Effect of ASP6432, a Novel Type 1 Lysophosphatidic Acid Receptor Antagonist, on Urethral Function and Prostate Cell Proliferation

Kazuyuki Sakamoto, Yukiko Noguchi, Koji Ueshima, Hisashi Yamakuni, Akiyoshi Ohtake, Shuichi Sato, Kenichiro Ishizu, Naomi Hosogai, Eiji Kawaminami, Masahiro Takeda and Noriyuki Masuda

Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan (KS, YN, KU, AO, SS, KI, NH, EK, MT, NM); Astellas Research Technologies Co., Ltd., Tsukuba, Ibaraki, Japan (HY)
Abbreviations

BPH, Benign Prostate Hyperplasia; LUTS, Lower Urinary Tract Syndrome; BOO, Bladder Outlet Obstruction; LPA, Lysophosphatidic Acid; IUP, Intraurethral Pressure; UPP, Urethral Perfusion Pressure; CHO, Chinese Hamster Ovary; HEK, Human Embryonic Kidney; HTC4, Hepatoma Tissue Culture-4; PrSC, Prostate Stromal Cells; BrdU, Bromodeoxyuridine

Section assignment

Drug Discovery and Translational Science
Abstract

Current pharmacotherapies for lower urinary tract symptoms associated with benign prostate hyperplasia (LUTS/BPH) are in need of improvement. Lysophosphatidic acid (LPA) is a phospholipid with various biological functions. However, its exact role in the lower urinary tract and its target receptor subtype have not been fully elucidated. We investigated the role of LPA and the type 1 LPA receptor (LPA₁) in urethral/prostatic contractile function and prostate cell proliferation by pharmacologically characterizing ASP6432 (potassium 1-(2-[[3,5-dimethoxy-4-methyl-N-(3-phenylpropyl)benzamido]methyl]-1,3-thiazole-4-carbonyl)-3-ethyl-2,2-dioxo-2\(λ^6\)-diazathian-1-ide), a novel LPA₁ antagonist. ASP6432 exhibited potent and selective antagonistic activity against LPA₁ in cells expressing LPA receptor subtypes. In isolated rat tissue strips and anesthetized rats, ASP6432 concentration/dose-dependently inhibited LPA-induced urethra and prostate contractions. In addition, in anesthetized rats, ASP6432 maximally decreased the urethral perfusion pressure (UPP) in the absence of exogenous LPA stimulation by 43% from baseline, while tamsulosin, an \(α₁\)-adrenoceptor antagonist, reduced UPP by 22%. Further, in human prostate stromal cells, ASP6432 significantly and concentration-dependently suppressed LPA-induced bromodeoxyuridine incorporation. These results demonstrate a pivotal role for LPA and LPA₁ in the regulation of urethral tonus and prostate cell proliferation. The potent urethral relaxation and inhibition of prostatic stromal cell growth indicate the potential of ASP6432 as a novel therapeutic agent for LUTS/BPH.
Introduction

Benign prostatic hyperplasia (BPH) is one of the most common chronic urological diseases among elderly men. The proliferation of periurethral prostate stromal cells and contraction of prostate and urethral smooth muscles contribute to the development of bladder outlet obstruction (BOO) and lower urinary tract symptoms (LUTS) (Roehrborn, 2008). Alpha1-adrenoceptor antagonists (α1-blockers) are prescribed as the first-line pharmacotherapy for LUTS associated with BPH (LUTS/BPH). Alpha1-blockers improve BOO by suppressing prostate and urethral smooth muscle contractions induced by norepinephrine released from sympathetic nerves. However, improvement of clinical symptoms with α1-blockers is moderate (40% to 60%) compared to surgical intervention (60% to 80%) (Speakman, 2001). In addition, α1-blockers are suggested to have little effect on prostate hyperplasia itself (Roehrborn, 2006). Steroid 5α-reductase inhibitors, another class of pharmacotherapies, reduce the size of the enlarged prostate and improve symptoms caused by mechanical obstruction. However, 5α-reductase inhibitors have a slower onset of efficacy and are slightly less effective at improving LUTS than α1-blockers (Djavan, 2003). In addition, 5α-reductase inhibitors have little effect on stromal cell hyperplasia (Marks et al., 1997), a key component of human BPH (Bartsch et al., 1979). Therefore, an agent that induces more potent urethral relaxation and suppression of stromal hyperplasia would improve treatment for LUTS/BPH patients.

Lysophosphatidic acid (LPA) is a simple glycerophospholipid produced in various parts of the body. In the lower urinary tract, LPA and autotaxin, an LPA synthesizing enzyme, are present in the seminal plasma (Tanaka et al., 2004). In the
hyperplastic prostate nodule, acylglycerol kinase, another LPA synthesizing enzyme, is overexpressed (Zeng et al., 2009). LPA has diverse biological effects including smooth muscle contraction (Tokumura et al., 1980), as shown by its induction of urethral smooth muscle contraction (Saga et al., 2014), and cell proliferation (Daaka, 2002), such as of prostatic smooth muscle cells isolated from BPH patients (Adolfsson et al., 2002). These functions suggest that LPA may play a physiological and pathophysiological role in the mechanical and functional BOO observed in BPH.

The functional roles of LPA are mediated by at least six G protein-coupled receptors, LPA receptors 1 to 6 (LPA1-6). Although these LPA receptors are broadly expressed, they vary significantly in their tissue distribution, and appear to have both distinct and overlapping biological roles (Choi et al., 2010). LPA receptors modulate various intracellular signaling pathways by activating multiple heterotrimeric G proteins. The type 1 LPA receptor (LPA1) was the first identified LPA receptor subtype. LPA1 couples with G_{i/o}, G_{q/11}, and G_{12/13} to initiate downstream signaling cascades through phospholipase C, mitogen-activated protein kinase (MAPK), Akt, and RhoA. LPA1 activation induces a range of cellular responses, including cell proliferation, cell migration and cytoskeletal changes, Ca^{2+} mobilization, and adenyl cyclase inhibition (Yung et al., 2014). An investigation using surgically-obtained human prostate tissue samples demonstrated LPA1 expression in both the stroma and epithelia, and increased expression in the stroma of hyperplastic glands compared to that in surrounding benign glands (Zeng et al., 2009). LPA1 mediates LPA-induced induction of CYR61 (Wu et al., 2014), a molecule overexpressed in BPH and possibly linked to its
progression (Sakamoto et al., 2004), suggesting that LPA₁ may be associated with BPH. A recent study demonstrated that LPA₁ antagonists modulate urethral pressure (Terakado et al., 2016), suggesting that LPA₁ may also have a role in urethral contraction. However, the integrated role of LPA₁ in urethral and prostate function has not been fully clarified.

ASP6432 (potassium 1-(2-[[3,5-dimethoxy-4-methyl-N-(3-phenylpropyl)benzamido]methyl]-1,3-thiazole-4-carbonyl)-3-ethyl-2,2-dioxo-2λ⁶-diazathian-1-ide; Figure 1) is a novel LPA₁ antagonist discovered by Astellas Pharma Inc. To elucidate the function of LPA and LPA₁ in the urethra and prostate, we investigated the effect of ASP6432 on urethral and prostatic contractile function and prostate stromal cell proliferation.
Materials and Methods

Test substances

LPA was purchased from Avanti Polar Lipids Inc. (Alabaster, AL, USA), Enzo Life Sciences International Inc. (Plymouth Meeting, PA, USA) and Cayman Chemical (Ann Arbor, MI, USA). Based on published literature (Saga et al., 2014), 1-linolenoyl LPA was used for tissue contraction experiments, while 1-oleoyl LPA, the most commonly used form of LPA (Castilla-Ortega et al., 2014), was used for all other studies. ASP6432 and tamsulosin were synthesized at Astellas Pharma Inc. (Tokyo, Japan). Concentrations were calculated using the molecular weight of the free form.

Cells/recombinant expression

Cells expressing LPA receptors were generated according to a previously reported method (Murai et al., 2017). Human and rat LPA1, human LPA2, and human LPA5 were stably expressed in Chinese hamster ovary (CHO) cells and cultured in Minimum Essential Medium-alpha containing 10% heat-inactivated fetal bovine serum (FBS), 1% penicillin/streptomycin, and 100 nmol/L methotrexate. Human LPA3 was stably expressed in hepatoma tissue culture-4 (HTC4) cells and cultured in Dulbecco's Modified Eagle Medium (DMEM) containing 10% heat-inactivated FBS, 1% penicillin/streptomycin, and 70 μmol/L Zeocin™. Human LPA4 was stably expressed in human embryonic kidney (HEK) cells and cultured in DMEM containing 10% FBS and 0.4 mg/mL G418.
Measurement of intracellular Ca2+ concentration

The antagonistic effect of ASP6432 on human and rat LPA\textsubscript{1} and its selectivity for human LPA\textsubscript{1} over human LPA\textsubscript{2} to human LPA\textsubscript{4} were evaluated using Ca2+ flux assays previously used to investigate another LPA\textsubscript{1} antagonist (Swaney et al., 2010), with some modifications. Briefly, cells were seeded at a density of 15,000 (LPA\textsubscript{1} and LPA\textsubscript{2}) or 20,000 (LPA\textsubscript{3}) cells per well in 96-well plates and incubated in culture medium containing 1\% FBS for one day. HEK 293 cells expressing human LPA\textsubscript{4} were seeded at a density of 15,000 cells per well in 384-well plates and incubated in culture medium for one day.

On the day the measurements were to be taken, the cells were loaded with Fluo-4-AM dissolved in assay buffer [Hank’s Balanced Salt Solution containing 20 mmol/L 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (pH 7.4), 0.05\% bovine serum albumin (BSA), and 2.5 mmol/L probenecid] for LPA\textsubscript{1} to LPA\textsubscript{3} or using the Fluo-4 NW Calcium Assay Kit (Invitrogen, Carlsbad, CA, USA) for LPA\textsubscript{4}, and incubated for 3 hours at room temperature (LPA\textsubscript{1}, LPA\textsubscript{2}, and LPA\textsubscript{3}) or 30 minutes at 37°C (LPA\textsubscript{4}). The cells were incubated with test compounds for 2 (LPA\textsubscript{1}) or 4 (LPA\textsubscript{2} and LPA\textsubscript{3}) minutes after washing or 30 (LPA\textsubscript{4}) minutes without washing, and LPA at a final concentration of 100 (LPA\textsubscript{1}), 30 (LPA\textsubscript{2}) or 800 (LPA\textsubscript{3}) nmol/L was added. The final concentration of LPA was determined for each cell line to produce a submaximal reaction. After LPA treatment, the change in fluorescence (excitation wavelength: 470-495 nm, emission wavelength: 515-575 nm) was monitored using the fluorometric imaging plate reader FLIPR TETRA® (Molecular Devices Corporation Japan, Tokyo, Japan). For LPA\textsubscript{4},
2.8 µmol/L of LPA was used, and the change in fluorescence was measured using the fluorometric imaging plate reader FLEX STATION-III (Molecular Devices, CA, USA) at an excitation wavelength of 494 nm and emission wavelength of 516 nm.

Measurement of intracellular cyclic AMP

The effect of ASP6432 on LPA-induced cyclic AMP (cAMP) production in cells expressing human LPA5 was evaluated using a previously described method (Murai et al., 2017). Briefly, CHO cells expressing human LPA5 were seeded at a density of 15,000 cells per well and cultured in 96-well plates. On the day the measurements were to be taken, ASP6432 or vehicle (dimethylsulfoxide: DMSO) was added to the cells with 1.3 mmol/L 3-isobutyl-1-methylxanthine (IBMX) and incubated for 6 minutes. LPA (final concentration: 1 µmol/L) was subsequently added and the cells were incubated for 20 minutes at room temperature. After incubation, 1.2% Triton X-100 solution was added to stop the reaction. The amount of cAMP in the cell lysate was determined by the homogenous time resolved fluorescence (HTRF) assay using a cAMP kit (cAMP femto 2 bulk kit, Cisbio, Codolet, France).

Measurement of isolated smooth muscle contraction

All animal experimental procedures were approved by the Institutional Animal Care and Use Committee of Astellas Pharma Inc.

Male Wistar rats (Charles River Laboratories Japan Inc., Kanagawa, Japan) were sacrificed by exsanguination under pentobarbital anesthesia. The ventral lobes of the prostate were immediately removed and divided into four longitudinal strips approximately 5 mm in length and 2 mm in width. The urethra located next to the
bladder neck was cut open in a circular orientation to form a rectangular strip approximately 5 mm in length and 2 mm in width. The tissue strips were suspended in 10 mL organ baths at 37°C containing Krebs-Henseleit solution consisting of the following (mmol/L): NaCl, 118.4; KCl, 4.7; KH2PO4, 1.2; MgSO4, 1.2; CaCl2, 2.5; NaHCO3, 25.0; and glucose, 11.1. Each bath was gassed with a mixture of 95% O2 and 5% CO2. After loading with 0.5 g of initial resting tension, the force was measured using an isometric force displacement transducer (TB-611T, Nihon Kohden, Tokyo, Japan), a pressure amplifier (AP-621G, Nihon Kohden) and a recorder (SR6211, SR6221 or SR6335; Graphtec Corporation, Kanagawa, Japan).

Each tissue strip was repeatedly contracted with 60 mmol/L KCl until a stable response was obtained. Subsequently, 100 μmol/L LPA was applied and the maximum contractile response was recorded as the initial LPA response. The concentration of LPA was selected according to a previous study (Saga et al., 2014) and our preliminary study in which we aimed to generate the maximum contraction under experimentally feasible conditions. In our preliminary study, LPA-induced contraction was observed from 1 μmol/L but did not reach maximum even at 100 μmol/L (Supplemental Figure 1). However, at 300 μmol/L, the solution became cloudy, making it difficult to continue with the experiment (data not shown). We therefore selected 100 μmol/L LPA as the test concentration.

After washing, the strip was incubated with ASP6432 (0.01 to 10 μmol/L for urethra, 0.001 to 10 μmol/L for prostate) or vehicle (DMSO, 0.1%) for 30 minutes before the addition of LPA (100 μmol/L). The LPA-induced contractile response following treatment with ASP6432 or vehicle was recorded and expressed as a percentage of the initial LPA response (pre-value). For urethral strips, multiple
concentrations (0.01 to 10 μmol/L) of ASP6432 were tested in an incremental manner on the same strip because repeated treatment with DMSO and LPA did not affect the amplitude of the contractile response (data not shown). In contrast, only one concentration of ASP6432 was tested on each prostate strip due to the attenuation of LPA-induced contractile responses after multiple treatments (data not shown).

Measurement of intraurethral pressure (IUP) in rats

Male Wistar rats (Charles River Laboratories Japan Inc.) were anesthetized with an intraperitoneal administration of urethane (1.2 g/kg). A midline incision was made in the abdominal wall, and a 3.5 F sensor-tip transducer catheter (SPR-524, Millar Instruments. Inc., Houston, TX, USA) was inserted into the urethra through a small incision at the superior aspect of the bladder. IUP was measured using a pressure amplifier (AP-601G, Nihon Kohden) and analyzed using a digital acquisition and analysis system (PowerLab 8/30, AD Instruments, Colorado Springs, CO, USA). For intravenous (iv) administration, a polyethylene catheter (PE-50) filled with physiological saline containing sodium heparin was inserted into the jugular vein. Following a stabilization period of at least 30 minutes, vehicle (physiological saline with 5% dimethylformamide) or ASP6432 (0.03, 0.1, 0.3, and 1 mg/kg with incremental dosing at 15-minute intervals) was intravenously injected through the catheter. LPA (3 mg/kg iv) was administered 5 minutes after vehicle or ASP6432 administration. The dose of LPA that induced an IUP increase comparable to that induced by the α1-adrenoceptor agonist phenylephrine (30 μg/kg iv) reported in another study (Akiyama et al., 1999) was used to evaluate the effect of ASP6432. The area under the curve (AUC) of IUP at one minute before vehicle injection was defined as the pre-value. The change in IUP induced by LPA following either
vehicle or ASP6432 treatment was defined by the AUC at one minute after LPA injection.

Measurement of urethral perfusion pressure (UPP)

UPP was measured according to a previously described method (Kurihara *et al.*, 2016). Briefly, female Wistar rats (Charles River Laboratories Japan Inc.) were anesthetized with an intraperitoneal injection of urethane (1.2 g/kg) and fixed in the supine position. For drug administration, a polyethylene catheter (PE-50) was inserted into the left femoral vein. For measurement of UPP, a midline incision was made in the abdominal wall and a double-lumen polyethylene catheter (PE-190 and PE-50) was inserted through a small incision at the bladder apex, and the tip was ligated to the bladder neck. Female rats were used because it was easier and less invasive to fix the position of the tip of the catheter at the bladder neck compared to that in male rats as there is no need to remove the ventral lobe of the prostate. Physiological saline was perfused into the urethra through the outer lumen of the catheter using an infusion pump (TE-331, Terumo, Tokyo, Japan) at 4.5 mL/h. UPP was recorded through the inner lumen of the catheter, which was connected to a pressure transducer with an amplifier (AP-601G or AP-621G, Nihon Kohden) and recorder (WT-688G, Nihon Kohden).

After a stabilization period of over 30 minutes, rats with a UPP lower than 10 mmHg were excluded from further evaluation. Vehicle (physiological saline for tamsulosin, physiological saline with 5% dimethylformamide for ASP6432), tamsulosin (0.003, 0.01, and 0.03 mg/kg) or ASP6432 (0.1, 0.3, 1 and 3 mg/kg) was administered intravenously, and the change in UPP was measured for 15 minutes.
The change between UPP before administration (UPP\textsubscript{pre}) and the minimum UPP during the observation period (UPP\textsubscript{min}) was calculated as follows:

\[
\text{UPP (% change from pre): } -100 \times (\text{UPP}_{\text{pre}} - \text{UPP}_{\text{min}})/\text{UPP}_{\text{pre}}
\]

Cell proliferation assay

Primary cultured normal human prostate stroma cells (Lonza Walkersville Inc., Walkersville, MD, USA) were cultured in Stromal Cell Growth Medium (SCGM; Lonza Walkersville Inc.). Cells were suspended in SCGM diluted 10 times with stromal cell basal medium (Lonza Walkersville Inc.) containing 0.1% BSA, seeded at a density of 5,000 cells per well in 96-well plates and incubated overnight. ASP6432 (final concentration: 0.1 to 10 \(\mu\)mol/L) and LPA (final concentration: 10 \(\mu\)mol/L) were added the next day and incubated for 24 hours. The final concentration of LPA was selected according to a previous study (Adolfsson \textit{et al.}, 2002). Incorporation of bromodeoxyuridine (BrdU) into cells was measured using an ELISA kit (Cell Proliferation ELISA, BrdU (colorimetric), Roche Diagnostics GmbH, Mannheim, Germany). Optical densities at 450 nm and 690 nm were measured using a spectrophotometer (Spectramax M2, Molecular Devices Japan KK, Tokyo, Japan) and the difference in values at these wavelengths was used to indicate the extent of BrdU incorporation. The result was expressed as a percentage of the normal (LPA non-treated, DMSO-treated) group.

Data analysis

The results are presented as mean \pm\ standard error of the mean (SEM). Half maximal inhibitory concentration (IC\textsubscript{50}) values were calculated using sigmoid-E\textsubscript{max}
non-linear regression analysis and expressed as the geometric mean with 95% confidence interval for LPA1. In the tissue contraction study, Williams’ multiple comparisons test was used, and a probability value (p value) less than 0.025 indicated statistical significance. In the *in vivo* studies, Dunnett’s multiple comparisons test and Student’s t-test were used, and p<0.05 was considered statistically significant. In the cell proliferation assay, paired t-test and Williams’ multiple comparisons test were used, and p<0.05 and p<0.025 were considered statistically significant, respectively.
Results

Antagonistic effect of ASP6432 on the LPA1 receptor and its receptor subtype selectivity

The potency of ASP6432 for LPA1 and selectivity for the different LPA receptors was determined by Ca\(^{2+}\) flux assays (for LPA1 to LPA4) and a cAMP assay (for LPA5) using cells over-expressing human LPA1 to LPA5. ASP6432 concentration-dependently inhibited the LPA-stimulated increase in intracellular calcium ion concentration ([Ca\(^{2+}\)]\(_i\)) in cells expressing human LPA1 with an IC\(_{50}\) (95% confidence interval) value of 11 (6.8 to 18) nmol/L. ASP6432 also inhibited the LPA-induced [Ca\(^{2+}\)]\(_i\) increase in cells expressing rat LPA1 with an IC\(_{50}\) of 30 (19 to 45) nmol/L. ASP6432 inhibited the LPA-induced [Ca\(^{2+}\)]\(_i\) increase in cells expressing human LPA4 with an IC\(_{50}\) of 114 nmol/L. In contrast, ASP6432 at concentrations up to 10,000 nmol/L did not inhibit the LPA-induced increase in [Ca\(^{2+}\)]\(_i\) by 50% or more in cells expressing human LPA2 or LPA3. Likewise, ASP6432 at concentrations up to 30,000 nmol/L did not affect the LPA-induced increase in cAMP in cells expressing human LPA5. These results are summarized in Table 1.

We also evaluated the affinity of ASP6432 for a total of 57 receptors, ion-channels, transporters, and enzymes. ASP6432 at 10,000 nmol/L did not exhibit significant (>50%) effects on any of the targets examined, except for the human neurokinin 1 receptor with a \(K_i\) value of 1400 nmol/L (data not shown).

Inhibition of LPA-induced contractions of urethral and prostate strips isolated from rats by ASP6432
Application of LPA (100 µmol/L) induced contractions in urethral and prostate tissue strips. Pretreatment with ASP6432 (0.001 or 0.01 to 10 µmol/L) inhibited these LPA-induced contractions in both tissues in a concentration-dependent manner (N=5). This effect was statistically significant at ASP6432 concentrations of 0.1 µmol/L and above, with almost complete inhibition observed at 10 µmol/L (Figure 2A and B).

Inhibition of LPA-induced IUP elevation in anesthetized rats by ASP6432

Intravenous administration of LPA (3 mg/kg iv) increased the IUP (Figure 3) by 759 mmHg·min (17.2 cmH₂O·sec). This was comparable to the effects of phenylephrine shown in a previous study (approximately 12 cmH₂O at 30 µg/kg iv in rats with no urethral ligation) (Akiyama et al., 1999). ASP6432 (0.03 to 1 mg/kg iv) dose-dependently inhibited the LPA-induced IUP elevation (N=6). This effect was statistically significant at ASP6432 doses of 0.3 mg/kg and above, with almost complete inhibition observed at 1 mg/kg (Figure 3). The mean plasma concentration of ASP6432 in rats at 6 and 30 minutes after single intravenous administration at 1 mg/kg was 477.28 and 77.65 ng/mL (851.24 and 138.49 nmol/L, calculated from the free form molecular weight of 560.69), respectively (Supplemental Table 1).

Decrease in UPP by tamsulosin and ASP6432 in anesthetized rats

Intravenous administration of tamsulosin (0.003 to 0.03 mg/kg) decreased the UPP (N=7 to 15). This effect was statistically significant at a dose of 0.01 mg/kg iv, maximally decreasing the UPP by 21.6% from baseline (Figure 4A). Intravenous administration of ASP6432 (0.1 to 3 mg/kg) decreased the UPP in a dose-dependent
manner (N=10). This effect was statistically significant at ASP6432 doses of 0.3 mg/kg iv and above. The decrease in UPP with ASP6432 reached a maximum of 42.5% at 3 mg/kg iv (Figure 4B).

Effect of ASP6432 on LPA-induced proliferation of primary cultured human prostate stromal cells

LPA (10 μmol/L) significantly enhanced the incorporation of BrdU into human prostate stromal cells (172.7% of the normal group). Treatment with ASP6432 (0.1 to 10 μmol/L) suppressed LPA-induced BrdU incorporation in a concentration-dependent manner. This effect was statistically significant at ASP6432 concentrations of 0.3 μmol/L and above, with almost complete suppression observed at 10 μmol/L (Figure 5).
Discussion

We showed that ASP6432 had potent and selective antagonistic activity against LPA₁, and suppressed not only LPA-induced urethral and prostatic contractions but also urethral pressure in the absence of external LPA stimulation. These results suggest that LPA₁ activation plays an important role in the physiological regulation of urethral tonus. In addition, ASP6432 inhibited the LPA-induced proliferation of human prostate stromal cells. To our knowledge, this is the first study to demonstrate that an LPA₁ antagonist can modulate both LPA-induced urethral tonus and prostate stromal cell proliferation.

In our in vitro studies, ASP6432 exhibited a potent antagonistic effect against LPA₁, and was more selective for LPA₁ by more than ten-fold over all other LPA receptor subtypes (Table 1) and other receptors, ion-channels, transporters, and enzymes tested. Although ASP6432 showed some antagonistic activity against LPA₄ and its effect on LPA₆ was not investigated, ASP6432 appears to be one of the most potent LPA₁ antagonists among currently reported LPA receptor modulators (Llona-Minguez et al., 2015).

LPA was previously reported to induce contractions in rat urethral tissue strips at a magnitude comparable to that of phenylephrine, an α₁-adrenoceptor agonist (Saga et al., 2014). However, the receptor subtype responsible for this effect was not identified. We showed that ASP6432 concentration/dose-dependently inhibited LPA-induced contractions in rat urethral and prostate strips (Figure 2A and 2B) and IUP elevation in anesthetized rats (Figure 3) with near-complete inhibition at the highest concentration/dose tested. Our results indicate that LPA₁ regulates LPA-induced urethra and prostate contractions.
One notable finding in this study was that ASP6432 not only inhibited LPA-induced contractions, but also reduced the UPP in the absence of exogenous LPA stimulation in anesthetized rats (Figure 4B). ASP6432 maximally decreased the UPP by 42.5% from baseline, which is more pronounced than that induced by tamsulosin in this study (maximum 21.6% decrease, Figure 4A) at doses sufficient to inhibit phenylephrine-induced urethral pressure elevation (Ohtake et al., 2006).

Female rats were used in our study because of the similar efficacy of tamsulosin when compared to male rats, the experimental benefit, and the potentially limited advantage of male rats as a model for urethral tonus in humans from an anatomical point of view. The tamsulosin-induced suppression of the UPP was similar to that demonstrated in a previous study in male rats (around 20% decrease) (Saga et al., 2014). Tamsulosin decreased the urethral pressure in male and female dogs at a similar dose range (Sudoh et al., 1996; Ohtake et al., 2004), and in healthy women at a dose approved for men with BPH (0.4 mg) (Reitz et al., 2004). These findings support the notion that the sympathetic nervous system and α1-adrenoceptors contribute to regulating physiological urethral tonus (Fry et al., 2010) in both males and females. Another reason for using female animals was the experimental benefit for evaluating the perfusion pressure. In female rats, access to the bladder neck and subsequent securing of the catheter tip at the intended position was much easier and less invasive than that in male rats, which helped ensure stable pressure measurements. Further, the use of male rats might not significantly increase the clinical relevance of the UPP compared with that of female rats, because the rat prostate is anatomically different from the human prostate in that it does not completely surround the urethra, and therefore may not cause the mechanical and/or...
functional urethral obstruction like the prostate of a BPH patient does. These points indicate that the experimental conditions of this study were appropriate for examining the effect of a drug that potentially modulates the urethral contraction in vivo compared with a drug acting on the sympathetic nervous system.

LPA induced contraction of urethral strips at 1 µmol/L and above in a previous study (Saga et al., 2014) and in the present study (Supplemental Figure 1). The fact that the rat plasma LPA concentration reported in the previous study was in the micromolar order (around 1 µmol/L) (Saga et al., 2014) suggests that LPA induces urethral contraction at a concentration similar to the endogenous concentration. In addition, previous studies have demonstrated that an inhibitor of autotaxin and another LPA₁ antagonist decrease the IUP in the absence of exogenous LPA stimulation in rats (Saga et al., 2014; Terakado et al., 2016) to a similar extent to that observed with ASP6432 in this study. Moreover, pharmacokinetics data of ASP6432 in rats (Supplemental Table 1) support our hypothesis that ASP6432 reduces UPP by suppressing LPA₁. The plasma concentration of ASP6432 at the efficacious dose for urethral pressure (0.3 mg/kg iv, Figure 4B) is estimated to be around 40 to 250 nmol/L, which is comparable to the IC₅₀ value of ASP6432 on rat LPA₁ (30 nmol/L, Table 1). Taken together, our results suggest that endogenous LPA constantly activates LPA₁ and plays a significant role in the regulation of urethral tonus, which is suppressed by ASP6432, at least in rats.

LPA induces proliferation of human prostate stromal cells, similar to that observed for cells isolated from BPH patients (Adolfsson et al., 2002). ASP6432 suppressed this proliferation (Figure 5). Our results suggest that LPA, in addition to
its role in inducing urethral and prostate contractions, also regulates stromal cell proliferation via LPA₁ and contributes to the development of the two major components, mechanical and functional obstruction, of BOO. Because there is currently no pharmacotherapy that is simultaneously efficacious for both of these components, our findings indicate that LPA₁ antagonists may represent a novel therapy with dual mechanisms for improving BOO. A similar concept was proposed using inhibitors of Rac, a small monomeric GTPase (Wang et al., 2015). Given that LPA₁ may also potentially activate Rac (Van Leeuwen et al., 2003), it would be interesting to determine the relationship between LPA₁ and Rac in lower urinary tract functions.

Since autotaxin is one of the primary enzymes responsible for LPA production, autotaxin inhibitors may theoretically have similar efficacy to LPA₁ antagonists, such as in reducing the IUP as shown in a previous study (Saga et al., 2014). Various autotaxin inhibitors have been studied and some are in clinical development. While inhibition of LPA production may efficiently suppress the LPA-LPA receptor signaling axis, the risk of toxicity may be high due to the suppression of functions mediated by other LPA receptor subtypes. Indeed, autotaxin knockout mice show a more severe phenotype (lethal around embryonic day 10.5 due to defects in blood vessel formation) than LPA receptor knock-out mice (Tanaka et al., 2006). Therefore, specific targeting of LPA₁ may be more suitable for the treatment of non-life-threatening diseases like BPH, which require a high safety profile.

Our results provide various insights for further investigations into the role of LPA and LPA₁. The physiological and pathophysiological role of the LPA-LPA₁ signaling axis in the modulation of urethral pressure has not been extensively
investigated. Currently, no study has directly measured the tissue concentration of LPA in the urethra or prostate, even though the presence of LPA in seminal plasma (Tanaka et al., 2004) and LPA-producing enzymes in the prostate (Zeng et al., 2009) suggest that it may be produced locally in these organs. The mechanism underlying LPA₁ activation-induced urethral and prostate smooth muscle contractions has not been fully clarified. In mouse aorta, LPA₁-mediated thromboxane A₂ release has been suggested as a potential mechanism underlying smooth muscle contraction (Dancs et al., 2017). However, studies showing that an autotaxin inhibitor (Saga et al., 2014) and LPA₁ antagonist (Terakado et al., 2016) decrease the urethral pressure without affecting blood pressure suggest the presence of an alternative mechanism for regulating urethral smooth muscle contraction. Further studies are required to unravel the mechanistic details. In addition, the role of LPA₁ on urethral pressure during urine voiding needs to be determined. Since the sympathetic and parasympathetic nervous system regulate the on-off of the bladder and the urethral outlet functions in an antagonistic fashion for proper urine storage and voiding (Fowler et al., 2008), it would be worthwhile to investigate how the activity of LPA₁ is regulated at bladder filling and urine voiding. The effect of LPA₁ on bladder function represents another area of interest. While the effect on pathological prostate proliferation should ideally be assessed using in vivo models, fully validated animal models for stromal proliferation are currently lacking. Future studies on these aspects will allow for a more extensive characterization of the therapeutic potential of LPA₁ antagonists in the treatment of BPH and associated LUTS.

In conclusion, we demonstrated the roles of LPA and LPA₁ in urethral and
prostate contraction and prostate stromal cell proliferation using ASP6432, a selective LPA1 antagonist. ASP6432 induced potent urethral relaxation compared to tamsulosin and inhibited prostate stromal cell growth, indicating the potential of an LPA1 antagonist as a novel therapy for LUTS/BPH.

Acknowledgements
We are grateful to Dr. Takatoshi Soga for the generation and provision of cells expressing LPA receptors.

Authorship Contributions

References

Lysophosphatidic acid stimulates proliferation of cultured smooth muscle cells from human BPH tissue: Sildenafil and papaverin generate inhibition.

Prostate **51**:50–8.

Akiyama K, Hora M, Tatemichi S, Masuda N, Nakamura S, Yamagishi R, and

of the Female Urethra: A Functional Urodynamic Study in Healthy Women.

Footnotes

Authors are employees of the Astellas group.

Present affiliation of YN: Regulatory Affairs, Astellas Pharma Inc., Tokyo, Japan

Address reprint requests to:

Kazuyuki Sakamoto, D.V.M.

21 Miyukigaoka, Tsukuba, Ibaraki, 3058585

E-mail: kazuyuki.sakamoto@astellas.com
Figure Legends

Figure 1. Chemical structure of ASP6432 (potassium 1-(2-[(3,5-dimethoxy-4-methyl-N-(3-phenylpropyl)benzamido)methyl]-1,3-thiazole-4-carbonyl)-3-ethyl-2,2-dioxo-2λ,6-diazathian-1-ide)

Figure 2. Effect of ASP6432 on lysophosphatidic acid (LPA)-induced contractions in isolated rat urethra (A) and prostate (B)

For the urethra (A), tissue strips were incubated with vehicle or various concentrations of ASP6432 for 30 minutes before 100 μmol/L LPA was added to elicit a contractile response. Each column represents the mean ± SEM of five strips. Pre: initial LPA-induced contraction response. *p<0.025 vs. pre (initial LPA contraction) (Williams’ multiple comparisons test using within-subject error).

For the prostate (B), tissue strips were incubated with ASP6432 or vehicle (DMSO) for 30 minutes before 100 μmol/L LPA was added to elicit a contractile response. Each column represents the mean ± SEM of five strips. *p<0.025 vs. vehicle (Williams’ multiple comparisons test).

Figure 3. Effect of ASP6432 on lysophosphatidic acid (LPA)-induced intraurethral pressure (IUP) elevation in anesthetized rats

IUP was measured in male Wistar rats under urethane anesthesia. LPA (3 mg/kg iv) was administered five minutes after treatment with vehicle or ASP6432 (0.03 to 1 mg/kg iv), and the area under the curve (AUC) of IUP was recorded for one minute. The AUC at one minute before vehicle injection is represented as Pre-value.
Each column represents the mean ± SEM of six animals.

**p<0.01 vs. vehicle (Dunnett’s multiple comparisons test).

Figure 4. Effect of tamsulosin (A) and ASP6432 (B) on the urethral perfusion pressure (UPP) in anesthetized rats

UPP was measured in female Wistar rats under urethane anesthesia. Vehicle, tamsulosin (0.003 to 0.03 mg/kg iv) or ASP6432 (0.1 to 3 mg/kg iv) was administered, and the UPP was recorded for 15 minutes. The maximum change in UPP from baseline (%) was calculated for each animal. Each column represents the mean ± SEM of 7 to 15 animals.

Veh: vehicle, Tam: tamsulosin (0.01 mg/kg iv). ##p<0.01 vs. vehicle (Student’s t-test); *p<0.05, **p<0.01 vs. vehicle (Dunnett’s multiple comparisons test).

Figure 5. Effect of ASP6432 on lysophosphatidic acid (LPA)-induced bromodeoxyuridine incorporation into primary cultured human prostate stromal cells

The incorporation of bromodeoxyuridine (BrdU) into cells was measured in primary cultured normal human prostate stromal cells. The extent of BrdU incorporation was expressed as a percentage of that of the normal group (non LPA-treated). Each experiment was conducted in triplicate and each column represents the mean ± SEM of four experiments.

N: normal (non LPA-treated), C: control (treated with LPA and vehicle). #p<0.05 vs. normal (paired t-test), *p<0.025 vs. control (William’s multiple comparisons test using within-subject error).
Table 1. Antagonistic activity of ASP6432 on lysophosphatidic acid (LPA)-induced cellular responses in cells expressing LPA₁ to LPA₅ receptors

<table>
<thead>
<tr>
<th>LPA<sub>1</sub> (Human)</th>
<th>LPA<sub>1</sub> (Rat)</th>
<th>LPA<sub>2</sub> (Human)</th>
<th>LPA<sub>3</sub> (Human)</th>
<th>LPA<sub>4</sub> (Human)</th>
<th>LPA<sub>5</sub> (Human)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC<sub>50</sub> (nmol/L)</td>
<td>11</td>
<td>30</td>
<td>>10,000</td>
<td>>10,000</td>
<td>114</td>
</tr>
</tbody>
</table>

Effects of ASP6432 on the LPA-induced increase in intracellular Ca²⁺ (LPA₁ to LPA₄) or cyclic AMP (LPA₅) were measured, and IC₅₀ values were calculated using sigmoid-E_{max} non-linear regression analysis and expressed as the geometric mean of two to four independent experiments.
Figure 1
Figure 2

A Urethra

![Graph showing contraction (% of pre-contraction) for ASP6432 at different concentrations.]

B Prostate

![Graph showing contraction (% of pre-contraction) for ASP6432 at different concentrations.]

* Indicates statistical significance.
Figure 3

![Graph showing intravesical pressure (AUC; mm Hg ⋅ min) for different ASP6432 doses. Pre-vehicle and ASP6432 doses of 0.03, 0.1, 0.3, and 1 mg/kg iv are depicted. Statistical significance indicated by ***.](image-url)
Figure 4

A Tamsulosin

![Graph showing Tamsulosin effect on UPP (% change from pre)]

B ASP6432

![Graph showing ASP6432 effect on UPP (% change from pre)]
Figure 5

![Graph showing BrdU incorporation (% of normal) against ASP6432 (µmol/L) and LPA (10 µmol/L) concentrations.](image)

N, C, 0.1, 0.3, 1, 3, 10

ASP6432 (µmol/L)

LPA (10 µmol/L)

Statistical significance
* Statistical significance