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Abstract 

Diacylglycerol lipase (DAGL) α and β, the major biosynthetic enzymes of the endogenous 

cannabinoid (endocannabinoid) 2-arachidonylglycerol (2-AG), are highly expressed in the 

nervous system and immune system, respectively. Genetic deletion or pharmacological inhibition 

of DAGL-β protects against lipopolysaccharide (LPS)-induced inflammatory responses in mouse 

peritoneal macrophages, and reverses LPS-induced allodynia in mice. In order to gain insight 

into the contribution of DAGL-α in LPS-induced allodynia, we tested global knockout mice as 

well as DO34, a dual DAGL-α/-β inhibitor. Intraperitoneal administration of DO34 (30 mg/kg) 

significantly decreased whole brain levels of 2-AG (~83%), anandamide (~42%), and 

arachidonic acid (~58%). DO34 dose-dependently reversed mechanical and cold allodynia, and 

these antinociceptive effects did not undergo tolerance after six days of repeated administration. 

In contrast, DO34 lacked acute thermal antinociceptive, motor, and hypothermal 

pharmacological effects in naïve mice. As previously reported, DAGL-β (-/-) mice displayed a 

protective phenotype from LPS-induced allodynia. However, DAGL-α (-/-) mice showed full 

allodynic responses, similar to their wildtype littermates. Interestingly, DO34 (30 mg/kg) fully 

reversed LPS-induced allodynia in DAGL-α  (+/+) and (-/-) mice, but did not affect the 

antinociceptive phenotype of DAGL-β (-/-) mice in this model, indicating a DAGL-α 

independent site of action. These findings suggest that DAGL-α and -β play distinct roles in 

LPS-induced nociception. Whereas DAGL-α appears to be dispensable for the development and 

expression of LPS-induced nociception, DAGL-β inhibition represents a promising strategy to 

treat inflammatory pain. 
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Introduction  

Diacylglycerol lipase (DAGL)-α and -β (Bisogno et al., 2003; Gao et al., 2010; Tanimura 

et al., 2010) transform diacylglycerols to 2-arachidonoylglycerol (2-AG), the most highly 

expressed endocannabinoid in the central nervous system (Mechoulam et al., 1995; Sugiura et 

al., 1995). 2-AG plays critical roles in maintaining proper neuronal function (Goncalves et al., 

2008; Tanimura et al., 2010), mediating neuronal axonal growth (Williams et al., 2003) and 

retrograde suppression of synaptic transmission (Kreitzer and Regehr, 2001; Ohno-Shosaku et 

al., 2001; Wilson and Nicoll, 2001; Pan et al., 2009). These enzymes are differentially expressed 

within cells in the nervous system and peripheral tissue (Hsu et al., 2012). DAGL-α is expressed 

on postsynaptic neurons within various brain regions (Katona et al., 2006; Yoshida et al., 2006; 

Lafourcade et al., 2007; Uchigashima et al., 2007), and its genetic deletion results in marked 

decreases of 2-AG, anandamide (AEA), and arachidonic acid (AA) in brain (Gao et al., 2010; 

Tanimura et al., 2010; Shonesy et al., 2014) and spinal cord (Gao et al., 2010). Accordingly, 

DAGL-α (-/-) mice display impaired depolarization-induced suppression of inhibition (DSI) and 

excitation (DSE) in the brain (Gao et al., 2010; Tanimura et al., 2010; Yoshino et al., 2011). 

These mice also show an increased mortality rate (Sugaya et al., 2016), display increased 

spontaneous seizures in the kainate model of status epilepticus (Sugaya et al., 2016), and exhibit 

an anxiogenic phenotype (Shonesy et al., 2014). In contrast, DAGL-β is most highly expressed 

on macrophages and although its relative brain expression is sparse, it is highly expressed on 

microglia (Hsu et al., 2012). This distribution pattern suggests that DAGL-β activity contributes 

to inflammatory responses. Importantly, DAGL-β deletion does not affect endocannabinoid-

mediated forms of retrograde synaptic suppression (Gao et al., 2010). However, DAGL-β 

blockade reduces lipopolysaccharide (LPS)-induced inflammatory responses in peritoneal 
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macrophages from C57BL/6 mice by decreasing levels of 2-AG, arachidonic acid, prostanoids, 

and proinflammatory cytokines (Hsu et al., 2012). Similarly, DAGL-α inhibition leads to 

protection from the neuroinflammatory effects of 20 mg/kg systemic LPS (Ogasawara et al., 

2016).  

A wide scope of evidence supports inflammatory as well as neuronal signaling 

contributions to many forms of pathological pain. Immune cell signaling plays a critical role in 

the development and maintence of neuropathic pain (Watkins et al., 2001; De Leo et al., 2006; 

Beggs and Salter, 2013). Likewise, increased neuronal signaling underlies pathological 

inflammatory pain, and can contribute to a positive pain feedback loop (De Leo et al., 2006; 

Chen et al, 2015). For example, in LPS-stimulated neurons, neuronal signaling leads to further 

inflammatory signaling and immune cell activation (Chen et al, 2015). Determing the 

antecedents of pathological pain and the subsequent identification of potential therapeutic targets 

remain important areas of research. Accordingly, DAGL-α and DAGL-β represent provocative 

targets to treat pathological pain conditions. 

Complementary approaches of pharmacological agents and genetically modified mice 

demonstrate that DAGL-β blockade reduces nociceptive behavior in the LPS model of 

inflammatory pain (Wilkerson et al., 2016). The DAGL-β inhibitor KT109 reverses nociceptive 

behavior in models of neuropathic pain (Wilkerson et al., 2016). These findings strongly 

implicate inhibition of this enzyme as a viable approach to treat inflammatory and neuropathic 

pain. However, it remains to be determined whether DAGL-α inhibition or deletion produces 

antinociceptive effects in pathological pain models. The present study attempted to investigate 

the role of this enzyme in LPS-induced allodynia, using the DAGL inhibitor DO34, which 

disrupts DSE and DSI in the cerebellum and hippocampus and reduces LPS-induced 
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anapyrexia in vitro responses (Ogasawara et al., 2016), provides a useful tool for in vitro and in 

vivo studies. Thus, the present study examined DAGL-α (-/-) and DAGL-β (-/-) mice in the LPS 

model of inflammatory pain 

In initial experiments, we quantified brain levels of endogenous cannabinoids and 

arachidonic acid in mice administered vehicle or DO34 (30 mg/kg), as well as tested DO34 in 

assays of locomotor behavior, catalepsy, body temperature, and acute thermal antinociceptive 

responses. We then evaluated the dose-response relationship and time course of acute DO34 

administration in attenutating LPS-induced mechanical and cold allodynia. In addition, and we 

examined whether the anti-allodynic effects would undergo tolerance following repeated DO34 

administration. Finally, we tested DO34 in DAGL-α (-/-) and –β (-/-) mice, and respective wild 

type littermates in the LPS model of inflammatory pain. Because DO34 also inhibits the serine 

hydrolase ABHD6 (Ogasawara et al., 2016), a 2-AG hydrolytic enzyme expressed on 

postsynaptic neurons (Blankman et al., 2007; Marrs et al., 2010), we employed the selective 

ABHD6 inhibitor DO53, which lacks DAGL activity (Ogasawara et al., 2016), for comparison. 
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Methods 

Animals 

Adult male C57BL/6J and ICR mice (23-40 gram, Jackson Laboratory, Bar Harbor, ME) 

served as subjects in these experiments. DAGL-α (-/-) and DAGL-β (-/-) mice were generated in 

the Cravatt laboratory on a mixed C57BL/6J and 129/SvEv background, as previously described 

(Hsu et al., 2012), and breeding pairs were transferred to Virginia Commonwealth University. A 

total of 84 DAGL-α (-/-) and 36 DAGL-β (-/-) mice were used in these studies. Mice were 

housed four per cage in a temperature (20–22 °C), humidity (55 ± 10 %), and light-controlled (12 

hour light/dark; lights on at 0600) AAALAC-approved facility, with standard rodent chow and 

water available ad libitum.  

All tests were conducted during the light phase. The sample size selected for each 

treatment group in each experiment was based on previous studies from our laboratory and 

complied with power analyses. 

All animal protocols were approved by the Institutional Animal Care and Use Committee 

at Virginia Commonwealth University and were in accordance with the National Institutes of 

Health Guide for the Care and Use of Laboratory Animals (National Research Council, 2011). 

After testing was completed, mice were euthanized via CO2 asphyxia, followed by rapid cervical 

dislocation.  

 

Drugs 

The DAGL inhibitor DO34 and the selective ABHD6 inhibitor DO53 were synthesized 

by the Cravatt laboratory according to previous methods (Ogasawara et al., 2016). All drugs 

were dissolved in a vehicle solution consisting of a mixture of ethanol, alkamuls-620 (Sanofi-
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Aventis, Bridgewater, NJ), and saline (0.9 % NaCl) in a 1:1:18 ratio. All drugs were administered 

in an injection volume of 10 μl/g body mass. Each drug was given via the intraperitoneal (i.p.) 

route of administration. The dose range of  DO34 was selected based on results reported by 

Ogasawara and colleagues, indicating that acute administration of 30  mg/kg DO34 in mice 

treated with LPS was sufficient to produce inhibition of DAGL-α, as well as measured decreases 

in peritoneal macrophages of arachidonic acid and proinflammatory cytokines (Ogasawara et al., 

2016).  

 

Extraction and quantification of endocannabinoids by liquid chromatography-tandem 

mass spectrometry 

2-AG, arachidonic acid (AA), and AEA levels were quantified from the whole brain of 

ICR mice, after acute i.p. administration of DO34 (30 mg/kg) or 1:1:18 vehicle. Brains were 

collected and processed for quantification of 2-AG, AA, and AEA. Because equivalent doses of 

DO34 significantly attenuated allodynia associated with LPS at 2 h after injection, mice were 

euthanized via rapid decapitation at this time point. Brains were rapidly harvested, snap-frozen in 

dry ice, and stored at -80°C until the time of processing. Tissues were further processed 

according to methods described previously (Ramesh et al., 2011; Ignatowska-Jankowska et al., 

2014). See supplementary methods for details. 

 

Evaluation of acute pharmacological effects of DO34 

Mice (counterbalanced Latin square within subject design) were housed individually 

overnight. The behavioral testing was conducted in the following order: bar test (catalepsy), tail 

withdrawal test, rectal temperature, locomotor activity. Testing was performed according to 
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previously described procedures (Long et al., 2009; Schlosburg et al., 2010). Catalepsy was 

assessed on a bar 0.7 cm in diameter placed 4.5 cm off of the ground. The mouse was placed with 

its front paws on the bar and a timer (Timer #1) was started. A second timer (Timer #2) was turned 

on only when the mouse was immobile on the bar, with the exception of respiratory movements. 

If the mouse moved off the bar, it was placed back on in the original position. The assay was 

stopped when either Timer #1 reached 60 s, or after the fourth time the mouse moved off the bar, 

and the cataleptic time was scored as the amount of time on Timer #2. Nociception was then 

assessed in the tail immersion assay. The mouse was placed head first into a small bag fabricated 

from absorbent under pads (VWR Scientific Products; 4 cm diameter, 11 cm length) with the tail 

out of the bag. Each mouse was hand-held and 1 cm of the tail was submerged into a 52 °C water 

bath. The latency for the mouse to withdraw its tail within a 10 s cut off time was scored. Rectal 

temperature was assessed by inserting a thermocouple probe 2 cm into the rectum, and temperature 

was determined by thermometer (BAT-10 Multipurpose Thermometer, Clifton, NJ, USA). 

Locomotor activity was assessed 120 min after treatment, for a 60 min period in a Plexiglas cage 

(42.7 x 21.0 x 20.4 cm) and Anymaze (Stoelting, Wood Dale, Illinois) software was used to 

determine the percentage of time spent immobile, mean speed and distance traveled. 

 

Lipopolysaccharide (LPS) inflammatory pain model 

Mice were given an injection of 2.5 μg LPS from Escherichia coli 026:B6 Sigma (St. 

Louis, MO, USA) in 20 μl of physiological sterile saline (Hospira Inc, Lake Forest, IL) into the 

plantar surface of the right hind paw. As previously reported, this is the minimally effective dose 

of LPS that elicits mechanical allodynia, but not measurable increases in paw thickness (Booker 

et al., 2012). Following LPS administration, mice were returned to their home cages.  At 22 h, 
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mice were given the appropriate injection of drug or vehicle and tested at 24 h for allodynia. In 

the time course study,  allodynia was assessed at 40 min, and 1, 3, 5, 8, and 24 h after the i.p. 

injection.  

To determine whether repeated administration of DO34 would produce sustained 

antinociceptive effects, mice were given i.p. injections of vehicle or DO34 (30 mg/kg) once a 

day for five days. On day 5, each mouse received its appropriate i.p. injection of vehicle or 

DO34, and 2 h later all mice were given an intraplantar injection of LPS. On day 6 (22 h after 

LPS administration), each mouse received its final i.p. injection. The vehicle-treated mice were 

divided into two groups. The first group received another injection of vehicle (vehicle control 

group) and the second group was given 30 mg/kg DO34 (acute DO34 group). The mice that had 

been given repeated injections of drug received their final injection of DO34 (repeated DO34 

group). All mice were tested for mechanical and cold allodynia 2 h after the final i.p. injection. 

 

Behavioral assessment of nociception 

Baseline responses to light mechanical touch were assessed using the von Frey test 

following habituation to the testing environment, as described elsewhere (Murphy et al., 1999). In 

brief, mice were placed atop a wire mesh screen, with spaces 0.5 mm apart and habituated for 

approximately 30 min/day for four days. Mice were unrestrained, and were singly placed under an 

inverted wire mesh basket to allow for unrestricted air flow. The von Frey test utilizes a series of 

calibrated monofilaments, (2.83 – 4.31 log stimulus intensity; North Coast Medical, Morgan Hills, 

CA) applied randomly to the left and right plantar surface of the hind paw for 3 s. Lifting, licking, 

or shaking the paw was considered a response. After completion of allodynia testing for LPS 

experiments, cold allodynia testing was performed with the application of acetone (Decosterd and 
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Woolf, 2000). In this assay 10 µl of acetone (99% high-performance liquid chromatography grade; 

Thermo Fisher Scientific, Waltham, MA) was projected via a 100-µl pipette (Rainin Instruments, 

Woburn, MA) onto the plantar surface of each hind paw. Acetone was propelled from below via 

air burst by expressing the pipette, thereby avoiding mechanical stimulation of the paw with the 

pipette. Total time lifting/clutching each hind paw was recorded with an arbitrary maximum cutoff 

time of 60 s. For all behavioral testing, threshold assessment was performed in a blinded fashion.   

 

Data analysis 

 Data were analyzed using student’s T test (evalutation of endocannabinoid and AA levels), or 

one-way or two-way analysis of variance (ANOVA). Tukey’s test was used for post hoc analysis 

following a significant one-way ANOVA. Multiple comparisons following two-way ANOVA 

were conducted with Bonferroni post hoc comparison. A P-value of <0.05 was considered 

statistically significant. The computer program GraphPad Prism version 4.03 (GraphPad 

Software Inc., San Diego, CA) was used in all statistical analyses. All data are expressed as mean 

+/- SEM. 
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Results 

DO34 (30 mg/kg) significantly decreased whole brain levels of 2-AG (p < 0.0001, Fig. 1A), 

AEA (p < 0.05, Figure 1B), and arachidonic acid (p < 0.0001, Fig. 1C). 

  

To examine whether DO34 produces overt pharmacological effects, we assessed whether it 

affects spontaneous locomotor behavior, elicits cataleptic effects in the bar test, produces 

antinociception in the warm water tail withdrawal assay, or alters body temperature. Naïve mice 

given vehicle, or 1, 3, 10, 30, 50, or 100 mg/kg DO34. DO34 did not display differences of 

treatment in catalepsy (Figure 2A), hypothermia (P = 0.60, Figure 2B), thermal antinociception 

(P = 0.13, Figure 2C), or locomotor alterations (defined as time spent immobile; P = 0.57, Figure 

2D). 

 

Having confirmed that the DAGL inhibitor DO34 significantly reduces endocannabinoids 

and arachidonic acid in whole brain, but does not affect overt motor or sensory behavior, the next 

set of experiments investigated this compound in the LPS model of inflammatory pain. The 

dose-response evaluation of the anti-allodynic effects of  DO34 (1, 3, 10, 30 mg/kg) at 2 h post-

injection in the von Frey and acetone-induced fliching assays are respectively shown in Figure 

3A and 3B.  DO34 dose-dependently reversed LPS-induced mechanical allodynia [F(3,20) = 

14.12; P < 0.0001],  and cold allodynia, [F(3,20) = 15.99; P < 0.0001]. The respective ED50 

values (95% C.I.) of DO34 in reversing LPS-induced mechanical allodynia and cold allodynia 

were 3.8 (2.8-5.3) mg/kg and 6.0 (4.0-9.0) mg/kg. The potency ratio (95% C.I.) of DO34 for 

mechanical vs. cold allodynia was 1.6 (1.0-2.6), indicating equipotence in the two nociceptive 

assays. As depicted in Figure 3C, DO34 significantly reversed allodynia within 30 min of i.p. 
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administration, and the antinociceptive effect of 30 mg/kg DO34 persisted for at least 8 h 

[interaction between treatment and time F(20,125) = 3.58; P < 0.0001].  

 

In order to evaluate whether the antinociceptive effects of DO34 undergo tolerance, we 

evaluated von Frey thresholds and acetone-induced flinching in mice that received vehicle or 

DO34 (30 mg/kg) following one injection or six days of repeated administration. As shown in 

Figure 4, DO34 retained its anti-allodynic effects after six days of repeated administration in the 

von Frey assay [F(1,20) = 22.55; P < 0.0001; Panel A], as well as in the acetone-induced 

flinching assay [F(1,20) = 46.34; P < 0.0001; Panel B].   

 

In the next series of experiments, we evaluated LPS-induced allodynia in DAGL-α (-/-) mice 

or DAGL-β (-/-) mice given an i.p. injection of vehicle, DO34 (30 mg/kg), or DO53 (30 mg/kg), 

a selective ABHD6 inhibitor that served as a control for this off-target of DO34. As previously 

reported (Wilkerson et al., 2016), DAGL-β (-/-) mice displayed an anti-allodynic phenotype in 

the von Frey assay [F(1,10) = 27.9; P < 0.001; Figure 5A]. In addition, these mice showed a 

reduction in acetone-induced flinching [F(1,10) = 225; P < 0.0001; Figure 5B] 24 h following 

intraplantar LPS administration. DO34 (30 mg/kg, i.p.) administered at 22 h post LPS injection 

reversed mechanical (P < 0.001; Figure 5A) and cold (P < 0.0001; Figure 5B) allodynia in 

DAGL-β (+/+) mice, but did not alter the anti-allodynic phenotypes of the DAGL-β (-/-) mice. 

DO53 (30 mg/kg i.p.) did not produce significant effects in either mechanical (P = 0.97) or cold 

(P = 0.49) allodynia, and did not alter the DAGL-β (-/-) anti-allodynic phenotype. 
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In the final experiment, we examined the dose-response relationship of DO34 (0, 1, 3, 10, or 

30 mg/kg) in LPS-treated DAGL-α (-/-) and (+/+) mice. LPS elicited similar magnitudes of 

mechanical (Figure 6A) and cold (Figure 6B) allodynia regardless of genotype. DO34 dose-

relatedly reversed LPS-induced mechanical allodynia in DAGL-α (+/+) mice [F(3,20) = 29.42; P 

< 0.0001] and DAGL-α (-/-) mice [F(3,20) = 4.45; P < 0.05;  Figure 6A]. The respective ED50 

(95% C.I.) values of DO34 in reversing LPS-induced mechanical allodynia in DAGL-α (+/+) 

and (-/-) mice were 8.6 (6.4-11.5) mg/kg and 5.9 (3.9-8.8) mg/kg. The potency ratio for DAGL-α 

(+/+) vs. DAGL-α (-/-) for mechanical allodynia was 1.4 (0.8-2.5).  Likewise, DO34 reversed 

cold allodynia in DAGL-α (+/+), [F(3,20) = 48.47; P < 0.0001] and DAGL-α (-/-) mice [F(3,20) 

= 30.99; P < 0.0001; Figure 6B].  The respective ED50 values (95% C.I.) of DO34 in reversing 

LPS-induced cold allodynia in DAGL-α (+/+) and (-/-) mice were 6.1 (4.7-7.9) mg/kg and 4.5 

(3.4-6.0) mg/kg. The potency ratio for DAGL-α (+/+) vs. DAGL-α (-/-) for cold allodynia was 

1.35 (0.9-1.9).   Finally, DO53 (30 mg/kg) administered at 22 h post LPS injection did not 

produce antinociceptive effects in either genotype (see Supplemental Figure 1).  
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Discussion  

 The present study employed complementary pharmacological and genetic approaches to 

test whether blockade of the 2-AG biosynthetic enzymes DAGL-β and DAGL-α produces 

antinociceptive effects in the LPS model of inflammatory pain. As previously reported 

(Wilkerson et al., 2016), DAGL-β (-/-) mice were resistant to the development of LPS-induced 

mechanical allodynia. Moreover these mice were also resistant to the development of LPS-

induced cold allodynia. In contrast, DAGL-α (-/-) mice displayed full development of LPS-

induced mechanical and cold allodynia. These findings suggest that DAGL-α and DAGL-β play 

differential roles in the development of LPS-induced hyperalgesic states. Thus, whereas DAGL-

α is dispensible for the development of LPS-induced allodynia, DAGL-β plays a nececessary 

role in the increased nociceptive behavior following endotoxin treatment.  

The disparate roles that DAGL-α and DAGL-β  play in LPS-induced allodynia are 

consistent with the differential expression of these enzymes on cells in the nervous system and 

peripheral tissue (Hsu et al., 2012). Specifically, DAGL-α is expressed on postsynaptic neurons 

within the hippocampus, cerebellum, prefrontal cortex and the striatum (Katona et al., 2006; 

Yoshida et al., 2006; Lafourcade et al., 2007; Uchigashima et al., 2007), and its genetic deletion 

results in marked decreases in 2-AG, AEA, and AA in brain (Gao et al., 2010; Tanimura et al., 

2010; Shonesy et al., 2014) and spinal cord (Gao et al., 2010). In contrast, the relative expression 

of DAGL-β throughout the brain is generally sparse. DAGL-β (-/-) mice express wild type levels 

of 2-AG in whole brain (Hsu et al., 2012) and endocannabinoid-mediated forms of retrograde 

synaptic suppression in these mice are spared (Gao et al., 2010). However, the high expression 

of DAGL-β on microglia in the CNS (Viader et al., 2016) and on macrophages in the periphery 

(Hsu et al., 2012) is consistent with its role within the innate immune system. Specifically, 
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pharmacological inhibition or genetic deletion of DAGL-β leads to decreased levels of 

endocannabinoids, AA, prostanoids, and proinflammatory cytokines in LPS-treated peritoneal 

macrophage cell cultures from C57Bl/6 mice (Hsu et al., 2012).  

Here we show that acute administration of DO34, at a dose which produced reversal of 

mechanical and cold allodynia (30 mg/kg), produced significant reductions of 2-AG (~83%), 

AEA (~42%), and AA (~58%) in naïve mice. These findings are in agreement with previous 

work showing that DO34 reduces 2-AG, AEA, and AA in mouse whole brains (Ogasawara et al., 

2016). However, the use of whole brain precludes insight of whether DO34 differentially affects 

lipid levels in discrete brain regions.  

Here, we also report that the DAGL inhibitor DO34 dose-dependently reversed LPS-

induced mechanical allodynia and cold alldynia. These antinociceptive effects are DAGL-α 

dispensible, as genetic deletion of this enzyme did not alter the dose-response curves of DO34 

for both measures. DO34 also did not alter the antinociceptive phenotype DAGL-β (-/-) mice 

response, but completely reversed the LPS-induced allodynic responses in DAGL-β (+/+) mice. 

Additionally, the DO34 time course experiment demonstrates that its anti-allodynic effects 

persist for at least 8 hours, which is consistent with its long duration of action in inhibiting 

DAGL-β activity (Ogasawara et al., 2016). Besides its actions at DAGL-α and –β, DO34 also 

inhibits ABHD6 (Ogasawara et al., 2016), a serine hydrolase that hydrolyzes 2-AG, but to a 

much lesser extent than MAGL (Blackman et al., 2007; Marrs et al., 2010). Thus, we tested 

DO53, a structurally similar compound that inhibits ABHD6 without actions at either DAGL-β 

or DAGL-α (Ogasawara et al., 2016), in the LPS model of inflammatory pain. DO53 did not 

reverse LPS-induced allodynia in either DAGL-α (-/-) or (+/+) mice, suggesting that ABHD6 

inhibition alone or in combination with DAGL-α inhibition does not elicit antinociceptive effects 
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in this assay. The observation that another ABHD6 inhibitor, KT195, lacked efficacy in 

reversing LPS-induced mechanical allodynia (Wilkerson et al., 2016) further excludes 

consideration the involvement of this enzyme in the results reported here.  Although the indirect 

evidence offered here is consistent with the idea that DAGL-β mediates the anti-allodynic effects 

of DO34, it does not rule out the possibility of another target.   

Another relevant finding in the present study is that repeated administration of DO34 (30 

mg/kg) for six days continued to prevent the expression of LPS-induced allodynia. Similarly, the 

anti-allodynic effects of the preferential DAGL-β inhibitor KT109 in the LPS model of 

inflammatory pain did not undergo tolerance. This apparent lack of tolerance is consistent with 

the observation that DAGL-β (-/-) mice displayed an anti-allodynic phenotype in the LPS model 

of inflammatory pain. It will be important in future studies to ascertain whether repeated 

administration DAGL inhibitors also reverses nociceptive behavior in chronic models of 

inflammatory or neuropathic pain. Additionally, given the previously mentioned caveats of target 

selectivity, there is a need for more selective inhibitors for DAGL-α and β, and further studies 

with these inhibitors are needed to verify our proposed mechanism of action. 

The underlying mechanisms for the antinociceptive effects of DO34 remain to be 

determined, but may be related to a reduction of arachidonic acid and its bioactive metabolites in 

macrophages expressed in the LPS-treated paw. In particular, KT109 as well as DAGL-β 

deletion resulted in decreased levels of a variety of proinflammatory lipids and proteins in LPS-

stimulated peritoneal macrophage (Hsu et al., 2012). Specifically, prostaglandins are crucial for 

the development and maintence of inflammatory pain (Sugita et al., 2016; Endo et al., 2014; 

Ulmann et al., 2010). DAGL-β inhibition is also protective from microglial activation in the 

brains of mice repeatedly administered LPS (Viader et al., 2016), and specifically produces 
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reversal of LPS-stimulated proinflammatory cytokine release (Hsu et al., 2012) as well as 

reverses allodynia and thermal sensitivity in inflammatory, chronic constriction injury of the 

sciatic nerve, and chemotherapy-induced peripheral neuropathy pain models (Wilkerson et al., 

2016). In these models of neuropathic pain, although these analgesic effects appear to be due to 

DAGL-β inhibition, the relative contribution of additional modulation of AA metabolites 

remains unclear. However, AA can act as a direct modulator of neuronal activity through its 

mechanosensory mediatory effects on lipid-sensitive ion channels (Meves, 2008; Brohawn et al., 

2014).   

Given that these studies represent one of the first in vivo evaluations of DO34, we 

assessed whether it would produce overt behavioral effects. Accordingly, we examined whether 

DO34 would produce changes in spontaneous activity or body temperture, as well as assess 

whether it would elicit acute cataleptic or thermal antinociceptive effects. DO34 did not alter 

spontaneous activity or body temperature, and was inactive in warm water tail withdrawl test for 

acute thermal antinociception and in the bar test for catalepsy. Other studies have shown that 

DO34 decreases food intake (Deng et al., 2017).  It is important to note here that DAGL-α (-/-) 

mice display increased anxiogenic behavior in multiple assays used to infer anxiety (i.e., the 

open-field, light/dark box, and novelty-induced hypophagia test (Shonesy et al., 2014). Thus, it 

will be important to assess the effects of DO34 in fear and anxiety assays in future studies.  

The results of the present study provide proof of principle that DAGL-β plays a necessary 

role in the expression of nociceptive behavior in the LPS model of inflammatory pain. The 

observation that DAGL-α (-/-) mice display LPS-induced allodynia indicates that this enzyme is 

dispensible for these effects. Moreover, these null mice served as useful tool showing that the 

anti-allodynic effects of DO34 are independent of its actions on DAGL-β. Taken together, the 
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present study and our previous work (Wilkerson et al., 2016) suggest that DAGL-β represents a 

potential therapeutic target to relieve pain elicited by activation of proinflammatory events. 
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Figure Legends 

Figure 1. Endocannabinoid levels in whole brain mouse tissue are altered 2 hr after 30 mg/kg 

DO34.  DO34 decreases (A), 2-AG (B), AEA (C) AA compared to vehicle **** p<0.0001, * 

p < 0.05 vs. vehicle. Data reflect mean ± SEM, n=12 mice per group. 

 

Figure 2. Assessment of behavior reveals DO34 treatment does not produce common 

cannabimimetic effects in naïve mice.  DO34 does not produce (A), catalepsy. (B), 

antinociception. (C), body temperature or (D), change in locomotion. Data reflect mean ± SEM, 

n=6 mice per group. 

 

Figure 3. Pharmacological inhibition of DAGL with DO34 reverses LPS-induced mechanical 

and cold allodynia. (A) DO34 reverses LPS-induced mechanical allodynia in a dose and time 

dependent manner. (B) DO34 reverses LPS-induced cold allodynia in a dose-dependent manner 

2h after i.p. administration. (C) DO34 significantly reversed allodynia in a time and dose 

dependent manner, within reversal onset at 30 minutes, lasting beyond 8 hours, after i.p. 

administration.  Data reflect mean ± SEM, n=6 mice per group. *** p <0.0001, ** p<0.001, * 

p < 0.05 vs. LPS + vehicle. Filled circles = p < 0.05 vs. LPS + vehicle. 

      

Figure 4. Repeated administration of DO34 prevents LPS-induced mechanical and cold 

allodynia. (A) Acute or repeated administration of DO34 (30 mg/kg) prevents the expression of 

LPS-induced mechanical allodynia. (B) Acute or repeated administration of DO34 (30 mg/kg) 

prevents the expression of LPS-induced cold allodynia. Data reflect mean ± SEM, n=6 mice per 

group. ** p<0.001 vs. LPS + vehicle.   
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Figure 5. Genetic inhibition of DAGL-β in the mediation of LPS-induced mechanical and cold 

allodynia. (A) LPS-treated DAGL-β (-/-) mice do not develop mechanical allodynia. The DAGL-

α and DAGL-β inhibitor DO34 (30 mg/kg), reverses LPS-induced mechanical allodynia in 

DAGL-β (+/+) mice, and does not further alter the antinociceptive effects in DAGL-β (-/-) mice. 

The ABHD6 inhibitor DO53 did not produce reversal of mechanical allodynia in DAGL-β (+/+) 

mice. (B) LPS-treated DAGL-β (-/-) mice do not develop cold allodynia. DO34 (30 mg/kg), 

reverses LPS-induced cold allodynia in DAGL-β (+/+) mice, and does not further alter the 

antinociceptive effects in DAGL-β (-/-) mice. The ABHD6 inhibitor DO53 did not produce 

reversal of cold allodynia in DAGL-β (+/+) mice. N = 6 mice/group. Data reflect mean ± SEM, 

**** p < 0.0001 vs. respective genotype control paw. 

 

Figure 6. The role of DAGL-α inhibition in the mediation of DO34 reversal of LPS-induced 

mechanical and cold allodynia. (A) LPS-treated DAGL-α (-/-) normally develop mechanical 

allodynia. DO34 (30 mg/kg), reverses LPS-induced mechanical allodynia in DAGL-α (+/+) and 

(-/-) mice. There is no significant shift in the dose response curve due to genotype. (B) LPS-

treated DAGL-α (-/-) mice develop cold allodynia. DO34 (30 mg/kg), reverses LPS-induced cold 

allodynia in DAGL-α (+/+) and (-/-) mice. There is no significant shift in the dose response curve 

due to genotype. N = 6 mice/group. Data reflect mean ± SEM. Filled circles = p < 0.05 vs. LPS + 

vehicle in the respective genotype paw.  
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