Title Page # Myeloid cell mPges-1 deletion attenuates mortality without affecting remodeling after acute myocardial infarction in mice Lihong Chen¹, Guangrui Yang¹, Tingting Jiang¹, Soon Yew Tang, Tao Wang, Qing Wan, Miao Wang, Garret A. FitzGerald Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China (L. C., T.J.); School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China (G.Y.); Institute for Translational Medicine and Therapeutics (L.C., G.Y., S.Y.T., G.A.F.), and Cardiovascular Institute (T.W., G.A.F.), University of Pennsylvania, Philadelphia, PA, USA; State Key Laboratory of Medical Molecular Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Q,W, M.W.). ### **Running Title Page** - a) Running Title: Myeloid mPges-1 and myocardial infarction. - b) Address for correspondence: Dr. Garret A. FitzGerald, Institute for Translational Medicine and Therapeutics, Smilow Center for Translational Research, West Pavilion, 10th Floor, Room 116, 3400 Civic Center Boulevard, Building 421, Philadelphia, PA 19104-5158 Tel: 215-898-1185 | Fax: 215-573-9135. Email garret@upenn.edu. Or Dr. Lihong Chen, Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning, China 116044. Email lihong@dmu.edu.cn. c) The number of text pages: 11; The number of tables: 2; The number of figures: 5; The number of references: 36; The number of words in the Abstract: 227; The number of words in the Introduction: 274; The number of words in the Discussion: 789. ### d) Abbreviations ANP, atria natriuretic peptide; BNP, brain natriuretic peptide; COX, cyclooxygenase; KO, knockout; CTGF, connective tissue growth factor; NSAID, nonsteroidal anti-inflammatory drug; Mac, macrophage; MHC, major histocompatibility complex; MI, myocardial infarction; mPges-1, microsomal PGE₂ synthase-1; PCR, polymerase chain reaction; PGE₂, prostaglandin E₂; PGH₂, prostaglandin H₂; PGI₂; prostacyclin; SEM, standard error of mean; TGF, transforming growth factor; WT, wild type. e) Section: Cardiovascular ### **Abstract** Selective deletion of microsomal PGE₂ synthase (mPges) -1 in myeloid cells retards atherogenesis and suppresses the vascular proliferative response to injury, while it does not predispose to thrombogenesis or hypertension. However, studies using bone marrow transplants from irradiated mice suggest that myeloid cell mPGES-1 facilitates cardiac remodeling and prolongs survival after experimental myocardial infarction (MI). Here we addressed this question using mice lacking mPges-1 in myeloid cells, particularly macrophages (Mac-mPges-1 KO), generated by crossing mPges-1 floxed mice with LysMCre mice, and subjecting them to coronary artery ligation. Cardiac structure and function were assessed by morphometric analysis, echocardiography, and invasive hemodynamics 3, 7 and 28 days after MI. Despite a similar infarct size, in contrast to the prior report, the post-MI survival rate was markedly improved in the Mac-mPges-1 KO mice compared to WT controls. Left ventricular systolic (reflected by ejection fraction, fractional shortness end systolic volume and +dP/dt) and diastolic function (reflected by end diastolic volume, -dP/dt and Tau), cardiac hypertrophy (reflected by LV dimensions) and staining for fibrosis did not differ between the groups. In conclusion, we find that Cre-loxP mediated deletion of mPges-1 in myeloid cells has favorable effects on post-MI survival, with no detectable adverse influence on post-MI remodeling. These results add to evidence that targeting macrophage mPGES-1 may represent a safe and efficacious approach to the treatment and prevention of cardiovascular inflammatory disease. ### Introduction Cycloxygenases (COX-1 and -2) convert arachidonic acid to prostanoids. The inducible COX-2, and one of its products, PGE₂, dominates prostanoid production in inflammation and pain. COX-2 selective nonsteroidal anti-inflammatory drugs (NSAIDs) have been used in the management of pyrexia, alleviation of pain and inflammation (Grosser et al., 2017b). However, despite their efficacy, it has become evident that COX-2 inhibitors increase the incidence of cardiovascular adverse events, including myocardial infarction, stroke, hypertension, heart failure and sudden cardiac death(Grosser et al., 2017a). This results from suppression of COX-2 derived cardioprotective prostanoids, particularly prostacyclin (PGI₂), that attenuate atherogenesis and the response to thrombogenic and hypertensive stimuli (Yu et al., 2012). Given these observations and the opioid crisis, there is considerable interest in the development of novel, non-addictive analgesic and anti-inflammatory drugs. Interest in the prostanoid pathway has focused on mPGES-1, which is functionally coupled with COX-2 and dominates inflammatory PGE2 production (Friesen and Mancini, 2008; Wang and FitzGerald, 2010). We recently reported that deletion of mPges-1 in myeloid cells recapitulates effects of global enzyme deletion in that it attenuates the vascular proliferative response to injury and mitigates high-fat diet induced atherogenesis. By contrast, deletion of mPges-1 in vascular cells promotes the proliferative response to injury and does not affect atherogenesis (Chen et al., 2013; Chen et al., 2014). This prompts consideration of targeted delivery of mPGES-1 Downloaded from jpet.aspetjournals.org at ASPET Journals on April 19, 2024 inhibitors to inflammatory macrophages as a novel therapeutic strategy. Here, to address concerns that macrophage mPGES-1 might contribute to healing after myocardial infarction (MI), we have used genetic approaches to reveal that although cardiac remodeling is not profoundly altered after experimental myocardial infarction, myeloid deletion of mPges-1 improves post infarct survival. ### Materials and methods ### Mice and the MI model The mPges-1-flox mice, kindly provided by Mohammad Bohlooly of Astra Zeneca, were crossed with LysMCre mice (Jackson laboratory, ME) to yield mice with mPges-1 deletion in myeloid cells, termed Mac-mPges-1-KO. Floxed mice without cre in same litters were used as controls, termed Mac-mPges-1-WT. Global mPges-1 KO (gKO) and their littermate controls (gWT) were obtained from (Jackson laboratory, ME). All mice were maintained under 12-hour/12-hour light/dark condition with free access to food and water before and throughout experiments. Only male mice at 3 to 4 months of age were used in this study. Mice were subjected to coronary artery ligation to induce MI as previously reported (Gao et al., 2010). In brief, after anesthetization, a skin incision was made over the left chest and the pectoral muscles were retracted to expose the fourth intercostal space. A small hole was then made at the fourth intercostal space with a mosquito clamp to open the pleural membrane and pericardium. The heart was then carefully exteriorized. The left main descending coronary artery was located, sutured, and ligated approximately 3mm from its origin using a silk suture. After ligation, the heart was immediately placed back into the intrathoracic space followed by manual evacuation of air and closure of muscle and the skin. The mice were then allowed to breathe room air and monitored during the recovery period. All procedures were in accordance with the guidelines approved by the University of Pennsylvania Institutional Animal Care and Use Committee and the Animal Center at Dalian Medical University, Dalian, China. ### Echocardiography and invasive hemodynamics Mice were anesthetized by inhalation of 1–2% isofluorane via nose cone and placed on a heating pad to keep the body temperature. Echocardiography was performed using a Vevo 770 (VisualSonics, Toronto, ON, Canada) with a linear 30-MHz probe (RMV 707B) as previously (Yuan et al., 2010). For invasive hemodynamics, a 1.4 French catheter (Millar Instruments, Houston, TX) was inserted through the right carotid artery, and then advanced into the left ventricle to record pressure and left ventricular function as previously reported (Xu et al., 2009). # Histopathology The hearts from mice were fixed with 4% paraformaldehyde and then routinely dehydrated and embedded in blocks of paraffin wax and cross-sectioned at a thickness of 6µm. Morphometric analysis of collagen accumulation in heart tissues was assayed by Masson Trichrome and Picrosirius red staining as previously (Xu et al., 2009). ### **Real-time RT-PCR** Total RNA from infarcted and non-infarcted heart was extracted using RNeasy kit following the manufacturer's instructions and the concentration of RNA was measured by nanodrop, 0.5µg of each sample was applied reverse transcription. Taqman universal PCR Master Mix and probes were used for real-time PCR. # Downloaded from jpet.aspetjournals.org at ASPET Journals on April 19, 2024 # Statistical analysis All data were expressed as means \pm SEM. Statistical differences were determined 2-way analysis of variance or 2-tailed Student's t-test as appropriate. A P value less than 0.05 was considered a significant difference. ### **Results** Myeloid mPges-1 deletion improved post-MI survival with little effect on cardiac function To study the effects of myeloid mPges-1 deletion on cardiac response to myocardial infarction, Mac-mPges-1-WT or -KO male mice were subjected to coronary artery ligation, and the cardiac function was assessed by echocardiography before and 7, 28 days after the surgery. Invasive hemodynamics was performed at the end of the experiment. Although the cardiac function was clearly impaired upon the ligation at 7-and 28- days post-surgery, no significant difference was observed between the WT and KO groups, either for the left ventricular systolic function (reflected by ejection fraction, fractional shortness, end systolic volume and +dP/dt) or diastolic function (reflected by end diastolic volume, -dP/dt and Tau) (Table 1, Fig.1A & B). However, the survival rate was significantly improved in the KO groups, with 9 of 26 death in the WT mice, while only 2 of 24 in the KOs (Fig.1C). Post-MI cardiac hypertrophy and fibrosis were not affected by myeloid mPges-1 deletion Masson Trichrome and Picrosirius red staining showed no obvious difference between the WT and KO groups for the extracellular matrix deposition, which is a feature of post-MI ventricular remodeling (Fig.2A & B). We also compared the mRNA level for several cardiac hypertrophy and fibrosis markers in both non-infarcted and infarcted heart zones. Irrespective of genotype, the infarcted heart showed markedly increased expression of both fibrosis (collagen synthases, TGF β , CTGF) and hypertrophy related genes (ANP, BNP and β -MHC) (Fig.2C & D). Inflammation and apoptosis were not affected by myeloid mPges-1 deletion Inflammation and myocyte apoptosis soon after experimental MI may cause fibrosis and lead to progressive impairment of cardiac function. To determine whether mPges-1 deletion in myeloid cells might influence these processes, Mac-mPges-1-WT and -KO mice were subjected to acute coronary artery ligation and heart function was assessed 3 days after. Similar to 7- or 28- days post infarction, left ventricular function showed no significant difference between the two groups 3 days after the occlusion (Fig.3). Gene expression relevant to both inflammation and apoptosis was also uninfluenced by genotype (Fig.4). Global mPges-1 deletion did not worsen post-MI cardiac dysfunction In addition to conditional myeloid cell deletion, we also studied the contribution of global mPges-1 deletion to post-MI remodeling. As shown in Fig.5 and Table.2, left ventricular function, hypertrophy and fibrosis were all unaltered in the global mPges-1 knockouts compared to controls. ### **Discussion** Both the cardiovascular adverse effects of nonsteroidal anti-inflammatory drugs and the opioid crisis have focused interest on mPGES-1 the dominant source of PGE₂ biosynthesis downstream of COX-2, as an analgesic and anti-inflammatory drug target (Kamei et al., 2004; Wang et al., 2008b; Koeberle and Werz, 2015). Compared to disruption of the COX-2/PGI2 signaling pathway, deletion of mPges-1 is less likely to predispose to thrombogenesis, hypertension (Cheng et al., 2006), atherogenesis (Wang et al., 2006), a proliferative response to vascular injury (Wang et al., 2011), or aortic aneurysm formation (Wang et al., 2008a) in mice. This altered profile reflects, at least in part, the differential impact of the two strategies on biosynthesis of PGI2; this is enhanced by mPges-1 deletion or blockade in mice and humans due to increased utilization of the mPGES-1 substrate, PGH₂, by PGI₂ synthase (Tang et al., 2016). Specific inhibitors of mPGES-1 have been under development (Koeberle et al., 2016; Di Micco et al., 2018; Ding et al., 2018) and the clinical pharmacology of several mPGES-1 inhibitors has been described (Jin et al., 2015). However, progress in bringing these drugs to the market is slow. Factors that have complicated the development of mPGES-1 inhibitors include off target hepatotoxicity of some compounds (Jin et al., 2015) and the theoretical possibility that while augmented PGI₂ formation may attenuate cardiovascular risk but also restrain analgesic efficacy in some settings(Pulichino et al., 2006). More recently, the opioid crisis has highlighted the limited number of analgesic options and has reinvigorated interest in inhibitors of mPGES-1. Interestingly, deletion of mPges-1 in myeloid cells, within which the enzyme is most abundantly expressed in macrophages, attenuates the vascular proliferative response to injury and mitigates high-fat diet induced atherogenesis while conserving the efficacy of NSAIDs in models of analgesia; by contrast deletion of mPges-1 in vascular cells enhances the response to vascular injury (Chen, 2013; Chen et al., 2013; Chen et al., 2014). These observations have prompted us to pursue the possibility that targeting mPGES-1 selectively in activated macrophages might further improve the therapeutic index of mPGES-1 inhibitors. However, despite the relatively benign preclinical cardiovascular profile of targeting mPGES-1, doubts have been raised about the safety of this strategy in the setting of acute myocardial infarction. Unlike COX-2 inhibition, Wu et al reported that deletion of mPges-1 did not increase ischemic myocardial injury or death after coronary occlusion in mice (Wu et al., 2009a; Wu et al., 2009b). However, in a model of angiotensin II mediated stress, Harding et al found that mPges-1 deletion resulted in myocardial dysfunction, albeit without evidence of cardiomyocyte hypertrophy or fibrosis (Harding et al., 2011). Finally, Degousee and colleagues reported a reduction in survival and impaired cardiac remodeling after experimental MI in mice subject to either global or myeloid cell deletion of mPges-1, the latter by bone marrow transfer in irradiated mice (Degousee et al., 2008; Degousee et al., 2012). Unexpectedly, they observed enhanced inflammation and higher PGE₂ in the infarct area in the myeloid cell mPges-1 deficient mice (Degousee et al., 2012). Here, we generated mice lacking mPges-1 in myeloid cells by crossing mPges-1 floxed mice with LysMCre mice. As we previously reported, the dominant consequence of the enzyme deletion is to render macrophages deficient in mPges-1 (Chen et al., 2013). Here, by contrast, we found that survival post-MI was improved, and we did not observe any alteration in LV function or post-infarction remodeling by genotype. Similarly, we failed to observe any detectable adverse influence on post-MI remodeling after mPges-1 was depleted globally. Several differences may explain this discrepancy from the reports of Degousee et al (Degousee et al., 2008; Degousee et al., 2012) including the cells deficient in mPges-1 (myeloid cells versus bone marrow–derived leukocytes), the genetic background of the mice used in the two studies (C57BL/6 versus DBA/1lacJ), the surgical approaches to coronary artery ligation (non-thoracotomy versus ventilated thoracotomy), and possibly the sex of the mice studied (males versus female recipients for the bone marrow transplantation). So far, many strategies for targeting disease-relevant macrophages have been developed. These include liposome-encapsulated drug delivery(Ahsan et al., 2002; Ergen et al., 2017); glucan particle-based delivery of siRNA, protein, or small molecules to phagocytic cells(Aouadi et al., 2009; Tesz et al., 2011); nanotherapeutic delivery of high-density lipoprotein nanoparticle to atherosclerotic plaque macrophages(Duivenvoorden et al., 2014); and folate receptor-mediated therapeutic intervention(Xia et al., 2009; Ayala-Lopez et al., 2010). Thus, many options can be explored to target specifically inflammatory macrophages with inhibitors of mPGES-1. Taken together, our findings predict a beneficial cardiovascular impact of mPGES-1 inhibition, even in the setting of myocardial infarction. However, given the conflicting results from distinct approaches to addressing this question in mice, it must be modelled further with macrophage directed inhibitors before proceeding with their clinical development. ### **JPET # 256057** # Acknowledgements We acknowledge technical assistance from Weili Yan, Qiaoling Li, Xiangbo An, and Lei Qian. # Downloaded from jpet.aspetjournals.org at ASPET Journals on April 19, 2024 # **Authorship Contributions** Participated in research design: Chen, Yang, Wang M, FitzGerald. Conducted experiments: Chen, Yang, Jiang, Tang, Wang T, Wan. Performed data analysis: Chen, Yang, Jiang. Wrote or contributed to the writing of the manuscript: Chen, Yang, FitzGerald. ### References - Ahsan F, Rivas IP, Khan MA and Torres Suarez AI (2002) Targeting to macrophages: role of physicochemical properties of particulate carriers--liposomes and microspheres--on the phagocytosis by macrophages. *J Control Release* **79**:29-40. - Aouadi M, Tesz GJ, Nicoloro SM, Wang M, Chouinard M, Soto E, Ostroff GR and Czech MP (2009) Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. *Nature* **458**:1180-1184. - Ayala-Lopez W, Xia W, Varghese B and Low PS (2010) Imaging of atherosclerosis in apoliprotein e knockout mice: targeting of a folate-conjugated radiopharmaceutical to activated macrophages. *J Nucl Med* **51**:768-774. - Chen L (2013) Macrophage prostaglandin E2 mediates inflammatory pain in peripheral tissues. The journal of pain: official journal of the American Pain Society 14:S72. - Chen L, Yang G, Monslow J, Todd L, Cormode DP, Tang J, Grant GR, DeLong JH, Tang SY, Lawson JA, Pure E and Fitzgerald GA (2014) Myeloid cell microsomal prostaglandin E synthase-1 fosters atherogenesis in mice. *Proceedings of the National Academy of Sciences of the United States of America* **111**:6828-6833. - Chen L, Yang G, Xu X, Grant G, Lawson JA, Bohlooly YM and Fitzgerald GA (2013) Cell selective cardiovascular biology of microsomal prostaglandin e synthase-1. *Circulation* **127**:233-243. - Cheng Y, Wang M, Yu Y, Lawson J, Funk CD and Fitzgerald GA (2006) Cyclooxygenases, microsomal prostaglandin E synthase-1, and cardiovascular function. *The Journal of clinical investigation* **116**:1391-1399. - Degousee N, Fazel S, Angoulvant D, Stefanski E, Pawelzik SC, Korotkova M, Arab S, Liu P, Lindsay TF, Zhuo S, Butany J, Li RK, Audoly L, Schmidt R, Angioni C, Geisslinger G, Jakobsson PJ and Rubin BB (2008) Microsomal prostaglandin E2 synthase-1 deletion leads to adverse left ventricular remodeling after myocardial infarction. *Circulation* **117**:1701-1710. - Degousee N, Simpson J, Fazel S, Scholich K, Angoulvant D, Angioni C, Schmidt H, Korotkova M, Stefanski E, Wang XH, Lindsay TF, Ofek E, Pierre S, Butany J, Jakobsson PJ, Keating A, Li RK, Nahrendorf M, Geisslinger G, Backx PH and Rubin BB (2012) Lack of microsomal prostaglandin e2 synthase-1 in bone marrow-derived myeloid cells impairs left ventricular function and increases mortality after acute myocardial infarction. *Circulation* 125:2904-2913. - Di Micco S, Terracciano S, Cantone V, Fischer K, Koeberle A, Foglia A, Riccio R, Werz O, Bruno I and Bifulco G (2018) Discovery of new potent molecular entities able to inhibit mPGES-1. *Eur J Med Chem* **143**:1419-1427. - Ding K, Zhou Z, Zhou S, Yuan Y, Kim K, Zhang T, Zheng X, Zheng F and Zhan CG (2018) Design, synthesis, and discovery of 5-((1,3-diphenyl-1H-pyrazol-4-yl)methylene)pyrimidine-2,4,6(1H,3H,5H)-triones and related derivatives as novel inhibitors of mPGES-1. *Bioorg Med Chem Lett* **28**:858-862. - Duivenvoorden R, Tang J, Cormode DP, Mieszawska AJ, Izquierdo-Garcia D, Ozcan C, Otten MJ, Zaidi N, Lobatto ME, van Rijs SM, Priem B, Kuan EL, Martel C, Hewing B, Sager H, Nahrendorf M, Randolph GJ, Stroes ES, Fuster V, Fisher EA, Fayad ZA and Mulder WJ (2014) ### JPET # 256057 - A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation. *Nat Commun* **5**:3065. - Ergen C, Heymann F, Al Rawashdeh W, Gremse F, Bartneck M, Panzer U, Pola R, Pechar M, Storm G, Mohr N, Barz M, Zentel R, Kiessling F, Trautwein C, Lammers T and Tacke F (2017) Targeting distinct myeloid cell populations in vivo using polymers, liposomes and microbubbles. *Biomaterials* **114**:106-120. - Friesen RW and Mancini JA (2008) Microsomal prostaglandin E2 synthase-1 (mPGES-1): a novel anti-inflammatory therapeutic target. *J Med Chem* **51**:4059-4067. - Gao E, Lei YH, Shang X, Huang ZM, Zuo L, Boucher M, Fan Q, Chuprun JK, Ma XL and Koch WJ (2010) A novel and efficient model of coronary artery ligation and myocardial infarction in the mouse. *Circulation research* **107**:1445-1453. - Grosser T, Ricciotti E and FitzGerald GA (2017a) The Cardiovascular Pharmacology of Nonsteroidal Anti-Inflammatory Drugs. *Trends in pharmacological sciences* **38**:733-748. - Grosser T, Theken KN and FitzGerald GA (2017b) Cyclooxygenase Inhibition: Pain, Inflammation, and the Cardiovascular System. *Clinical pharmacology and therapeutics* **102**:611-622. - Harding P, Yang XP, He Q and Lapointe MC (2011) Lack of microsomal prostaglandin E synthase-1 reduces cardiac function following angiotensin II infusion. *Am J Physiol Heart Circ Physiol* **300**:H1053-1061. - Jin Y, Smith CL, Hu L, Campanale KM, Stoltz R, Huffman LG, Jr., McNearney TA, Yang XY, Ackermann BL, Dean R, Regev A and Landschulz W (2015) Pharmacodynamic Comparison of LY3023703, a Novel Microsomal Prostaglandin E Synthase 1 Inhibitor, with Celecoxib. *Clin Pharmacol Ther*. - Kamei D, Yamakawa K, Takegoshi Y, Mikami-Nakanishi M, Nakatani Y, Oh-Ishi S, Yasui H, Azuma Y, Hirasawa N, Ohuchi K, Kawaguchi H, Ishikawa Y, Ishii T, Uematsu S, Akira S, Murakami M and Kudo I (2004) Reduced pain hypersensitivity and inflammation in mice lacking microsomal prostaglandin e synthase-1. *J Biol Chem* **279**:33684-33695. - Koeberle A, Laufer SA and Werz O (2016) Design and Development of Microsomal Prostaglandin E2 Synthase-1 Inhibitors: Challenges and Future Directions. *J Med Chem* **59**:5970-5986. - Koeberle A and Werz O (2015) Perspective of microsomal prostaglandin E2 synthase-1 as drug target in inflammation-related disorders. *Biochem Pharmacol* **98**:1-15. - Pulichino AM, Rowland S, Wu T, Clark P, Xu D, Mathieu MC, Riendeau D and Audoly LP (2006) Prostacyclin antagonism reduces pain and inflammation in rodent models of hyperalgesia and chronic arthritis. *J Pharmacol Exp Ther* **319**:1043-1050. - Tang SY, Monslow J, G RG, Todd L, Pawelzik SC, Chen L, Lawson J, Pure E and FitzGerald GA (2016) Cardiovascular Consequences of Prostanoid I Receptor Deletion in Microsomal Prostaglandin E Synthase-1-Deficient Hyperlipidemic Mice. *Circulation* **134**:328-338. - Tesz GJ, Aouadi M, Prot M, Nicoloro SM, Boutet E, Amano SU, Goller A, Wang M, Guo CA, Salomon WE, Virbasius JV, Baum RA, O'Connor MJ, Jr., Soto E, Ostroff GR and Czech MP (2011) Glucan particles for selective delivery of siRNA to phagocytic cells in mice. *Biochem J* **436**:351-362. ### JPET # 256057 - Wang M and FitzGerald GA (2010) Cardiovascular biology of microsomal prostaglandin E synthase-1. *Trends Cardiovasc Med* **20**:189-195. - Wang M, Ihida-Stansbury K, Kothapalli D, Tamby MC, Yu Z, Chen L, Grant G, Cheng Y, Lawson JA, Assoian RK, Jones PL and Fitzgerald GA (2011) Microsomal prostaglandin e2 synthase-1 modulates the response to vascular injury. *Circulation* **123**:631-639. - Wang M, Lee E, Song W, Ricciotti E, Rader DJ, Lawson JA, Pure E and FitzGerald GA (2008a) Microsomal prostaglandin E synthase-1 deletion suppresses oxidative stress and angiotensin II-induced abdominal aortic aneurysm formation. *Circulation* **117**:1302-1309. - Wang M, Song WL, Cheng Y and Fitzgerald GA (2008b) Microsomal prostaglandin E synthase-1 inhibition in cardiovascular inflammatory disease. *J Intern Med* **263**:500-505. - Wang M, Zukas AM, Hui Y, Ricciotti E, Pure E and FitzGerald GA (2006) Deletion of microsomal prostaglandin E synthase-1 augments prostacyclin and retards atherogenesis. *Proceedings of the National Academy of Sciences of the United States of America* **103**:14507-14512. - Wu D, Mennerich D, Arndt K, Sugiyama K, Ozaki N, Schwarz K, Wei J, Wu H, Bishopric NH and Doods H (2009a) Comparison of microsomal prostaglandin E synthase-1 deletion and COX-2 inhibition in acute cardiac ischemia in mice. *Prostaglandins & other lipid mediators* **90**:21-25. - Wu D, Mennerich D, Arndt K, Sugiyama K, Ozaki N, Schwarz K, Wei J, Wu H, Bishopric NH and Doods H (2009b) The effects of microsomal prostaglandin E synthase-1 deletion in acute cardiac ischemia in mice. *Prostaglandins Leukot Essent Fatty Acids* **81**:31-33. - Xia W, Hilgenbrink AR, Matteson EL, Lockwood MB, Cheng JX and Low PS (2009) A functional folate receptor is induced during macrophage activation and can be used to target drugs to activated macrophages. *Blood* **113**:438-446. - Xu J, Ismat FA, Wang T, Lu MM, Antonucci N and Epstein JA (2009) Cardiomyocyte-specific loss of neurofibromin promotes cardiac hypertrophy and dysfunction. *Circulation research* **105**:304-311. - Yu Y, Ricciotti E, Scalia R, Tang SY, Grant G, Yu Z, Landesberg G, Crichton I, Wu W, Pure E, Funk CD and Fitzgerald GA (2012) Vascular COX-2 Modulates Blood Pressure and Thrombosis in Mice. *Science translational medicine* **4**:132ra154. - Yuan L, Wang T, Liu F, Cohen ED and Patel VV (2010) An evaluation of transmitral and pulmonary venous Doppler indices for assessing murine left ventricular diastolic function. *J Am Soc Echocardiogr* **23**:887-897. # **Footnotes:** This work was supported by grants from the National Institutes of Health [HL117798] and American Heart Association [15SDG22780013 to Dr. Chen] and grants from the National Natural Science Foundation of China [81400750, 81670242 & 81570643]. Dr. FitzGerald is the McNeil Professor in Translational Medicine and Therapeutics and a senior advisor to Calico Laboratories. ¹ L.C., G.Y. and T.J contributed equally to this work. ### **Legends for Figures:** **Figure 1.** Effect of myeloid mPges-1 deletion on post-MI survival and heart function. Mac-mPges-1-WT or -KO mice were subjected to coronary artery ligation, echocardiography and hemodynamics was performed to evaluate the heart function before and 7&28d after the ligation. A, Ejection fraction (EF), fractional shortness (FS), left ventricular end-systolic volume (ESV) and end-diastolic volume (EDV); B, The maximum ascending rate of left ventricular pressure (+dP/dt max); the maximum descending rate of left ventricular pressure (-dP/dt max); left ventricular relaxation time constant (Tau); n=10-15 mice/group. * P<0.05; ** P<0.01; *** P<0.001; 0 vs 7 or 28 days after MI; C, Survival of Mac-mPges-1-WT and -KO mice after MI. n=24-26, P=0.0317, log-rank test. **Figure 2.** Effect of myeloid mPges-1 deletion on post-MI fibrosis and hypertrophy. A, Representative images of Masson Trichrome staining and the quantitative analysis. B, Representative images of Picrosirius red staining and the quantitative analysis. C, Real-time PCR analysis of the expression of fibrosis related genes in the heart from mice 28d post-MI. D, Real-time PCR analysis of the expression of hypertrophy related genes in the heart from mice 28d post-MI. n=6-8 for immunostaining; n=4-5 for real-time PCR. * P<0.05; ** P<0.01; *** P<0.001 non-infarcted vs infarcted heart. **Figure 3.** Echocardiographic analysis of cardiac function in myeloid mPges-1 KO mice 3 days post-MI. BW: body weight; HR: heart rate; LV mass: left ventricular mass; LV mass/BW: ratio of left ventricular mass to body weight; CO: cardiac output; SV: stroke volume; EF: Ejection fraction; FS: Fractional shortness; ESV: LV end-systolic volume; non-infarcted vs infarcted heart. EDV: LV end-diastolic volume; LVIDs: LV systolic internal dimensions; LVIDd: LV diastolic internal dimensions. n=3 mice/group. **Figure 4.** Effect of myeloid mPges-1 deletion on post-MI inflammation and apoptosis. A, Real-time PCR analysis of the expression of inflammation related genes in the heart from mice 3d post-MI. D, Real-time PCR analysis of the expression of apoptosis related genes in the heart from mice 3d post-MI. n=4-5. * P<0.05; ** P<0.01; *** P<0.001 **Figure 5.** Effect of global mPges-1 deletion on post-MI heart remodeling. A, mPges-1 global KO and the control mice were subjected to coronary artery ligation and heart function was assessed by echocardiography before and 7&28d after the ligation. EF: Ejection fraction; FS: Fractional shortness; ESV: LV end-systolic volume; EDV: LV end-diastolic volume. n=4-14 mice/group. B, Real-time PCR analysis of the expression of fibrosis related genes in the heart from mice 28d post-MI. n=6-8. C, Real-time PCR analysis of the expression of cardiac hypertrophy related genes in the heart from mice 28d post-MI. n=6-8. **Tables** Table 1: Echocardiographic and hemodynamic analysis of cardiac function in myeloid mPges-1 KO mice. | | Days after coronary ligation | 0 (WT n=13 ; KO n=15) | | 7 (WT n=11 ; KO n=13) | | 28 (WT n=10 ; KO n=13) | | |------------------|------------------------------|------------------------|----------------|------------------------|----------------|-------------------------|----------------| | | Genotype | Mac-mPges-1-WT | Mac-mPges-1-KO | Mac-mPges-1-WT | Mac-mPges-1-KO | Mac-mPges-1-WT | Mac-mPges-1-KO | | Echocardiography | Body weight (g) | 27.69±0.58 | 27.57±0.65 | 28.88±0.84 | 27.75±0.86 | 30.68±0.84* | 28.53±0.85 | | | LV mass (mg) | 85.40±2.61 | 82.02±3020 | 110.25±6.00** | 96.97±5.10 | 109.19±4.96** | 103.88±6.69** | | | LV mass/BW (mg/g) | 3.09±0.08 | 2.97±0.09 | 3.86±0.28** | 3.47±0.13 | 3.56±0.14 | 3.61±0.19** | | | Heart rate (bpm) | 519.15±14.64 | 480.60±16.52 | 526.18±10.57 | 537.46±14.25 | 537.80±10.05** | 543.62±11.01** | | | Cardiac output (ml/min) | 19.53±0.87 | 17.73±1.10 | 14.51±0.75** | 16.65±1.21 | 17.00±1.51 | 20.16±1.00 | | | Stroke volume (ul) | 37.50±0.94 | 36.63±1.69 | 27.75±1.70** | 31.38±2.68 | 32.04±3.21 | 37.00±1.69 | | | Ejection fraction (%) | 54.14±1.84 | 52.85±1.05 | 26.59±2.84*** | 35.84±4.67*** | 28.81±3.37*** | 37.14±3.83** | | | Fractional shortness (%) | 27.50±1.54 | 30.72±1.10 | 15.37±2.15*** | 20.18±2.58*** | 15.83±2.45*** | 20.15±2.05*** | | | LV volume, end systole (ul) | 32.56±2.41 | 32.80±1.79 | 86.62±12.48** | 71.04±13.61* | 85.23±9.74** | 80.02±15.82** | | | LV volume, end diastole (ul) | 70.06±2.62 | 69.43±3.11 | 114.37±11.98** | 102.41±12.0* | 117.27±8.71** | 117.02±15.87** | |--------------|-----------------------------------------|------------|------------|----------------|--------------|----------------|----------------| | | LV internal diameter, end systole (mm) | 2.74±0.12 | 2.52±0.09 | 4.03±0.26*** | 3.43±0.28* | 4.16±0.3*** | 3.65±0.29** | | | LV internal diameter, end diastole (mm) | 3.77±0.10 | 3.63±0.09 | 4.72±0.19** | 4.23±0.21* | 4.90±0.22*** | 4.50±0.25** | | Hemodynamics | LV end systolic pressure (mmHg) | ND | ND | ND | ND | 91.90±2.95 | 87.36±1.97 | | | LV end diastolic pressure (mmHg) | ND | ND | ND | ND | 7.48±0.97 | 5.10±0.75 | | | LV +dP/dt max (mmHg/s) | ND | ND | ND | ND | 7071.68±563.29 | 6516.17±308.48 | | | LV -dP/dt max (mmHg/s) | ND | ND | ND | ND | 6634.24±403.96 | 6665.88±241.52 | | | Tau (ms) | ND | ND | ND | ND | 11.31±0.63 | 10.84±0.40 | LV: left ventricular; BW: Body weight; ND: not determined. * P<0.05; ** P<0.01; *** P<0.001; 0 vs 7 or 28 days post-MI Table 2: Echocardiographic analysis of cardiac function in global mPges-1 KO mice. | Days after coronary ligation | 0 | | 7 | | 28 | | |-----------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------| | Genotype | gWT (n=4) | gKO (n=4) | gWT (n=8) | gKO (n=7) | gWT (n=14) | gKO (n=12) | | Body weight (g) | 28.73±1.37 | 26.38±1.25 | 24.28±3.21 | 25.97±3.58 | 25.13±.08 | 26.90±2.29 | | LV mass (mg) | 92.78±9.89 | 82.71±1058 | 90.88±15.79 | 91.19±16.42 | 86.35±16.32 | 84.05±19.79 | | LV mass/BW (mg/g) | 3.24±0.40 | 3.13±0.30 | 3.76±0.53 | 3.51±0.45 | 3.49±0.82 | 3.11±0.63 | | Heart rate (bpm) | 454.00±49.77 | 401.75±21.28 | 471.63±62.80 | 481.43±58.20 | 456.36±64.58 | 460.17±50.38 | | Cardiac output (ml/min) | 23.91±4.61 | 16.84±0.82 | 12.70±5.43 | 15.87±4.98 | 15.34±3.46 | 15.54±2.33 | | Stroke volume (ul) | 53.69±14.46 | 41.97±2.56 | 28.06±13.25 | 33.38±10.70 | 34.01±7.78 | 34.26±6.76 | | Ejection fraction (%) | 59.91±5.83 | 57.02±2.49 | 33.14±19.57 | 37.48±23.40 | 40.07±16.68 | 49.96±19.42 | | Fractional shortness (%) | 28.40±2.48 | 28.60±3.16 | 19.07±10.14 | 20.18±12.49 | 22.63±10.52 | 28.27±12.79 | | LV internal diameter, end systole (mm) | 2.92±0.43 | 2.83±1.89 | 3.82±1.29 | 4.06±1.82 | 3.45±1.51 | 3.08±1.72 | | LV internal diameter, end diastole (mm) | 4.07±0.50 | 3.97±0.11 | 4.63±1.04 | 4.89±1.52 | 4.32±1.22 | 4.08±1.40 | Figure 1 Figure 2 Figure 3 Figure 4 Figure 5