2018), an established psychological stressor whereby the animal receives 

brief mild and inescapable electric shocks, IL-1ß gene expression in the paraventricular nucleus 
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is robustly increased (Blandino et al., 2013). Moreover, the effect of foot shock on inflammatory 

cytokines also occurs in extrahypothalamic regions;  Immunohistochemical analysis 

demonstrates that foot shock can ultimately increase the levels of IL-1ß protein within the 

hippocampus (Jones et al., 2018). Moreover, a recent study also evaluated sex differences in the 

inflammatory response to an LPS injection 24 hours following inescapable shock. Peripheral 

cytokine release was potentiated in females with a history of stress compared to stressed males or 

unstressed males or females (Fonken et al., 2018). In the hippocampus, both males and females 

exhibited enhanced stress-induced neuroinflammation yet the priming was proposed occur 

through different mechanisms (Fonken et al., 2018). Importantly, this inflammation-enhancing 

effect of stress is not limited to foot shock. Chronic mild stress (CMS) or chronic variable stress 

(CVS), an experimental stressor whereby the subject is placed under mild and ever-changing 

stress-provoking conditions (Hodes et al., 2015; Wang et al., 2018; Johnson et al., 2020), has 

been shown to cause an increase in gene expression for inflammatory factors such as IL-6, IL-1ß 

and TNF-α in the hippocampus (Wang et al., 2018; Liu et al., 2019). In studies directly 

identifying sex-specific effects of CMS on hippocampal inflammation, both males and females 

demonstrated increased proinflammatory cytokines, but males exhibited increases in mRNA 

iNOS and IL-1b while females demonstrated increases in TNF-a and reductions in anti-

inflammatory cytokines IL-10 and IL1ra (Liu et al., 2019). Moreover, ratios of pro- to anti-

inflammatory cytokines indicated that females were more prone to a pro-inflammatory 

environment. Moreover, chronic stress during adolescence resulted in increased expression of 

IL-1b mRNA within the hippocampus of adult females, but not males (Bekhbat et al., 2019). 

Furthermore, in males the use of minocycline was shown to dampen the activation of stress-

induced proinflammatory responses in the brain, indicating that these cytokines are sourced from 
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microglia, the resident immune cells of the brain (Wang et al., 2018). CMS has also been shown 

to induce microglial activation and cytokine release within the prefrontal cortex, but this effect 

was most pronounced in males, despite both males and females demonstrating depressive-like 

and anxiety-like behaviors (Wohleb et al., 2018). Importantly, a separate study also identified 

that females are more sensitive to a subchronic regimen of CVS compared with males as 

measured by behavioral sensitivity (Hodes et al., 2015). 

 Similar to the TSST in humans, experimental models of social stressors are also 

commonly used to generate an ethologically relevant stress exposure for rodents. One of the 

most commonly used of the social paradigms is the resident-intruder social defeat test, originally 

developed by Miczek (Miczek, 1979). This paradigm induces stress by introducing an 

experimental male into the home cage of an older, more aggressive territorial male. The social 

defeat paradigm, like the TSST, is well recognized to stimulate the immune response in rodents 

(Wohleb et al., 2012; Wood et al., 2015; Tang et al., 2018). Social stress-induced activation of 

immune cells in the brain causes a prolonged inflammatory response and release of IL-1ß 

(Wohleb et al., 2012). Moreover, long lasting increases in neuroinflammation have been 

identified in the locus coeruleus (LC), a major noradrenergic nucleus, of a susceptible subset of 

male rats, while this response was lacking in the behaviorally resilient subset (Wood et al., 2015; 

Finnell et al., 2017a).  Conducting social defeat stress in female rats has been a challenge 

because males are not aggressive towards females, and female rats are not aggressive towards 

other females outside of the postpartum period (see review: (Finnell and Wood, 2016). One study 

used a DREADD-based activation of the ventromedial hypothalamus to induce male aggressive 

behavior towards females and determined that this modified version of social defeat produced 

behavioral and peripheral/central immune dysfunction in females (Yin et al., 2019).  Another 
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strategy to subject females and males to social stress is by exposing rats or mice to a witness or 

vicarious stress, whereby a male or female is forced to witness social defeat occurring between 

two males (Hodes et al., 2014a; Patki et al., 2014; Finnell et al., 2017b; Finnell et al., 2018; 

Iniguez et al., 2018). These studies have highlighted that witness stress engages a heightened 

immune response within the periphery and the central nervous system, and that this immune 

response is involved in sensitivity to this stressor. Future studies directly comparing the immune 

response to witness stress between males and females will be critical in understanding sex 

differences in social stress-induced inflammation. 

2.3 Sex specific effects of stress-induced activation of microglia: a link to noradrenergic 

hyperarousal  

Stress-induced promotion of a pro-inflammatory milieu is suggested to occur by several 

specific mechanisms including microglial activation and blood brain barrier degradation (Menard 

et al., 2017; Dudek et al., 2020) and as extensively reviewed in (Finnell and Wood, 2018). The 

mechanism we will focus on for the purpose of this mini-review is microglial activation because 

of the experimental evidence supporting a role for sex differences in stress-induced microglial 

activation. Microglial cells are capable of changing morphology between a pro-inflammatory 

(M1) and anti-inflammatory (M2) state (Hanisch and Kettenmann, 2007; Crain et al., 2013; 

Nelson et al., 2017). Microglia, when activated by stress for example, shift morphology states 

from a ramified surveillant state to an ameboid, activated state, leading to the secretion of 

proinflammatory cytokines such as Il-1β, IL-6 and TNF to neighboring cells (Hanisch and 

Kettenmann, 2007; Nelson et al., 2017). Importantly, female rats exhibit more activated 

microglia as demonstrated by morphology beginning near the time of early puberty and 

continuing throughout adulthood (Schwarz et al., 2012).  As we discuss later in this review, this 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on August 5, 2020 as DOI: 10.1124/jpet.120.266205

 at A
SPE

T
 Journals on A

pril 17, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


JPET #266205 

 11 

timeframe coincides with the period of greatest risk of depression in females. In addition, the 

prefrontal cortex of unstressed female rats have demonstrated heightened basal activation of 

microglia evidenced by a primed phenotype (Bollinger et al., 2016). Interestingly, a primed or 

sensitized microglial phenotype is most commonly noted to occur following stress exposure 

(Frank et al., 2012; Fonken et al., 2018; Frank et al., 2018).  Importantly, Bollinger et al., went 

on to determine whether acute or chronic restraint stress affected microglial morphology in a sex 

dependent manner. In the orbitofrontal cortex, basolateral amygdala, and dorsal hippocampus, 

chronic stress reduced microglial activation (as evidenced by morphology changes) yet 

upregulated a greater number of immune factors in females compared with males (Bollinger et 

al., 2017). It will be important to determine whether similar effects on microglial morphology are 

also achieved with social stress, however these findings provide evidence of sex differences in 

microglial morphology that may bias females towards greater neuroinflammatory responses in 

the context of stress.  

Microglial-induced increases in proinflammatory cytokines no doubt have various effects 

throughout the brain depending on the specific brain region and cell type. One brain nuclei 

through which pro-inflammatory cytokines are likely acting through to promote stress sensitivity 

is the LC. IL-1b microinjection into the LC increased burst firing of LC neurons (Borsody and 

Weiss, 2002), an LC response that occurs following a sensory stimulus (Aston-Jones and Bloom, 

1981a; Aston-Jones and Bloom, 1981b). Moreover, both peripheral and intra-LC injection of 

LPS increased LC-NE firing dependent upon IL-1 receptors within the LC (Borsody and Weiss, 

2002; Borsody and Weiss, 2004). Importantly, LC-NE dysfunction is linked to stress related 

disorders such as depression and PTSD and as discussed above, females already demonstrate 

distinct differences within the LC-NE system capable of promoting stress-related dysfunction. 
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Combined with the knowledge that females demonstrate increased inflammatory responses to 

social stressors as discussed above, this begs the question as to whether exaggerated 

inflammatory input to the LC could be serving as the conduit through which stress increases risk 

of stress-related disorders in females.   

 

A recent study provided key information as to the mechanisms driving the elevated 

inflammation in the context of stress. Norepinephrine (NE) regulates cytokine release from 

macrophages and microglia via binding to adrenergic receptors on these cell types. Finnell et. al, 

(Finnell et al., 2019) challenged the contribution of the LC-NE system in male rats on stress 

induced circulating and neuroinflammatory priming by using the compound N-(2-chloroethyl)-

N-ethyl-2-bromobenzylamine (DSP-4), an LC-selective noradrenergic neurotoxin. These studies 

demonstrated that suppressed NE release in DSP-4-treated rats had a significant impact on stress-

induced inflammation in the plasma and brain (Finnell et al., 2019). Importantly, these findings 

clearly indicated that the LC-NE system was necessary for the stress-induced inflammatory 

priming known to occur following social defeat stress (Frank et al., 2016). The recognition that 

the LC-NE system is capable of regulating stress-related inflammation opens a path for future 

studies to understand possible treatment pathways. While this study did not assess sex 

differences, it is noteworthy that there is robust sexual dimorphism within the LC-NE system. As 

is eloquently reviewed in Bangasser et al. (Bangasser et al., 2016), sex differences in the LC-NE 

system may serve as a core pathophysiological mechanism that predisposes women to disorders 

that are characterized by hyperarousal such as depression and PTSD. In brief, the LC of adult 

female rats is larger than that of adult males due to an increase in the number of NE containing 

neurons in females (Luque et al., 1992) and the dendrites of the LC are denser than those of 
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males (Bangasser et al., 2011) potentially increasing synaptic connectivity with other stress-

related brain regions. Moreover, estrogen increases NE levels in various stress-sensitive brain 

regions through ERa or ERb  (Lubbers et al., 2010). Both ER subtypes are prevalent in the LC 

(Shughrue et al., 1997) and is therefore well positioned to regulate NE release from the LC to 

stress-sensitive target regions. Within NE-containing nuclei, estradiol is capable of increasing 

NE synthesis by enhancing the expression of tyrosine hydroxylase, a rate limiting enzyme 

critical to the synthesis of NE (Serova et al., 2002). Moreover, estradiol is also capable of 

impeding enzymatic degradation of NE via inhibiting catechol-O-methyltransferase (Jiang et al., 

2003).  

3. Link between inflammation and depression  

3.1 Inflammation’s link to depression in humans 

In humans with major depressive disorder (MDD), high levels of pro-inflammatory 

cytokines have been identified in subsets of patients. For example, pro-inflammatory cytokines 

have been found in high levels in both the cerebrospinal fluid and the serum of depressed 

patients (Zorrilla et al., 2001; Miller et al., 2002; Alesci et al., 2005; Motivala et al., 2005; Maes 

et al., 2009; Raison et al., 2013). Overall, meta-analyses lend support to the presence of 

increased inflammation in MDD, however there are individual studies that report no such 

association (Fried et al., 2019). Furthermore, one meta-analysis suggests that this variability is 

due to different types of depression; Lamers et al., found the association between depression and 

inflammation only evident for atypical depression rather than melancholic depression (Lamers et 

al., 2013). None the less, alterations in cytokines in the central and peripheral nervous systems 

were highly correlated with the severity of the symptoms of depression (Zorrilla et al., 2001). 

Moreover, in patients with MDD, markers of activated microglia such as translocator protein 
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(TSPO) have been shown to be elevated in serum and brain and represent a candidate marker of 

treatment outcome (Setiawan et al., 2015; Holmes et al., 2018; Richards et al., 2018). Beyond the 

correlational studies linking markers of inflammation and depression, inflammatory factors have 

also been shown to have a causal effect on MDD symptoms such as cognitive dysfunction, sleep 

alterations, and regular fatigue, which are all associated with depression (Bower et al., 2002; 

Meyers et al., 2005; Motivala et al., 2005). Moreover, cytokine treatment for diseases that are 

unrelated to depression have a high probability of leading patients to develop depression and 

anxiety (Miller et al., 2009). Use of cytokines such as IL-2, Interferon-α (IFN-α), IFN-g, and 

granulocyte macrophage colony stimulating factor for cancer treatment have been shown to 

cause depression in patients with no prior history (Denicoff et al., 1987; Renault et al., 1987; 

Capuron et al., 2001; Schmeler et al., 2009). Indeed, the use of antidepressants such as 

paroxetine counteracts the effects of depression induced by INF-α treatment, further supporting 

the concept that cytokines can independently produce depressive symptoms (Musselman et al., 

2001a). Furthermore, studies have shown that females may demonstrate greater risk for MDD 

following inflammatory challenges such as IFN-a compared with men (Fontana et al., 2002; 

Koskinas et al., 2002; Gohier et al., 2003). However, not all studies support this sex biased 

interpretation with some research reporting no sex differences in depressive symptoms following 

IFN-a administration (Bonaccorso et al., 2002; Kraus et al., 2003; Raison et al., 2005). Despite 

these inconsistent findings, a larger meta-analysis that included 26 studies concluded that 

females are significantly more likely to develop MDD following IFN-a administration (Udina et 

al., 2012). 

There is also support for sex differences in markers associated with MDD. Various sex-

dependent markers for MDD was identified from the serum of both male and female patients 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on August 5, 2020 as DOI: 10.1124/jpet.120.266205

 at A
SPE

T
 Journals on A

pril 17, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


JPET #266205 

 15 

(Ramsey et al., 2016). Only three female-specific markers were identified for MDD; insulin-like 

growth factor 5, involved in biological processes including cell growth and glucose metabolism 

as well as macrophage inflammatory protein-3b, a chemokine that regulates lymphocyte 

recirculation, were both reduced in MDD females. Interestingly, the third female-specific marker 

was a reduction in IL-2 receptor α. While IL-2rα has no functional response on its own, it is one 

of three critical subunits necessary for IL-2 receptor function. As such, these data may shed 

insight into adaptations that are occurring in females with MDD versus males.  Furthermore, a 

systematic study performed by (Labaka et al., 2018) showed that women with MDD had higher 

levels of IL-6, leptin, α-[11C]MTrp, and S100B in their serum when compared to men with 

comparable depression. These specific markers are indicators of the presence of a high 

inflammatory response, further associating acute inflammation with MDD in a sexually 

dimorphic manner. Their findings also demonstrate a link between the severity of depressive 

symptoms with the levels of IL-1β, TNF-α, CRP and BDNF present in individuals, which are 

common pro-inflammatory markers (Labaka et al., 2018).  

 

3.2 Inflammation’s link to depressive-like behaviors in experimental models in humans and 

rodents 

Findings from experimental stressors in humans also support the link between 

inflammation and depression. As discussed in section 2, the experimental social stressor in 

humans, the TSST, activates cytokine release in healthy controls. However, patients suffering 

from depression exhibit significantly higher TSST-induced IL-6 levels than healthy controls 

(Pace and Miller, 2009). It is also noteworthy that the inflammatory response to the TSST is 

positively related to depressive symptom severity, even well below clinical thresholds for 
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depression. For example, Fagundes et al., measured the IL-6 response to a TSST paradigm in 

subjects with depressive symptoms within the 75th and 25th percentile on the Center for 

Epidemiological Studies Depression Scale, representing a score of 10 and 2, respectively, to 

which 16 is the clinical threshold for depression (Fagundes et al., 2013). This study identified 

that the subject population that fell within the 75th percentile for depressive symptoms exhibited 

greater TSST-induced IL-6 release as measured in plasma compared with those in the 25th 

percentile. Taken together, these studies support a strong association between social stress-

induced cytokine release and severity of depressive symptomatology.  

Experimental stressors in rodents also demonstrate similar trends whereby the impact of 

stress on later indices of depression-like behavior are strongly dependent on the levels of 

cytokines in the central and peripheral nervous systems (Hodes et al., 2014b; Finnell et al., 

2017b; Menard et al., 2017; Finnell et al., 2019).  Similar to humans, mice and rats exposed to 

repeated social stress exhibit individual differences in susceptibility to developing a depressive-

like phenotype  (Krishnan et al., 2007; Hodes et al., 2014a; Wood et al., 2015; Finnell et al., 

2017a). Moreover, the stress susceptible phenotype is characterized by enhanced circulating 

(Hodes et al., 2014a) and brain inflammation (Wood et al., 2015; Finnell et al., 2017a), a profile 

that is not observed in resilient rodents (for reviews on this topic see: (Finnell and Wood, 2018; 

Tsyglakova et al., 2019)). These studies have been insightful on revealing the central and 

peripheral mechanisms contributing to susceptibility. Studies in mice identified that the 

susceptible phenotype was characterized by high levels of monocyte-derived IL-6 in serum and 

that neutralizing IL-6 in various ways rescued the phenotype (Hodes et al., 2014a). In rats, 

studies have confirmed the neuroinflammatory contribution to a susceptible phenotype, 

identifying that IL-1b is elevated long-term in the stress sensitive noradrenergic locus coeruleus 
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(LC) (Wood et al., 2015; Finnell et al., 2019). Importantly, blocking activation of the IL-1 

receptor in brain (Wood et al., 2015) or utilizing high doses of resveratrol that reduced LC 

cytokine expression (Finnell et al., 2017a)  was sufficient to rescue the anhedonic phenotype in 

susceptible rats. Taken together, these studies have provided support for a causal role of 

inflammation in a stress-susceptible, depressive-like phenotype in preclinical studies. 

4. Impact of ovarian hormones on behavioral and immune responses to stress  

4.1 Exaggerated inflammatory responses to endotoxin and stress challenges in women 

Several clinical reports indicate that women are more likely than men to be diagnosed with 

depression (Weissman and Klerman, 1992; Gallo et al., 1993; Kessler et al., 1993; Hankin et al., 

1998) and establishing the basis for these differences provides a framework for understanding 

how these disparities emerge and potential avenues for therapeutic intervention. In fact, there is a 

2-fold increased risk for depression in women, but only during certain age ranges; the elevated 

risk emerges at the onset of puberty, persists into adulthood (Kessler et al., 1993; Hankin et al., 

1998; Nolen-Hoeksema, 2001), and is no longer evident following menopause (Kessler et al., 

1993; Hankin et al., 1998). These findings strongly suggest that ovarian hormones may 

contribute to elevated susceptibility to stress in females. While there is a lack of controlled 

studies determining whether inflammation plays a role in this elevated risk for depression, there 

are several lines of clinical evidence that suggest women are more sensitive to inflammatory 

stimuli. Two key studies have provided considerable insight into sex differences in the 

inflammatory and depressogenic effects of endotoxin administration (lipopolysaccharide, LPS).  

In a study published by Engler et al., a low dose of LPS (0.4 ng/kg) elicited depressive symptoms 

in both males and females yet the cytokine response was distinct; women exhibited robust 

increases in proinflammatory IL-6 and TNF-α compared with men, while men responded with 
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approximately three times higher serum levels of the anti-inflammatory cytokine IL-10 (Engler 

et al., 2016). In a similar double-blind randomized placebo-controlled study the acute response to 

low dose endotoxin challenge of 0.8 ng/kg LPS, twice the dose of that administered in Engler et 

al., was also determined.  Women exhibited a dramatic induction of depressive behaviors while 

men did not despite exhibiting similar levels of endotoxin-induced IL-6 and TNF- α (Moieni et 

al., 2015). It is noteworthy that Moieni et al., did not measure anti-inflammatory cytokines and 

thus it begs the question as to whether IL-10, for example, was elevated selectively in men, 

thereby protecting against the depressogenic effects of this dose of LPS. Taken together, these 

findings could support the notion that the cytokine response to LPS in women is more sensitive 

to lower doses, and as doses escalate that males and females demonstrate differential cytokine 

profiles that biases females towards pro-inflammatory and depressive responses, while males 

may be biased towards anti-inflammatory protective pathways. These studies highlight the need 

to better understand sexual dimorphism in inflammatory responses, especially considering that 

low endotoxin administration may elicit a similar immune response to that of social stress 

exposure. 

 As might be expected, greater exposure to life stressors of an interpersonal nature is 

associated with significant increased risk for depression in many populations, including 

adolescent girls. Moreover, women exhibit greater immune responses following stressful 

experiences and also display greater depressive symptoms when compared to controls (Miller 

and Cole, 2012; Giletta et al., 2018; Sullivan et al., 2018). Strikingly, one study went on to 

identify that the association between social stress exposure and increased risk of depression was 

only true for girls that exhibited a strong cytokine reaction to a laboratory-based social stressor 

(Slavich et al., 2020). This important study indicates that inflammation may be a critical factor 
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linking stress exposure with increased risk of depression in females. Finally, beyond stress 

exposure, diseases of an inflammatory nature, such as cardiovascular disease can also lead to a 

higher predisposition of the development of depression (Bucciarelli et al., 2019).  In all, there is 

considerable support for the notion that women have a greater overall inflammatory response to 

endotoxin and social stressors, which may play a role in the significantly increased risk of 

depression evident in the female population. 

4.2 Role of ovarian hormones in stress-related inflammatory and behavioral responses. 

Estradiol is poised to regulate microglial function, with estradiol receptors present on 

macrophages and microglia (Mor et al., 1999). In the absence of stress, estradiol has been shown 

to have dual effects on inflammation under certain conditions and is largely dose dependent 

(Straub, 2007). For example, low levels of estradiol, yet not progesterone or high levels of 

estradiol, increased IFN-g in mitogen-activated human mononuclear leukocytes in whole blood 

(Matalka, 2003).  Preclinical studies have sought to understand the role of this sex hormone on 

microglial inflammatory responses, yet findings are equivocal. There is a strong body of 

evidence that estradiol exerts anti-inflammatory effects on microglia following cerebral ischemia 

(Rahimian et al., 2019). Yet even in studies that report evidence of general microglial inhibition 

by estradiol, some report elevated proinflammatory cytokines concurrently in the same samples 

(Baker et al., 2004). Moreover, estradiol may serve a distinct role for microglia beyond ischemic 

events that are highly sensitive to the route of administration.  For example, one study points to 

the critical importance of route of exposure of estradiol in differentiating a pro- vs. anti-

inflammatory effect on microglia from a healthy brain (Loram et al., 2012); when female rats 

were ovariectomized and administered estradiol in vivo followed by microglial isolation, 

microglia exhibited a dose dependent increase in IL-1β  production. Alternatively, when 
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microglial cultures were isolated from ovariectomized females and exposed to estradiol ex vivo, 

estradiol produced an anti-inflammatory effect (Loram et al., 2012). In addition, ovarian 

hormones also exacerbate social stress-induced inflammatory responses as evidenced by studies 

that have exposed females to repeatedly (5 daily) witnessing brief social defeat episodes between 

two males in the resident-intruder paradigm (witness stress). For example, re-exposure to the 

resident’s cage in the absence of the aggressive resident rendered intact females to respond with 

a robust increase in pro-inflammatory cytokines above that of intact females with a history of 

non-stress control. In comparison, ovariectomized females with a history of witness stress 

responded with less cytokine release than that of ovariectomized rats with a history of control 

(Finnell et al., 2018). It should also be noted that the same paradigm was tested in males in a 

separate study from the same lab and males with a history of witness stress did not exhibit 

increased inflammatory responses to being re-exposed to the resident’s cage (Finnell et al., 

2017b).   

Beyond the estradiol regulation of microglia, the HPA axis is another potential source of 

variation in immune stress responses between sexes (Miller AH, 2016; Bekhbat M, 2018). 

Cortisol is a well-recognized, potent anti-inflammatory hormone. Notably, women and female 

rodents generally exhibit enhanced stress-induced activation of the HPA axis (for a 

comprehensive review on this topic see: (Goel et al., 2014). However, women in the follicular 

phase of their menstrual cycle (and thus comparable progesterone levels to men) exhibit 

suppressed HPA axis reactivity in response to the TSST when compared to men, as demonstrated 

by decreased ACTH and cortisol levels (Stephens et al., 2016). Further, this study confirmed that 

sex hormones were correlated with cortisol levels, thereby linking sex hormones with stress-

induced cortisol responses in men and women. In support of these clinical findings, sex 
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differences in corticosterone regulation of repeated stress-induced inflammation in rodents is 

also well recognized (Barnard et al., 2019). Taken together these clinical and preclinical studies 

provide evidence whereby, through modulating release of the anti-inflammatory hormone 

cortisol in the context of social stress or through direct regulation of microglia via estrogen 

receptors, sex hormones may be promoting exaggerated inflammatory responses in females and 

anti-inflammatory responses in males. 

 

Just as the role of ovarian hormones on inflammation is highly equivocal, so too are the 

effects of sex hormones on depressive like behaviors in rodent models (Table 1). In females, in 

addition to the overall increased risk of depression between puberty and menopause, times of 

hormonal fluctuation such as postpartum and perimenopausal periods represent times of further 

enhanced risk of depression (Soares and Zitek, 2008). Thus, in vivo studies have investigated the 

role of ovariectomizing rats, and thus removing estradiol and progesterone, in a middle-aged 

model and found that long-term ovariectomy (4 months) enhanced a depressive-like phenotype 

following chronic unpredictable stress (Mahmoud et al., 2016). While these findings deviate 

from human literature suggesting that fluctuations, rather than long-term removal of ovarian 

hormones, are what increase susceptibility, these studies concluded that ovarian hormones served 

a protective role in rats exposed to chronic stress. Other studies in unstressed adult female rats 

found similar effects when the process of ovariectomizing increased immobility in the FST 

compared with intact and sham rats (Li et al., 2014). However, body weight (and likely greater 

fat distribution) was increased by ovariectomy and general locomotor activity was reduced in the 

ovariectomized group (Li et al., 2014), thus these potential confounds of the behavioral findings 

cannot be ruled out. Moreover, while this and other studies (Rachman et al., 1998; Li et al., 
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2014) also determined that estradiol replacement could rescue the effects of ovariectomy, 

estradiol administration occurred by 7 daily injections rather than cyclic administration (once 

every 4 days) that mimics the normal cycle  Alternative to studies reporting a behaviorally 

protective effect of estradiol, there is also considerable evidence from studies supporting that 

estradiol exacerbates stress sensitivity. For example, when gonadally-intact and ovariectomized 

female mice were exposed to chronic unpredictable stress, ovariectomy conferred protection 

against stress-induced immobility in the FST (LaPlant et al., 2009). In addition, Shansky et al., 

identified that intact cycling females were more sensitive to mild natural stressors and 

pharmacological stressors compared with males and ovariectomized females (Shansky et al., 

2004). When intact females were further separated based on estrous cycle stage, it was clear that 

the heightened sensitivity occurred during proestrus and could be reinstated in ovariectomized 

rats following estradiol replacement (Shansky et al., 2004). Moreover, studies testing the effects 

of ovarian hormones on susceptibility to social stressors have reported similar findings.  When 

testing the behavioral responses to witness stress, intact females were exquisitely sensitive to this 

test, demonstrating anxiety-like responses during the stressor and development of depressive-like 

responses the following week as measured by the sucrose preference and FST (Finnell et al., 

2018). Strikingly, ovariectomized females were resistant to these behavioral adaptations during 

and following social stress. Moreover, estradiol administration reinstated the behavioral response 

during witness stress in ovariectomized females, yet administration was also daily via a time-

release pellet and thus not recapitulating the cycle (Finnell et al., 2018). In all, these data speak 

to the clear divergent effects that ovarian hormones may produce on stress susceptibility, 

potentially dependent upon age of animals, length of time past ovariectomy, dosing regimen for 

estradiol replacement, and stress paradigm (or lack of stress exposure). More controlled studies 
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are needed to determine under what conditions ovarian hormones are behaviorally protective 

versus deleterious. 

5. Impact of antidepressant therapy on inflammation.  

As discussed earlier, stress dramatically activates inflammatory processes such as 

microglial activation and cytokine release and is known to contribute to stress-induced MDD 

(and behavioral dysfunction in rodents). Moreover, growing evidence supports the notion that 

exaggerated activation of the innate immune system may play a significant role in the 

pathogenesis of MDD and anxiety disorders in patients. In fact, several studies have linked 

treatment resistance to increased proinflammatory cytokines or microglial activation (Maes et al., 

1997; Musselman et al., 2001b; Alesci et al., 2005; Motivala et al., 2005; Miller et al., 2009; 

Raison et al., 2013; Setiawan et al., 2015; Kiraly et al., 2017). As such, there are several 

important therapeutic considerations that we have investigated in the following section: 1) 

whether current efficacious treatment for stress-related psychiatric disorders impact cytokine 

expression, 2) if anti-inflammatory therapies may serve as antidepressants in certain patient 

populations, and 3) whether there are known sex differences in these therapies. 

5.1 Anti-inflammatory effects of antidepressant compounds.  

Inflammation is greatly associated with the pathogenesis of depression (Hannestad et al., 

2011; Gao et al., 2019). Moreover, patients treated with antidepressants show lower plasma levels 

of pro-inflammatory cytokines (Hannestad et al., 2011), however it is unclear whether the anti-

inflammatory effects of these drugs contribute to the antidepressant efficacy. Data presented by 

Hannestad, et al report that antidepressant treatment appears to lower the levels of IL-1ß in the 

serum of patients treated for MDD, while having little to no effect on the levels of TNF-α and IL-

6 present in the serum. Moreover, while it is unclear as to whether the anti-inflammatory effects 
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of antidepressants contribute to their antidepressant efficacy, it is striking that some studies report 

that cytokine changes predict the therapeutic response.  For example, in a study testing the tricyclic 

amitriptyline, MDD patients exhibited greater TNFα plasma levels than non-depressed controls, 

and a reduction in TNFα levels following 6 weeks of treatment predicted those who responded to 

the drug, while non-responders lacked a significant anti-inflammatory effect following treatment 

(Lanquillon et al., 2000). Unfortunately, to our knowledge, it is not known whether sex differences 

exist in the anti-inflammatory effects of antidepressant compounds. However, given the significant 

number of sex differences in the pharmacokinetics of antidepressants based on differences in the 

rates of gastric emptying, amount of adipose tissue and estrogenic regulation of cytochrome P450 

as reviewed in (LeGates et al., 2019), it would be expected.  

The impact of antidepressants on inflammation are also supported by preclinical findings.  

For example, the SSRI imipramine has been shown to decrease levels of microglial reactivity in 

rats exposed to an endotoxin stress (LPS) and a social stressor (repeated social defeat), while also 

attenuating the expression of TNFα and IL-1ß, although levels of IL-6 did not appear to be affected 

by this drug (Ramirez et al., 2015). In rats exposed to chronic social isolation stress, treatment with 

the antidepressant fluoxetine, and the antipsychotic clozapine reduced the amount of TNF-α 

present in the hippocampus (Todorovic and Filipovic, 2017). The ability of antidepressants to 

inhibit microglial function has also been supported by findings in microglial cell culture. For 

example, three different antidepressants were shown to inhibit INF-γ-induced microglial 

production of IL-6 and nitric oxide: the SSRI, fluvoxamine, the noradrenaline reuptake inhibitor, 

reboxetine and the non-selective monoaminergic reuptake inhibitor, imipramine (Hashioka et al., 

2007). Alternatively, this study also demonstrated that lithium chloride (a mood stabilizer), 

enhanced IL-6 release yet inhibited nitric oxide. The effects of antidepressants on pro-
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inflammatory components can vary depending on the drug and the cytokine being studied, 

indicating that different antidepressants may hold a certain degree of  anti-inflammatory effect, 

but likely cannot be considered an overall treatment for stress-induced inflammation (Hashioka et 

al., 2007). 

With the recognition of treatment resistance in up to 30% of MDD patients (Al-Harbi, 

2012), the use of alternative therapies is essential. (R,S)-ketamine is a N-methyl-d-aspartate 

(NMDA) antagonist that is not a traditional antidepressant, but does exhibit antidepressant efficacy 

in MDD patients (Berman et al., 2000), and has been shown to buffer learned fear expression in 

rodent models (McGowan et al., 2017). Moreover, (R,S)-ketamine serves as a prophylactic against 

stress-induced depressive like behaviors in rodent models (Brachman RA, 2016; Mastrodonato et 

al., 2018; Mastrodonato et al., 2020). In mice where LPS was the inflammatory precursor to the 

depressive-like behavior, (R,S)-ketamine prior to exposure to LPS  attenuated learned fear if 

treatment occurred 1 week before re-exposure to a stressful condition (Mastrodonato et al., 2020). 

However, if treated 1 month or 1 day before the stress exposure, (R,S)-ketamine was ineffective, 

indicating that the timing of the treatment is also essential in the efficacy of the drug (McGowan 

et al., 2017). Along with the attenuation of depressive-like behaviors, the use of (R,S)-ketamine 

has also been identified to exhibit anti-inflammatory properties. (R,S)-ketamine was shown to 

inhibit LPS-induced serum levels of TNF-α, IL-1ß (Clarke et al., 2017). Additionally, in adult rats 

that had been stressed through maternal deprivation at a young age, treatment with (R,S)-ketamine 

reduced serum levels for TNF-α, IL-1, and IL-6 (Reus et al., 2015). Although the efficacy of (R,S)-

ketamine as an antidepressant is understood, much is yet to be explored as to its effects on 

inflammation, as well as possible sex differences that could be present in the use of this drug as 

treatment for MDD, however a few studies in rodents do suggest that females may be more 
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sensitive to the antidepressant-like effects of ketamine compared with males (Carrier and Kabbaj, 

2013; Franceschelli et al., 2015). 

5.2 Antidepressant-like effects of anti-inflammatory compounds 

Considering the evidence that inflammatory molecules are capable of producing a 

depressive phenotype, anti-inflammatory compounds have been tested for their antidepressant 

efficacy in clinical trials. Etanercept, a TNF-α  antagonist, was tested in patients with psoriasis and 

found to produce significant antidepressant efficacy above that of placebo (Tyring et al., 2006). 

Moreover, another TNF-α  antagonist, Infliximab was tested in another MDD patient population 

and was also shown to exhibit antidepressant efficacy (Raison et al., 2013). However, depressive 

symptoms were only reduced for the subset of patients that presented with high baseline levels of 

inflammation prior to treatment. This suggests that sub-populations of depressed patients with 

elevated inflammatory profiles may benefit from anti-inflammatory compounds as an anti-

inflammatory or for use as an adjuvant to traditional treatment.  

Studies evaluating sex differences in the antidepressant efficacy of anti-inflammatory 

compounds are limited. One such study evaluated sex differences in the behavioral response to 

chronic unpredictable stress in male and female mice (Wohleb et al., 2018). While both sexes 

demonstrated the development of depressive- and anxiety-like behaviors, only male mice exhibited 

increased microglial activation in the prefrontal cortex. Therefore, viral mediated knockdown of 

neuronal colony stimulating factor 1 to inhibit the activation of microglia in the prefrontal cortex 

was only tested in males (Wohleb et al., 2018)  did produce an antidepressant and anxiolytic effect.  

Sex differences in drug pharmacokinetics and controlled anti-inflammatory studies from other 

diseases, on the other hand, have shed light on how men and women respond differently to the 

same therapy. For example, it has long been recognized that aspirin, an effective anti-inflammatory 
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compound, has distinctly different pharmacokinetics in males versus females; the drug is cleared 

more slowly and has a longer half-life in women, owing to the greater bioavailability in women 

than in men (Ho et al., 1985).  In a randomized clinical trial of IFN-b for multiple sclerosis, women 

responded better to IFN-b than men (Secondary Progressive Efficacy Clinical Trial of 

Recombinant Interferon-Beta-1a in, 2001). Moreover, other findings in RA patients reported that 

after anti-TNF compounds were administered, only female patients exhibited increased plasma 

adiponectin (Nagashima et al., 2008), a molecule responsible for its anti-inflammatory effects 

(Mangge et al., 2010). It should also be noted that women respond to TNF-a antagonists with 

shorter half-lives, highlighting the critical point that for pharmacological treatments (Desroches et 

al., 2010), serum concentrations should be used to tailor the dosing regimen for optimal therapeutic 

outcomes. This also begs the question as to whether women, who have greater inflammatory 

responses to social stressors and greater auto-immune disorder risk, may benefit from anti-

inflammatory therapy as antidepressants or adjuvants to traditional therapy to a greater extent than 

men. 

Similar to findings in clinical reports, there is also considerable evidence to support an 

antidepressant-like effect of anti-inflammatory compounds in preclinical studies in rodents.  For 

example, treatment via central administration of an IL-1 receptor antagonist to male rats prior to 

daily exposure to social defeat inhibited the development of anhedonia in the sucrose preference 

test (Wood et al., 2015). Similarly, using chronic unpredictable stress, IL-1 receptor antagonist or 

IL-1 receptor knockout mice blocked the development of anhedonia that occurred following stress 

(Koo and Duman, 2008). Moreover, inhibiting IL-6 during repeated social defeat stress also 

produces an antidepressant-like response in mice (Hodes et al., 2014a). While to our knowledge 

studies have not been conducted to assess sex differences in anti-inflammatory efficacy within 
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stress models, the vast sexual dimorphism of the inflammatory system suggests that these anti-

inflammatory compounds will likely exhibit differential effects in males versus females. 

Flavonoids are metabolites commonly derived from a variety of plant life such as fruits, 

vegetables, herbs, grains and red wine (Erdman et al., 2007); they have been studied for their 

potential therapeutic properties, especially in their role as anti-inflammatory agents (Serafini et al., 

2010; Farzaei et al., 2019). For example avicularin, a quercetin derivative, decreased levels of pro-

inflammatory cytokines and subsequent depressive-like behaviors in rodents exposed to chronic 

unpredictable mild stress (Shen et al., 2019). In addition, daily treatment with resveratrol prior to 

repeated social defeat in male rats proved anti-inflammatory (Finnell et al., 2017a). Moreover, 

resveratrol produced an antidepressant-like effect by blocking anhedonia in susceptible rats, 

however only at doses that were efficacious in blocking neuroinflammation within the LC. It is 

important to note that some flavonoids affect the regulation of many biological processes, 

including that of hormones such as estrogens (Kao et al., 1998; Rathee et al., 2009). Certain 

subgroups of flavonoids such as flavones inhibit the production of estrogen, acting as a competitive 

inhibitor of the aromatases that serve as the precursor of the hormone (Kao et al., 1998). 

Understanding these sex differences in the potential off target effects of these compounds is crucial 

when taking into consideration the treatment of women vs men. Another major pitfall of these 

compounds is that they are not selective for one system and have many effects beyond reducing 

inflammation. Zheng et al.,(Zheng et al., 2013) identified that the antidepressant-like effect 

produced by the flavonoid used in their studies occurred through the compound’s actions within 

the D1/D2 dopamine receptors, rather than anti-inflammation alone.   

5.3 Putative anti-inflammatory effects of CRF antagonists.  

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on August 5, 2020 as DOI: 10.1124/jpet.120.266205

 at A
SPE

T
 Journals on A

pril 17, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


JPET #266205 

 29 

It has long been recognized that subsets of depressed patients exhibit elevated levels of 

the stress-related neuropeptide corticotropin-releasing factor (CRF) (Owens and Nemeroff, 

1991). Considerable evidence has now accumulated which points towards inherent sex 

differences within the CRF system as a likely mechanism leading to enhanced stress 

susceptibility, and thus increased rates of depression in the female population (Bangasser and 

Valentino, 2012; Bangasser and Wiersielis, 2018). Although research is far from elucidating the 

etiology of this health disparity, the molecular and cellular substrates identified in the CRF 

system that are differentially regulated in females vs males may consist of the most promising 

lines of evidence to understand exaggerated stress susceptibility in females (Bangasser and 

Valentino, 2012). It is notable that there is a bidirectional stimulatory relationship between 

cytokines and CRF (Dentino et al., 1999; Kageyama and Suda, 2009). Acute, short term 

administration of CRF elicits anti-inflammatory effects through prostaglandin E2 synthesis 

(Tsatsanis et al., 2007) and while this study did not evaluate sex differences, female cells are 

known to release less prostaglandin E2 upon stimulation compared with male cells (Batres and 

Dupont, 1986). Alternatively, upon prolonged exposure to CRF (greater than 6 hours), a 

proinflammatory effect ensues, as measured by induction of TNF-a gene transcription (Wang et 

al., 2003; Tsatsanis et al., 2007). Importantly, a CRF1 antagonist is also capable of blocking the 

effect of cytokines on stress-related behaviors (Knapp et al., 2011). Thus, the exaggerated CRF 

system observed in women (Brady et al., 2009; Bangasser and Valentino, 2012) may contribute 

to the enhanced inflammatory responses to stressors in females (Cizza et al., 2009; Prather et al., 

2009) and subsequent increased risk of suffering from depressive disorders. 

 

6. Conclusions  
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With the long recognized significant health disparity in MDD, women exhibiting twice the 

risk as men, it is surprising that we are not further in our understanding of how to personalize 

antidepressant treatments between the sexes (Kornstein et al., 2000). The fact that the majority of 

basic research studies have been conducted only in male subjects no doubt contributes to our 

lack of clarity on this subject. In the studies that do address this issue, vast sex differences have 

been identified in the pharmacokinetics of antidepressant therapies.  

The female LC-NE system is well recognized to exhibit distinct morphological and 

neurochemical differences compared to males that predispose females to exaggerated LC-NE 

activity (as reviewed in (Bangasser et al., 2016). As an extension of this knowledge, we propose 

that an LC-NE-cytokine circuit (Figure 1) may serve as a conduit to increase stress susceptibility 

in females. Social stress-induced activation of the LC stimulates circulating NE release within 

the plasma, and is necessary for the inflammatory priming that occurs following stress (Finnell et 

al., 2019). As a result, enhanced LC-NE activity in females can lead to hypersecretion of NE and 

ultimately, increased circulating inflammation. Combined with evidence that peripheral 

inflammatory challenges serve to increase LC burst firing in an IL-1 dependent manner (Borsody 

and Weiss, 2004), we hypothesize that the exaggerated stress-induced inflammatory response 

evident in females may contribute to a feed-forward mechanism resulting in heightened IL-1b 

release in the periphery and exaggerated accumulation in the LC compared with males (Wood et 

al., 2010; Wood et al., 2015; Finnell et al., 2017a). This pathway is already primed to increase 

pro-inflammatory cytokine release in the face of stress, and given the knowledge that stress-

induced LC-NE activity and cytokine responses are sensitized in females, suggests that this 

pathway may be hyperactive in stressed females vs. males. Taken together, with the increasing 

appreciation for the role that inflammation may play in the pathogenesis of MDD patients, and 
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the increased inflammatory stress responsivity observed in women, this favors the evaluation of 

anti-inflammatory therapies.  In support of this, autoimmune disorders are also biased towards 

females and are comorbid with MDD, highlighting further the role that inflammatory cytokines 

may play in the pathogenesis of these stress-related psychiatric disorders. The studies reviewed 

herein strongly support the need for further studies to elucidate if females are exquisitely 

sensitive to anti-inflammatory compounds as adjuvants to traditional therapies. 
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Legends for Figures. 

Figure 1. LC-NE-Cytokine circuit as a conduit through which stress could increase stress 

susceptibly in females.  The female LC-NE system exhibits distinct morphological and 

neurochemical differences compared with males, predisposing females to exaggerated LC-NE 

activity (as reviewed in (Bangasser et al., 2016). As an extension of this understanding, we 

propose that an LC-NE-cytokine circuit may serve as a conduit through which stress functions to 

increase stress susceptibility (and increased risk of depression) in females. Social stress-induced 

activation of the LC stimulates circulating NE release within the plasma. This LC-induced NE 

release stimulates the inflammatory priming that occurs following stress (Finnell et al., 2019). 

Thus, enhanced LC-NE activity in females can lead to NE hypersecretion and ultimately 

increased circulating inflammation. Combined with evidence that peripheral inflammatory 

challenges serve to increase LC burst firing via IL-1 within the LC (Borsody and Weiss, 2004), 

we hypothesize that the exaggerated stress-induced inflammatory response evident in females 

may contribute to a feed-forward mechanism resulting in LC-NE induced elevations of IL-1b 

release in the periphery as well as exaggerated accumulation within the LC compared with males 

(Wood et al., 2010; Wood et al., 2015; Finnell et al., 2017a).  
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Animal 
(sex)

Hormone 
design

Dose of 
estradiol 

Duration of 
hormone 

treatment
History of 

stress?
Behavioral 
measure Behavioral effect

Overall effect of 
ovarian hormones Citation

Rat 
(female)

OVX vs. 
Intact 
sham NA

Stress began 
12d post 
OVX/sham

witness 
stress -5 
daily 
exposures

Sucrose 
preference, 
FST, anxiety-
like burying

OVX blocked anhedonia 
(SP), immobility (FST), 
and burying in stressed 
females

Ovarian hormones 
increased stress 
sensitivity (anxiety- 
and depressive-like 
behaviors)

Finnell et 
al., 2018

Rat 
(female)

OVX 
+vehicle vs. 
OVX +E 
pellet 0.25 mg

Stress began 
12d post 
OVX/sham. 
pellet 
replacement 
post OVX.

witness 
stress-5 
daily 
exposures

Sucrose 
preference, 
anxiety-like 
burying

E had no effect on SP, 
but reinstated anxiety-
like burying in OVX rats

E increased stress 
sensitivity (anxiety-
like behavior)

Finnell et 
al., 2018

Mice 
(Female)

OVX vs. 
Intact 
sham N/A N/A

CUS (6 
days)

FST, Elevated 
Plus Maze

CUS caused a pro-
depressive behavior in 
intact females over 
OVX

Estradiol increases 
stress sensitivity 
(depressive-like 
behavior)

LaPLant, et 
al. 2009

Human 
(Female)

Postmeno-
pausal

placebo or 1 
mg E (1 
month), then 
2 mg E (2 
months)

3 months 
(daily) TSST

Mood/Anxiety 
ratings and 
cognitive 
testing

Participants treated 
with E showed a 
significant increase in 
negative mood and 
anxiety after TSST

Estrogen increases 
stress sensitivity

Newhouse, 
et al 2011

Rats 
(Female 
and 
male)

Intact 
females, 
OVX 
+vehicle or 
+E pellet

placebo or E 
capsule  
(proestrous E 
levels). 2 weeks No

delayed 
alternation 
task and 
FG7142-
induced acute 
stress

Proestrous intact and 
OVX+E females show 
heightened stress 
response to novelty 
and FG7142 vs. males 
and OVX+vehicle

Proestrous levels of 
E (endogenous and 
exogenous) 
increases stress 
sensitivity.

Shansky et 
al., 2004

Studies demonstrating ovarian hormones increase behavioral dysfunction/stress susceptiblity

Table 1. Impact of ovarian hormones on behavior and stress susceptibility
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Mice 
(Female 
and 
male)

OVX vs. 
Intact 
sham

0.01 mg E2 or 
0.125 mg P4 

Every four days 
after day 3 of 
acclimation

Chronic 
variable 
mild 
stress

Elevated Plus 
maze, Open 
field test, FST

CVMS Increased 
anxiety-like behavior in 
intact females, while 
OVX and male rats did 
not display an increase 
in these behaviors

Estrogen increases 
stress sensitivity

Karisetty et 
al 2017

Rat 
(female)

OVX 
+vehicle vs. 
OVX + EB 10ug/0.1mL

3 weeks post 
OVX, daily EB 
injections for 8 
days No FST

EB decreased struggle 
and immobility, and 
increased swimming 
behaviors in FST

EB decreased 
behavioral despair

Rachman 
et al., 1998

Rat 
(female)

OVX vs. 
Intact 
sham N/A

4 months post 
OVX

CUS (6 
weeks) SP, FST, NSF

OVX Increased 
Immobility in FST, 
anhedonia in SP, and 
anxiety in NSF

OVX increased 
depressive 
phenotypes

Mahmoud, 
et al, 2016

Rat 
(female)

OVX vs. 
Intact 
sham

30 μg/day 
17B-estradiol 7 days No

Conditioned 
Place 
aversion, 
OFT, FST

OVX increased 
immobility in FST, 
decreased exploratory 
behavior, and overall 
incresased depressive-
like behaviors. 

OVX increased 
behavioral despair, 
while Estradiol 
rescues this effect

Li, et al. 
2014

Rat 
(female)

OVX+chole
sterol vs 
OVX+Estra
diol

10% Estradiol - 
90% 
Cholesterol

Silastic capsule 
implant 
immediately 
after OVX

Chronic 
restraint 
stress (6 
hr for 21 
days) OFT

Stressed groups 
showed less 
exploration in the OFT 
regardless of estradiol 
treatment, and E 
increased crossings in 
the center of the OFT

Estradiol decreased 
anxious behavior

Bowman, 
et al 2002

Mice 
(Female)

OVX 
+vehicle vs. 
OVX +E 
pellet

0, 0.17, or 
0.72 mg

60 day release 
pellet implant 
immediately 
after OVX N/A

Social 
Recognition 
Memory test

Long-term estrogen 
replacement restores 
social interaction 
behavior

Estrogen 
replacement 
improved social 
behavior

Tang et al 
2005

Studies demonstrating ovarian hormones decrease behavioral dysfunction/stress susceptiblity
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Rats 
(Female)

OVX vs. 
Intact 
sham NA N/A

Social 
instability 
test FST

OVX+stress animals 
showed more 
immobility during FST

Estrogen decreased 
depressive behavior

Al-Rahbi, 
et al 2013

Rats 
(Female)

OVX vs. 
Intact 
sham NA NA

Restraint 
stress and 
Tal shock

Conditioned 
stimulus 
response

Intact female rats 
showed a lower 
conditioned response 
when compared to 
OVX females and 
males

Estrogen decreases 
responses to 
conditioning stimuli

Wood and 
Shors 

Rats 
(Female)

Estrus 
stage NA NA

Social 
isolation 
stress

Open field 
test, FST

Female rats in their 
estrus cycle showed an 
increased exploration 
in the open field test. 

Estrogen protects 
against stress 
sensitivity

Ramos-
Ortolaza, 
et al 2017

SP; Sucrose preference, FST; Forced swim test, B; anxiety-like burying; E; 17B-estradiol, EB; Estradiol benzoate, P4; Progesterone, 
CUS; Chronic Unpredictable Stress, TSST; Trier Social Stress Test, OFT; open field test, OVX; ovariectomy, NA; not applicable
NSF; Novelty-Supressed Feeding test, 
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Social Stress

LC

IL-1𝝱
NE

NE in Brain:
Depression 
PTSD
Hyperarousal

NE in periphery:
Enhanced 
cytokine release

+

+
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