Species Differences in Hepatobiliary Disposition of Taurocholic Acid in Human and Rat Sandwich-Cultured Hepatocytes: Implications for Drug-Induced Liver Injury

Kyunghye Yang, Nathan D. Pfeifer, Kathleen Köck, and Kim L.R. Brouwer

Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC (K.Y., N.D.P., K.K., K.L.R.B.)
Running Title Page

Running Title: Hepatic Disposition of Taurocholic Acid in Rat and Human SCH

Address correspondence to:

Kim L.R. Brouwer

UNC Eshelman School of Pharmacy

University of North Carolina at Chapel Hill

CB #7569

Chapel Hill, NC 27599-7569

E-mail address: kbrouwer@email.unc.edu

Telephone: 919 – 962 – 7030

Fax: 919 – 962 – 0644

Number of text pages: 26

Number of tables: 1

Number of figures: 5

Number of references: 38

Number of words in the Abstract: 249

Number of words in the Introduction: 741

Number of words in the Discussion: 1499

Abbreviations: SCH, sandwich-cultured hepatocytes; TCA, taurocholic acid; DHEAS, dehydroepiandrosterone sulfate; BSEP, bile salt transport pump; MRP, multidrug resistance-associated protein; NTCP, sodium-taurocholate cotransporting polypeptide; CL\textsubscript{bile}, biliary clearance; CL\textsubscript{BL}, basolateral efflux clearance; CL\textsubscript{Uptake}, uptake clearance.
Abstract
The bile salt export pump (BSEP) plays an important role in bile acid excretion. Impaired BSEP function may result in liver injury. Bile acids also undergo basolateral efflux, but the relative contributions of biliary (CL\text{Bile}) vs. basolateral efflux (CL\text{BL}) clearance to hepatocellular bile acid excretion have not been determined. In the present study, taurocholic acid (TCA, a model bile acid) disposition was characterized in human and rat sandwich-cultured hepatocytes (SCH) combined with pharmacokinetic modeling. In human SCH, biliary excretion of TCA predominated (CL\text{Bile}=0.14±0.04 ml/min/g liver; CL\text{BL}=0.042±0.019 ml/min/g liver), whereas CL\text{Bile} and CL\text{BL} contributed equally to TCA hepatocellular excretion in rat SCH (CL\text{Bile}=0.34±0.074 ml/min/g liver; CL\text{BL}=0.26±0.071 ml/min/g liver). Troglitazone decreased TCA uptake, CL\text{Bile}, and CL\text{BL}; membrane vesicle assays revealed for the first time that the major metabolite, troglitazone sulfate, was a non-competitive inhibitor of MRP4, a basolateral bile acid efflux transporter. Simulations revealed that decreased CL\text{Bile} led to a greater increase in hepatic TCA exposure in human than rat SCH. A decrease in both excretory pathways (CL\text{Bile} and CL\text{BL}) exponentially increased hepatic TCA in both species, suggesting that: 1) drugs that inhibit both pathways may have greater risk for hepatotoxicity, and 2) impaired function of an alternate excretory pathway may predispose patients to hepatotoxicity when administered drugs that inhibit one pathway. Simulations confirmed the protective role of uptake inhibition, suggesting that a drug’s inhibitory effects on bile acid uptake also should be considered when evaluating hepatotoxic potential. Overall, the current study precisely characterized basolateral efflux of TCA, revealed species differences in hepatocellular TCA efflux pathways, and provided insights about altered hepatic bile acid exposure when multiple transport pathways are impaired.
Introduction

Bile acids are important endogenous molecules that are involved in digestion and absorption of fats, and regulation of lipid and glucose homeostasis (Hofmann, 1999a; Nguyen and Bouscarel, 2008). However, bile acids can exert toxic effects at supra-physiologic concentrations through disruption of mitochondrial ATP synthesis, necrosis, and apoptosis (Perez and Briz, 2009; Maillette de Buy Wenniger and Beuers, 2010); thus, defects in excretion may lead to hepatic accumulation of bile acids and subsequent hepatotoxicity.

Hepatic transport proteins play important roles in vectorial transport of bile acids. Sodium taurocholate cotransporting polypeptide (NTCP) and organic anion transporting polypeptides (OATPs) are responsible for sodium-dependent and sodium-independent uptake of bile acids from sinusoidal blood into hepatocytes, respectively. Bile acids in hepatocytes are excreted into bile across the canalicular membrane, predominantly via the bile salt export pump (BSEP). Consistent with the important role of BSEP in bile acid excretion, impaired BSEP function due to genetic polymorphisms has been shown to induce liver injury (e.g., progressive familial intrahepatic cholestasis type II) (Jansen et al., 1999). Also, increasing evidence suggests that inhibition of BSEP by drugs is associated with cholestatic/mixed type drug-induced liver injury (DILI) (Morgan et al., 2010; Dawson et al., 2012; Morgan et al., 2013; Pedersen et al., 2013).

In addition to BSEP-mediated canalicular excretion, bile acids also are transported from the hepatocyte into sinusoidal blood via basolateral efflux transporters, including multidrug resistance-associated protein (MRP) 3, MRP4, and organic solute transporter (OST)\(\alpha\)-OST\(\beta\). Expression levels of MRP3 and MRP4 are up-regulated under cholestatic conditions, suggesting that they function as a compensatory route of bile acid excretion and thereby serve as an important part of adaptive response (Akita et al., 2001; Trauner et al., 2005; Zollner et al., 2007). OST\(\alpha\)-OST\(\beta\) mediates basolateral efflux of bile acids from enterocytes into the portal circulation by facilitated diffusion (Ballatori et al., 2009), but the role of OST\(\alpha\)-OST\(\beta\) in hepatic bile acid efflux remains to be further characterized. Recently, Morgan et al. reported that prediction of DILI was improved by considering the inhibitory effect of a drug on
MRP2, MRP3 and MRP4, compared to BSEP inhibition alone (Morgan et al., 2013). In addition, studies from our laboratory demonstrated that MRP4 inhibition was associated with cholestatic/mixed DILI among BSEP non-inhibitors, emphasizing the role of MRP4 in DILI (Kock et al., 2013).

DILI is one of the primary reasons for withdrawal of approved drugs from the market and a major concern during drug development (Watkins and Seeff, 2006). One prominent example is troglitazone (TGZ), the first of the thiazolidinedione class of antidiabetic drugs that was withdrawn from worldwide markets due to severe DILI. Although mechanisms of TGZ-mediated hepatotoxicity remain unclear, in vitro vesicular transport assays demonstrated that TGZ and its major metabolite, TGZ sulfate (TS), are potent BSEP inhibitors, suggesting a cholestatic component in TGZ-induced hepatotoxicity (Funk et al., 2001). TGZ also inhibits NTCP, MRP3, and MRP4 (Marion et al., 2007; Morgan et al., 2013); although TS accumulates extensively in hepatocytes (Funk et al., 2001; Lee et al., 2010), the effect of TS on basolateral efflux transporters has not been investigated.

Due to extensive biliary excretion, it generally has been accepted that the contribution of basolateral efflux to hepatocellular bile acid excretion is minimal under normal conditions. However, as proposed in the “hepatocyte hopping” theory of bilirubin glucuronides (Iusuf et al., 2012), it is plausible that bile acids may undergo extensive basolateral efflux (through MRP3/4) and re-uptake into downstream hepatocytes (through NTCP/OATP). This would prevent saturation of biliary transporters in upstream hepatocytes and transfer bile acids to downstream hepatocytes, protecting hepatocytes from bile acid toxicity. To our knowledge, the contribution of basolateral efflux vs. biliary excretion to hepatocellular bile acid disposition has not been precisely characterized.

The purpose of the present studies was to characterize TCA hepatobiliary disposition (basolateral uptake, basolateral efflux, biliary excretion, flux from canalicular networks) in human and rat SCH using a novel uptake and efflux protocol developed by our laboratory combined with pharmacokinetic modeling (Pfeifer et al., 2013). Results from the current investigation revealed that species differences exist in cellular TCA efflux pathways in human vs. rat SCH; simulations suggested differential hepatobiliary TCA disposition in human and rat SCH due to inhibitors of canalicular excretion and/or basolateral
This novel finding might explain, in part, the underlying mechanisms of species differences in hepatotoxicity mediated by BSEP inhibitors. This study also investigated the effects of TGZ and its metabolites on TCA disposition in human and rat SCH, and reports for the first time that TS inhibits MRP4, a basolateral bile acid efflux transporter. Lastly, simulations based on the constructed mechanistic models provided insights regarding altered hepatic bile acid exposure when multiple bile acid transport pathways are impaired.
Methods

Materials. All chemicals were purchased from Sigma-Aldrich (St. Louis, MO) unless otherwise stated. TGZ (5-(4-{(6-hydroxy-2,5,7,8-tetramethylchroman-2-yl)methoxy}benzyl)thiazolidine-2,4-dione) was purchased from Cayman Chemical Company (Ann Arbor, MI). TS (5-[[4-[[3,4-Dihydro-2,5,7,8-tetramethyl-6-(sulfooxy)-2H-1-benzopyran-2-yl]methoxy]phenyl]methyl]-2,4-thiazolidinedione) was kindly provided by Daiichi-Sankyo Co, Ltd. (Tokyo, Japan). TS also was synthesized from TGZ in-house as described by Saha et al. (Saha et al., 2010). [3H]TCA (5 Ci/mmol) and [3H]dehydroepiandrosterone sulfate (DHEAS; 79.5 Ci/mmol) were purchased from Perkin Elmer (Waltham, MA). Dimethyl sulfoxide (DMSO) was obtained from Fisher Scientific (Fairlawn, NJ). GIBCO brand fetal bovine serum, recombinant human insulin, and Dulbecco’s modified Eagle’s medium (DMEM) were purchased from Life Technologies (Carlsbad, CA). Insulin/transferrin/selenium (ITS) culture supplement, BioCoat™ culture plates, and Matrigel™ extracellular matrix were purchased from BD Biosciences Discovery Labware (Bedford, MA).

Sandwich-Cultured Hepatocytes (SCH). Rat hepatocytes were isolated from male Wistar rats (234–245 g, Charles River Laboratories, Inc., Wilmington, MA) using a two-step collagenase perfusion method as previously described (LeCluyse et al., 1996). Animals had free access to water and food before surgery and were allowed to acclimate for at least five days. All animal procedures complied with the guidelines of the Institutional Animal Care and Use Committee (University of North Carolina, Chapel Hill, NC). Rat hepatocytes were seeded onto 6-well BioCoat™ culture plates at a density of 1.75×10⁶ cells/well in seeding medium (DMEM containing 5% fetal bovine serum, 10 µM insulin, 1 µM dexamethasone, 2 mM L-glutamine, 1% MEM nonessential amino acids, 100 units of penicillin G sodium, and 100 µg of streptomycin) as described previously (Swift et al., 2010). Hepatocytes were incubated for 2 h at 37°C in a humidified incubator (95% O₂, 5% CO₂) and allowed to attach to the collagen substratum, after which time the medium was aspirated to remove unattached cells and replaced with fresh medium. On the next day, cells were overlaid with BD Matrigel™ at a concentration of 0.25 mg/ml in ice-cold feeding medium (DMEM supplemented with 0.1 µM dexamethasone, 2 mM L-glutamine, 1% MEM nonessential amino...
acids, 100 units of penicillin G sodium, 100 µg of streptomycin, and 1% ITS). The culture medium was changed daily until experiments were performed on day 4. Fresh human SCH, seeded onto 24-well BioCoat™ culture plates and overlaid with Matrigel™, were purchased from Triangle Research Labs (Research Triangle Park, NC). Fresh human hepatocytes were obtained from two Caucasian females (31 years old, BMI 29.05 kg/m²; 56 years old, BMI 22.30 kg/m²), and one African American female (48 years old, BMI 24.9 kg/m²). The culture medium (the same feeding medium used for rat SCH) was changed daily until experiments were performed on day 7.

Uptake and Efflux Studies in SCH. Uptake and efflux studies of TCA were performed in human and rat SCH as previously described (Pfeifer et al., 2013). Briefly, on day 4 (rat) or day 7 (human) of culture, SCH were pre-incubated for 10 min in 1.5 mL/well (rat) or 0.3 mL/well (human) of standard (Ca²⁺-containing) or Ca²⁺-free (Ca²⁺/Mg²⁺-free buffer containing EGTA) HBSS. Incubating SCH in Ca²⁺-free HBSS disrupts the tight junctions that form the bile canalicular networks (B-CLEAR® technology, Qualyst Transporter Solutions, Research Triangle Park, NC). For uptake and efflux studies with TCA, SCH were treated with 1 µM [³H]TCA (400 nCi/mL) in 1.5 mL/well (rat) or 0.3 mL/well (human) standard HBSS for 20 min at 37°C. After the 20-min uptake phase, buffers containing TCA were removed, cells were washed twice with 1.5 mL/well (rat) or 0.3 mL/well (human) of standard or Ca²⁺-free HBSS buffer at 37°C, and the third application of buffer was added to SCH for the 15-min (rat) or 10-min (human) efflux phase (Fig. 1). For determination of TGZ effects on TCA disposition, SCH were pre-incubated with 10 µM TGZ for 30 min in 1.5 mL/well (rat) or 0.3 mL/well (human) standard HBSS before 10-min application of standard or Ca²⁺-free HBSS. The rest of the experiment (uptake and efflux) was performed as described above. Pre-incubation was selected to minimize the inhibitory effects of TGZ and its metabolites on TCA uptake, and to allow enough time for the formation of TS, a potent BSEP inhibitor. TCA accumulation in cells+bile (standard HBSS) and cells (Ca²⁺-free HBSS) during uptake (2, 5, 10, and 20 min in human SCH; 2, 5, 10, 15, and 20 min in rat SCH) and efflux (2, 3.5, 5, and 10 min in human SCH; 2, 3.5, 5, 10, and 15 min in rat SCH) phases were determined by terminal sampling of n=3 wells at each time point. During the efflux phase, incubation buffer (standard HBSS or Ca²⁺-free HBSS)
also was collected at the end of the each incubation period. Cells were washed twice in ice-cold HBSS, and were solubilized in 0.3 mL (24-well; human SCH) or 1 mL (6-well; rat SCH) 0.5% Triton X-100. Radioactivity in cell lysates and buffer samples was quantified by liquid scintillation counting (Packard TriCarb, Perkin-Elmer, Waltham, MA).

Pharmacokinetic Modeling. Pharmacokinetic modeling was employed to evaluate the hepatobiliary disposition of TCA (Control), and to determine the effects of TGZ on TCA disposition (+TGZ) in human and rat SCH. A model scheme incorporating linear parameters governing TCA disposition (Fig. 1) were fit to mass versus time data from individual SCH experiments (Fig. 2). The model fitting was performed with Phoenix WinNonlin, v6.1 (Certara, St. Louis, MO) using the stiff estimation method and a power model to account for residual error. The following differential equations, which were developed based on the model scheme depicted in Fig. 1, were fit simultaneously to data generated in SCH in the presence of intact and disrupted bile canaliculi for each condition (human and rat; Control and +TGZ):

Mass in standard HBSS buffer:

\[
\frac{dX^\text{Buffer}^+}{dt} = \text{CL}_{\text{BL}} \times C_{\text{Cell}}^+ + K_{\text{Flux}} \times X_{\text{Bile}}^+ - \text{CL}_{\text{Uptake}} \times C_{\text{Buffer}}^+ - K_{\text{Wash}} \times X_{\text{Buffer}}^+ \quad X_{\text{Buffer}}^+ = X_{\text{dose}}
\]

Mass in Ca\(^{2+}\)-free HBSS buffer:

\[
\frac{dX^-_{\text{Buffer}}}{dt} = (\text{CL}_{\text{BL}} + \text{CL}_{\text{Bile}}) \times C_{\text{Buffer}}^- - \text{CL}_{\text{Uptake}} \times C_{\text{Cell}}^- - K_{\text{Wash}} \times X_{\text{Buffer}}^- \quad X_{\text{Buffer}}^- = X_{\text{dose}}
\]

Mass in cells:

\[
\frac{dX_{\text{Cell}}^{+\text{or}^-}}{dt} = \text{CL}_{\text{Uptake}} \times C_{\text{Buffer}}^{+\text{or}^-} - (\text{CL}_{\text{BL}} + \text{CL}_{\text{Bile}}) \times C_{\text{Cell}}^{+\text{or}^-} \quad X_{\text{Cell}}^{+\text{or}^-} = 0
\]

Mass in bile (standard HBSS):

\[
\frac{dX_{\text{Bile}}}{dt} = \text{CL}_{\text{Bile}} \times C_{\text{Cell}}^+ - K_{\text{InX}} \times X_{\text{Bile}} \quad X_{\text{Bile}} = 0
\]

Mass in cells+bile (standard HBSS):

\[
\frac{dX_{\text{Cells+Bile}}}{dt} = \frac{dX_{\text{Bile}}}{dt} + \frac{dX_{\text{Cell}}^+}{dt} \quad X_{\text{Cells+Bile}} = 0
\]
where variables and parameters are defined as in Fig. 1, and K_{wash} was activated for 1 minute at the end of the 20-min uptake phase and fixed at $1 \times 10^4 \text{ min}^{-1}$ based on simulations to eliminate the TCA dose from the buffer compartment and represent the wash step. C_{Cell} represents the intracellular concentration, calculated as $X_{\text{Cell}}/V_{\text{Cell}}$, where cellular volume (V_{Cell}) was estimated based on the protein content of each preparation, using a value of 7.4 μL/mg protein (Lee and Brouwer, 2010). C_{Buffer} represents the buffer concentration, calculated as $X_{\text{Buffer}}/V_{\text{Buffer}}$ where the buffer volume (V_{Buffer}) was constant (1.5 mL for rat SCH and 0.3 mL for human SCH). Initial parameter estimates were obtained from noncompartmental analysis of SCH data, where CL_{Uptake} was estimated from the initial (2 min) uptake data as follows, $CL_{\text{Uptake}} = (dX_{\text{cells+bile}}/dt)/C_{\text{Buffer}}$. CL_{BL} and CL_{Bile} were estimated from efflux phase data under Ca$^{2+}$-free conditions, where $(CL_{\text{BL}} + CL_{\text{Bile}}) = X_{\text{Buffer},0-15\text{min}}/AUC_{\text{cells},0-15\text{min}}$. K_{flux}, which represents the flux of substrate out of bile networks in standard HBSS conditions, was estimated initially from simulations using Berkeley-Madonna. The impact of impaired function of canalicular and/or basolateral efflux transporters on hepatic TCA exposure in human and rat SCH was simulated using the TCA model and parameter estimates (Fig. 1 and Table 1); parameters representing transport-mediated efflux (CL_{BL} and CL_{Bile}) were decreased by 10-fold in isolation, or in combination, in human and rat SCH; the resulting changes in predicted cellular TCA concentrations are plotted in Fig. 4. To determine the net effect of impaired function of uptake and/or efflux (basolateral and canalicular) transporters on hepatic TCA exposure in human SCH, simulations were performed by decreasing CL_{Uptake} and CL_{Efflux} ($CL_{\text{BL}} + CL_{\text{Bile}}$) gradually by 10- to 100-fold in combination; it was assumed that both efflux pathways (CL_{BL} and CL_{Bile}) were impaired to the same extent. Simulated cellular TCA concentrations are presented in Fig. 5. All simulations were performed using Berkeley-Madonna v.8.3.11.

Membrane Vesicles. Human MRP4 plasmid (pcDNA3.1(-)-MRP4) was kindly provided by Dr. Dietrich Keppler (German Cancer Research Center, Heidelberg, Germany). HEK293T cell lines stably transfected with pcDNA3.1(-)-MRP4 or an empty plasmid vector (control) were established as previously described (Kock et al., 2013). Membrane vesicles were prepared from these cell lines, and transport experiments were carried out by a rapid filtration assay as described previously (Ghibellini et al., 2008). Briefly,
membrane vesicles (5 μg protein) were incubated at 37°C in Tris-sucrose buffer (TSB; 50 mM Tris-HCl/250 mM sucrose) containing 10 mM MgCl₂, 10 mM creatine phosphate, 100 μg/mL creatine kinase, 4 mM ATP or AMP, and [³H]DHEAS (0.7 μCi/mL) in the absence and presence of TS, in a volume of 50 μL. After incubation for 2 min, the reaction was stopped by the addition of 0.8 mL ice-cold TSB and immediately applied to a glass fiber filter (type A/E, Pall Corp., Port Washington, NY) and washed twice with 2 mL ice-cold TSB. Filters were mixed by vortexing in 5 mL of scintillation fluid and radioactivity was quantified by liquid scintillation counting (Packard Tricarb, Perkin-Elmer, Waltham, MA). The ATP-dependent uptake of substrate was calculated by subtracting substrate uptake in the presence of AMP from substrate uptake in the presence of ATP. The MRP4-dependent uptake of substrate was calculated by subtracting ATP-dependent uptake in MRP4-overexpressing vesicles from that in control vesicles. Initially, the inhibitory effect of TS (10 μM) on MRP4-dependent transport of [³H]DHEAS (2 μM) was evaluated in the presence or absence of 3 mM GSH. Further studies were performed using concentration ranges of [³H]DHEAS (0.5 - 20 μM) and TS (5 - 50 μM) in the absence of GSH to determine the inhibition constant (Kᵢ). Initial estimates of Kᵢ values and the type of inhibition were derived from Dixon plots of TS concentrations versus 1/velocity data. Then the kinetic parameters (Kₘ, Vₘₐₓ, and Kᵢ) and type of inhibition were determined by fitting competitive, noncompetitive, and uncompetitive models to the untransformed data by nonlinear regression analysis using Phoenix WinNonlin, v6.1. Equations used for each inhibition model are as follows;

Competitive: \[v = \frac{V_{\text{max}} \times S}{K_m \times (1 + \frac{I}{K_i}) + S} \]

Noncompetitive: \[v = \frac{V_{\text{max}} \times S}{K_m \times (1 + \frac{I}{K_i}) + S \times \left(1 + \frac{I}{K_i}\right)} \]

Uncompetitive: \[v = \frac{V_{\text{max}} \times S}{K_m + S \times \left(1 + \frac{I}{K_i}\right)} \]

where S represents the concentration of [³H]DHEAS, I represents the concentration of TS, and V denotes the rate of [³H]DHEAS transport. The best-fit model was assessed from visual inspection of the observed
versus predicted data, and Akaike information criteria. Representative data from n=2 independent experiments in triplicate are presented in Fig. 3.

Data Analysis. TCA accumulation was corrected for nonspecific binding to the BioCoat™ plate without cells, and normalized to protein concentration measured by the BCA protein assay (Pierce Chemical, Rockford, IL). The intracellular concentration of TCA was obtained by dividing TCA accumulation (pmol/mg protein) by the previously reported hepatocyte volume (7.4 µl/mg protein) (Lee and Brouwer, 2010). Apparent (CL\textsubscript{Bile,app}) and intrinsic (CL\textsubscript{Bile,int}) biliary clearance values were calculated using B-CLEAR® technology (Qualyst Transporter Solutions, LLC, Durham, NC) based on the following equations:

\[
\text{CL}_{\text{Bile,app}} = \frac{\text{Accumulation}_{\text{Cells+Bile}} - \text{Accumulation}_{\text{Cells}}}{\text{AUC}_{\text{Buffer},0-t}}
\]

\[
\text{CL}_{\text{Bile,int}} = \frac{\text{Accumulation}_{\text{Cells+Bile}} - \text{Accumulation}_{\text{Cells}}}{\text{AUC}_{\text{Cells},0-t}}
\]

Where AUC\textsubscript{Buffer,0-t} is the area under the TCA buffer concentration vs. time curve, which is the product of the initial TCA buffer concentration (1 µM) and the incubation time (t), assuming that sink conditions of TCA in the buffer are maintained (concentration changes < 10% during the uptake phase). AUC\textsubscript{Cells,0-t} is the area under the TCA cellular concentration vs. time curve, which was obtained using the linear trapezoidal rule. Clearance units (µL/min/mg protein) were converted to mL/min/g liver based on the protein content in liver tissue (90 and 112 mg protein/g liver for human and rat, respectively) (Sohlenius-Sternbeck, 2006). The paired Student’s t-test was used to compare parameters in the presence or absence of TGZ pre-incubation. In all cases, \(P < 0.05 \) was considered statistically significant. All statistical analyses were performed using SigmaStat 3.5 (San Jose, CA).
Results

TCA Disposition in Human and Rat SCH with and without TGZ Pre-incubation. TCA uptake and efflux studies were conducted as described in Fig. 1. The mass-time profiles of TCA in cells+bile and cells (during the uptake and efflux phases), and buffer (during the efflux phase) in human and rat SCH in the absence (Control) and presence (+TGZ) of TGZ pre-incubation are presented in Fig. 2. Under all conditions, TCA accumulation in cells+bile and cells increased during the uptake phase and decreased during the efflux phase. Appearance of TCA in the standard and Ca\(^{2+}\)-free HBSS buffer increased during the efflux phase. TGZ pre-incubation decreased TCA accumulation in cells+bile, cells, and the efflux into buffers in both human and rat SCH. \(CL_{\text{Bile,app}}\) of TCA during the uptake phase also was significantly decreased after pre-incubation with TGZ compared to the Control group, indicating that TGZ decreased uptake and/or biliary excretion of TCA; in human SCH, \(CL_{\text{Bile,app}}\) values after 10-min uptake (standard B-CLEAR\(^{\circledR}\) method) in Control and +TGZ groups were 1.1 ± 0.3 mL/min/g liver and 0.10 ± 0.02 mL/min/g liver, respectively (\(P = 0.035\)). The corresponding values in rat SCH were 0.48 ± 0.08 mL/min/g liver and 0.07 ± 0.01 mL/min/g liver, respectively (\(P = 0.008\)). TCA \(CL_{\text{Bile,int}}\) also was significantly decreased after TGZ pre-incubation, suggesting that TGZ decreased TCA biliary excretion; in human SCH, \(CL_{\text{Bile,int}}\) values after 10-min uptake in Control and +TGZ groups were 0.31 ± 0.07 mL/min/g liver and 0.15 ± 0.09 mL/min/g liver, respectively (\(P = 0.004\)). The corresponding values in rat SCH were 0.62 ± 0.11 mL/min/g liver and 0.22 ± 0.08 mL/min/g liver, respectively (\(P = 0.049\)).

Parameter estimates recovered from fitting differential equations (see Methods) based on the model scheme in Fig. 1 to TCA accumulation data from independent SCH preparations are presented in Table 1. In the absence of TGZ pre-incubation (Control), human SCH showed greater \(CL_{\text{Uptake}}\), slightly lower \(CL_{\text{Bile}}\) and notably lower \(CL_{\text{BL}}\) relative to rat SCH. This is consistent with greater cellular accumulation of TCA observed in human SCH (Fig. 2). Interestingly, \(CL_{\text{Bile}}\) was about 3.3-fold greater than \(CL_{\text{BL}}\) in human SCH, whereas \(CL_{\text{Bile}}\) and \(CL_{\text{BL}}\) showed a similar contribution to the total cellular efflux of TCA in rat SCH in the absence of TGZ. In human SCH, TGZ pre-incubation significantly decreased \(CL_{\text{Uptake}}\) (\(P = 0.017\)); there were trends toward decreased \(CL_{\text{BL}}\) and \(CL_{\text{Bile}}\) after TGZ pre-incubation compared to the
Control groups. In rat SCH, CL{sub}Bile was significantly decreased after TGZ pre-incubation ($P = 0.017$); there were trends toward decreased CL{sub}Uptake and CL{sub}BL after TGZ pre-incubation compared to the Control groups. However, these differences failed to reach statistical significance due to large variability in mean differences.

Inhibitory Effects of TS on MRP4-Mediated [3H]-DHEAS Transport in Membrane Vesicles. The inhibitory effects of TS on MRP4, a basolateral bile acid efflux transporter, were evaluated using membrane vesicles prepared from HEK293T cells overexpressing MPR4 or control cells. TS (10 μM) inhibited MRP4-mediated transport of [3H]-DHEAS (2 μM) by 78 and 72% in the absence and presence of GSH, respectively (Fig. 3A). Inhibition of MRP4-mediated [3H]-DHEAS transport by TS was determined in two independent membrane vesicle studies over a range of substrate concentrations (DHEAS, 0.5 – 20 μM) and inhibitor concentrations (TS, 5 – 50 μM). In both studies, the non-competitive inhibition model best described the inhibition data visually and generated the lowest AIC value; AIC values for competitive, non-competitive, and un-competitive inhibition models were 632.4, 628.9, and 664.6, respectively, in the first study, and were 740.0, 738.3, and 786.0, respectively, in the second study. Ki values based on a non-competitive inhibition model were 8.0 ± 0.70 μM and 8.5 ± 1.2 μM in the first and the second studies, respectively. A representative fit of the non-competitive inhibition model to the data is presented in Fig. 3B.

Impact of Impaired Function of Canalicular vs. Basolateral Efflux Transporters on Hepatic TCA Exposure. The altered hepatobiliary disposition of TCA due to impaired function of bile acid efflux transporters was simulated based on the TCA model described in this report (Fig. 1 and Table 1). Simulated hepatic TCA concentrations, up to and including steady-state ($C_{H,ss}$) in human and rat SCH, are shown in Fig. 4A and 4B, respectively. CL{sub}Uptake of TCA in rat SCH might have been underestimated compared to rats in vivo because it has been reported that TCA uptake clearance was decreased by 5-fold on day 4 compared to day 0 due to decreased Ntcp protein expression, whereas TCA uptake clearance remained unchanged over time in human SCH (Liu et al., 1998; Kotani et al., 2011; Tchaparian et al., 2011). To account for decreased Ntcp function over days of culture, simulations also were performed with
a 5-fold higher CL_{Uptake} in rat SCH (Fig. 4C). TCA C_{H,ss} was higher in human SCH (11.1 µM) compared to rat SCH (1.9 µM) (Fig. 4A and 4B); this is consistent with the observed higher cellular TCA accumulation during uptake and efflux studies compared to rat SCH (Fig. 2). However, TCA C_{H,ss} in rat SCH with 5-fold greater CL_{Uptake} (9.1 µM) is comparable to that in human SCH (Fig. 4A and 4C). Simulations revealed that in human SCH, a 10-fold decrease in CL_{Bile} increased TCA C_{H,ss} by 2.9-fold compared to control, whereas there was an 1.3-fold increase in TCA C_{H,ss} relative to control when CL_{BL} was decreased by 10-fold (Fig. 4A). Interestingly, a 10-fold decrease in both CL_{Bile} and CL_{BL} increased TCA C_{H,ss} by 7.0-fold compared to control, which is a greater than proportional increase compared to inhibiting either pathway in isolation. Simulations in rat SCH revealed that TCA C_{H,ss} was increased by 2.0- and 1.6-fold when CL_{Bile} and CL_{BL} were decreased by 10-fold, respectively, relative to Control (Fig. 4B). TCA C_{H,ss} increased by 9.3-fold relative to control when both CL_{Bile} and CL_{BL} were decreased by 10-fold; similar to human SCH simulations, the increase in C_{H,ss} is greater than proportional compared to conditions in which either pathway is impaired in isolation. The same trends were observed in rat SCH when 5-fold greater CL_{Uptake} was simulated (Fig. 4C); the fold increase in TCA C_{H,ss} was 1.9, 1.6, and 7.3 relative to control when CL_{Bile}, CL_{BL}, and both CL_{Bile} and CL_{BL} were decreased 10-fold, respectively.

Impact of Impaired Function of Uptake vs. Efflux Transporters on Hepatic TCA Exposure in Human SCH. Hepatic bile acid concentrations are determined by both hepatic uptake and efflux processes; drugs that inhibit efflux transporters often also inhibit uptake transporters. To understand the net effects of impaired function of uptake and efflux transporters on hepatic TCA exposure, TCA C_{H,ss} in human SCH was simulated based on various values of CL_{Uptake} and CL_{Efflux} (CL_{Bile} + CL_{BL}) (Fig. 5). When CL_{Uptake} remained unchanged (for example, fractional inhibition of CL_{Uptake} = 0), TCA C_{H,ss} increased exponentially as the fractional inhibition of CL_{Efflux} increased. On the other hand, C_{H,ss} decreased proportionally as the fractional inhibition of CL_{Uptake} increased, when CL_{Efflux} remained unchanged (for example, fractional inhibition of CL_{Efflux} = 0). When the fractional inhibition of CL_{Uptake} and CL_{Efflux} were the same, TCA C_{H,ss} remained unchanged (fold-change = 1). If the fractional inhibition of CL_{Uptake} > the fractional inhibition of CL_{Efflux}, then TCA C_{H,ss} was decreased (fold-change < 1). If the fractional
inhibition of CL\textsubscript{Uptake} < the fractional inhibition of CL\textsubscript{Efflux}, then the fold-change in TCA C\textsubscript{H\textsubscript{ss}} was greater than 1; TCA C\textsubscript{H\textsubscript{ss}} increased exponentially with increasing fractional inhibition of CL\textsubscript{Efflux}, but the fold-increase in TCA C\textsubscript{H\textsubscript{ss}} decreased with increasing fractional inhibition of CL\textsubscript{Uptake}. Notably, a greater than 10-fold increase in TCA C\textsubscript{H\textsubscript{ss}} was observed only when the fractional inhibition of CL\textsubscript{Uptake} was less than 0.6.
Discussion

The present study determined the hepatobiliary disposition of TCA in human and rat SCH using a novel uptake and efflux protocol recently developed in our laboratory combined with pharmacokinetic modeling (Pfeifer et al., 2013). The results demonstrated that species differences exist in the hepatocellular excretion of TCA; in human SCH, biliary excretion predominated, whereas biliary excretion and basolateral efflux contributed equally to hepatocellular TCA excretion in rat SCH (Table 1). Jemnitz et al. reported that basolateral and biliary excretion contribute equally to TCA efflux in human SCH, whereas basolateral efflux was the dominant cellular efflux pathway of TCA in rat SCH (Jemnitz et al., 2010). The likely reason for these discrepancies is that these investigators did not account for the TCA “flux” from the canalicular spaces into the buffer, which results from regular “pulsing” of the bile canaliculi in SCH (K\textsubscript{Flux} in Fig. 1) (Pfeifer et al., 2014). Regular, ordered contraction of bile canaliculi, has been reported previously in isolated couplets and cultured hepatocytes (Oshio and Phillips, 1981; Phillips et al., 1982), and also has been shown to facilitate bile flow in vivo in rat liver (Watanabe et al., 1991). In the study by Jemnitz et al., basolateral efflux was evaluated by measuring TCA in standard buffer during the efflux phase. However, the amount of TCA that appeared in the buffer during the efflux phase was actually the sum of basolateral efflux and flux from the bile canalicular spaces, which led to an overestimation of basolateral efflux. To circumvent these issues and accurately estimate the relative contributions of CL\textsubscript{BL}, CL\textsubscript{Bile}, and K\textsubscript{Flux}, pharmacokinetic modeling was employed in the current study.

Troglitazone, a known hepatotoxic compound, was selected in the current study because disposition of TGZ and its derived metabolites was well characterized in human and rat SCH (Lee et al., 2010). After pre-incubation with TGZ, CL\textsubscript{Bile} was significantly decreased (rat) or tended to decrease (human) compared to Control (Table 1), consistent with reported inhibitory effects of TGZ and TS on BSEP (Funk et al., 2001; Dawson et al., 2012). Interestingly, CL\textsubscript{BL} tended to decrease after TGZ pre-incubation compared to Control, suggesting that TGZ and/or TS also might inhibit basolateral efflux of TCA. TGZ has been reported to inhibit the basolateral efflux transporters MRP3 and MRP4 (Morgan et al., 2013), but hepatic TGZ concentrations are minimal whereas TS accumulates in hepatocytes due to extensive
hepatic metabolism of TGZ (Funk et al., 2001; Lee et al., 2010). Thus, inhibitory effects of TS on MRP4-mediated transport were investigated. MRP4 was selected because TCA is transported by human MRP4, but not by human MRP3 (Akita et al., 2002; Rius et al., 2006). Since GSH is co-transported with bile acids by MRP4 (Rius et al., 2006), the inhibitory effect of TS at 10 µM was tested initially in the absence and presence of GSH. TS inhibited MRP4-mediated transport of \[^{3}H\]-DHEAS to a similar extent regardless of GSH, suggesting that the inhibitory effects of TS on MRP4 are independent of GSH (Fig. 3A). Further studies were performed in the absence of GSH, and revealed that TS inhibited MRP4-mediated \[^{3}H\]-DHEAS transport by non-competitive inhibition with a Ki value of 8 µM (Fig. 3B).

In addition to inhibition of efflux, CL\textsubscript{uptake} of TCA was significantly decreased (human) or showed trends towards a decrease (rat) compared to Control after TGZ pre-incubation (Table 1). Although TGZ is a potent inhibitor of NTCP/Ntcp-mediated bile acid uptake (Marion et al., 2007), TGZ concentrations in the buffer were minimal during the uptake phase because TGZ-containing buffer was removed and replaced with TGZ-free buffer during the 10-min pre-incubation (standard or Ca2+-free buffers) as well as the 20-min uptake phase. These data suggest that TGZ might inhibit NTCP/Ntcp by mechanisms other than direct inhibition; further studies are needed to characterize the precise mechanism(s) of inhibition.

Preclinical animals often are less sensitive to bile acid-mediated DILI compared to humans, and thus, do not reliably predict human hepatotoxicity. Potential reasons include species differences in toxic bile acid composition, substrate and/or inhibitor specificity of bile acid transporters, and metabolism/detoxification pathways of drugs as well as bile acids (Setchell et al., 1997; Hofmann, 2004; Leslie et al., 2007; Chiang, 2009). In addition, differential inhibition of hepatocellular excretion pathways, as demonstrated in the current study, may contribute to species differences in bile acid-mediated hepatotoxicity. Simulations revealed that impaired function of canalicular and/or basolateral efflux transporters led to differential hepatobiliary disposition of TCA in human and rat SCH. In human SCH, hepatic TCA concentrations, which are relevant to hepatotoxicity, were increased by 2.9-fold relative to control when canalicular transporter function was impaired, whereas impaired function of basolateral efflux transporters minimally increased hepatic TCA concentration (1.3-fold) (Fig. 4A). This
was expected due to the predominant role of biliary excretion and the minor contribution of basolateral efflux to the overall hepatocellular excretion of TCA in human SCH. Interestingly, impaired function of both canalicular and basolateral efflux transporters further increased hepatic TCA concentrations by 7-fold compared to control (Fig. 4A), suggesting that basolateral efflux, despite serving as a minor route of hepatic excretion under normal conditions, plays an important role as a compensatory efflux pathway when canalicular excretion is impaired in human hepatocytes.

Expression and/or function of Ntcp have been reported to decrease over days of culture in rat SCH, whereas NTCP expression remains constant in human SCH; in rat SCH, TCA uptake clearance was decreased by 5-fold on day 4 compared to day 0 (Liu et al., 1998; Kotani et al., 2011; Tchaparian et al., 2011). Thus, the CL\textsubscript{\text{uptake}} of TCA is likely underestimated in rat SCH, but not in human SCH. To account for the decreased function of Ntcp in day 4 rat SCH, simulations were performed in rat SCH with a CL\textsubscript{\text{uptake}} estimate obtained in day 4 rat SCH (1X CL\textsubscript{\text{uptake}}) as well as a 5-fold greater CL\textsubscript{\text{uptake}} (5X CL\textsubscript{\text{uptake}}).

Although robust functional or quantitative proteomics data for BSEP and MRP3/4 in SCH over time do not exist, available data suggest that Bsep protein expression in rat SCH, and MRP3/4 in rat and human SCH remain relatively unchanged over days of culture under our culture conditions (Swift et al., 2010; Tchaparian et al., 2011).

In both human and rat SCH, an exponential increase in hepatic TCA concentrations was only observed when the function of both efflux pathways was decreased (Fig 5). These results are consistent with the mathematical relationship that governs fold-change in cellular exposure: 1/(1 - fe), where fe is the total fraction excreted by all pathways (biliary or basolateral) (Zamek-Gliszczynski et al., 2009). Zamek-Gliszczynski et al. demonstrated that if multiple excretion pathways exist, minor changes in exposure (<2-fold) are expected when a transport pathway that contributes to less than 50% of total excretion is impaired, as noted when biliary excretion (rat) or basolateral efflux (human and rat) pathways alone are decreased in the current study. However, hepatic exposure increases exponentially in response to loss-of-function of transport pathways that contribute to >50% of total excretion, as noted in the current study when both biliary excretion and basolateral efflux transporters are impaired.
Bile acids undergo efficient enterohepatic recirculation; only ~5% of the bile acid pool is synthesized in hepatocytes, while the remaining 95% is re-absorbed from the intestinal lumen after biliary excretion, and taken up into hepatocytes (Hofmann, 1999b). Therefore, in addition to canalicular and basolateral efflux transporters, hepatic bile acid exposure also is regulated by hepatic uptake transporters. Inhibition of bile acid efflux transporters by drugs is reported to be associated with cholestatic/mixed type DILI, but often, these drugs also inhibit uptake transporters, which may exert protective effects (Leslie et al., 2007); the net effect will be determined by the relative extent (potency) of uptake inhibition vs. efflux inhibition. As might be expected, simulations suggest that hepatic TCA exposure increases only when the extent of efflux inhibition exceeds that of uptake inhibition (Fig 6). Notably, fractional inhibition of \(\text{CL}_{\text{Uptake}} > 0.6 \) prevents hepatic TCA exposure from increasing by more than 10-fold, thereby confirming the protective effects of uptake inhibition. Simulations in the current study were performed using a constant fractional inhibition of uptake and efflux transporters throughout the simulation, assuming steady-state drug (inhibitor) concentrations in the medium and in the cell. In reality, drug concentrations change over time. Thus, dynamic changes in inhibitor concentrations should be considered by incorporating drug disposition into the model in order to more accurately predict altered bile acid disposition by drugs.

In the current study, species differences in hepatic excretion of TCA in human and rat SCH were identified. In human SCH, biliary excretion predominated, whereas biliary excretion and basolateral efflux contributed approximately equally to TCA efflux in rat SCH. As a result, the hepatic accumulation of TCA in rat SCH due to inhibition of BSEP alone might not be as extensive as that observed in human SCH. In human and rat SCH, inhibition of both excretion pathways led to exponential increases in hepatic TCA exposure, suggesting that inhibition of both excretion pathways might have increased DILI liability. Alternatively, administration of a drug that inhibits one excretion pathway may predispose individuals with impaired transport function (due to disease or genetic polymorphisms) in the alternate pathway to hepatic bile acid accumulation and subsequent DILI. Simulations confirmed that uptake inhibition plays a protective role by helping minimize hepatic bile acid accumulation. This work emphasizes that the
inhibitory effects of a drug on bile acid transporters mediating uptake as well as multiple efflux pathways should be considered when evaluating the hepatotoxic potential of drugs.
Acknowledgements

Phoenix WinNonlin software was generously provided to the Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, by Certara as a member of the Pharsight Academic Center of Excellence Program. We thank Daiichi-Sankyo Co., Ltd. (Tokyo, Japan) for kindly providing TS, TG, and TQ. We also thank Dr. Goto (UNC Eshelman School of Pharmacy, NC) for synthesis of TS, and Dr. Keppler (German Cancer Research Center, Heidelberg, Germany) for kindly providing the MRP4 expression vector (pcDNA3.1+-MRP4).
Authorship Contributions

Participated in research design: Yang, Pfeifer, Köck, Brouwer

Conducted experiments: Yang, Pfeifer, Köck

Performed data analysis: Yang, Pfeifer, Köck

Wrote or contributed to the writing of the manuscript: Yang, Pfeifer, Köck, Brouwer
References

Footnotes

This work was supported by the National Institute of General Medical Sciences of the National Institutes of Health [Grant R01 GM041935] (K.L.R.B.) and by Deutsche Forschungsgemeinschaft [Grant Ko4186/1-1] (K.K.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

This work was presented, in part, as a poster at the 2012 American Association of Pharmaceutical Scientists Annual meeting and exposition, Chicago, IL.

Send reprint request to Kim L.R. Brouwer, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill CB #7569 Chapel Hill, NC 27599-7569, E-mail: kbrouwer@email.unc.edu

Current address (K.Y.): The Hamner-UNC Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences, RTP, NC
Legends for Figures

Figure 1. Schemes depicting the uptake and efflux protocol and the mechanistic model of \([^{3}H]\)taurocholic acid (TCA) disposition in sandwich-cultured hepatocytes (SCH). (A) Uptake and efflux studies were conducted in the presence of standard (+Ca\(^{2+}\)) Hanks’ balanced salt solution (Std HBSS). Tight junctions remained sealed throughout the study period. (B) Tight junctions remained open throughout the study period by pre-incubating with Ca\(^{2+}\)-free HBSS, then performing an uptake phase in standard HBSS to provide relief from the removal of Ca\(^{2+}\), followed by a brief wash and efflux in Ca\(^{2+}\)-free HBSS. In the uptake and efflux protocols, dashed box represents pre-incubation with 10 µM troglitazone (TGZ) in Standard HBSS for TGZ-treated groups. Gray shading represents inclusion of the substrate, 1 µM \([^{3}H]\)taurocholic acid (TCA), in Standard HBSS during the uptake phase. Black shading represents 1 min wash followed by 10 (human SCH) or 15 min (rat SCH) efflux phase in Standard or Ca\(^{2+}\)-free HBSS. In the model schemes, X, V, and C denote mass of TCA, compartmental volume, and compartmental concentration, respectively. Subscripts on mass, volume, and concentration terms denote the corresponding compartment in the model scheme. Superscripts represent the presence (+, intact tight junctions; cells + bile) and absence (-, modulated tight junctions; cells) of Ca\(^{2+}\) in the pre-incubation and efflux buffer. CL\(_{\text{uptake}}\), CL\(_{\text{BL}}\), and CL\(_{\text{Bile}}\) represent clearance values for uptake from buffer into hepatocytes, efflux from hepatocytes into buffer, and canalicular excretion from hepatocytes, respectively. K\(_{\text{Flux}}\) represents the first-order rate constant for flux from bile networks into buffer.

Figure 2. \([^{3}H]\)taurocholic acid (TCA) mass versus time data in rat and human sandwich-cultured hepatocytes (SCH) in the absence (Control) or presence of 10 µM troglitazone (TGZ) pre-incubation. Closed symbols/solid lines represent \([^{3}H]\)TCA in cells + bile (standard HBSS), and open symbols/dashed lines represent \([^{3}H]\)TCA in cells (Ca\(^{2+}\)-free HBSS). The simulated mass-time profiles were generated from the relevant equations based on the model scheme depicted in Fig. 1, and the final parameter estimates are reported in Table 1. Data (pmol/mg protein) represent mean ± S.E.M. (n=3 SCH preparations in triplicate per group).
Figure 3. Inhibition of multidrug resistance-associated protein 4 (MRP4)-mediated transport of \([^{3}H]\)dehydroepiandrosterone sulfate (DHEAS) by troglitazone sulfate (TS) in membrane vesicles from MRP4-overexpressing and control human embryonic kidney (HEK293T) cells. (A) Effect of GSH (3 mM) on MRP4-mediated transport of 2 \(\mu\)M \([^{3}H]\)DHEAS and inhibition by 10 \(\mu\)M TS. (B) Effect of increasing concentrations of TS (0, 5, 10, and 50 \(\mu\)M) on MRP4-mediated \([^{3}H]\)DHEAS (2 min, 0.5 - 20 \(\mu\)M) transport in the absence of GSH. Each point represents mean±S.D. A non-competitive inhibition model best described the data. Lines represent model fits based on the non-competitive inhibition model. Representative plots from n=2 independent studies are presented. The estimated Ki values based on a non-competitive inhibition model were 8.0 ± 0.70 \(\mu\)M and 8.5 ± 1.2 \(\mu\)M from each study.

Figure 4. Simulations depicting the impact of impaired function of canalicular and/or basolateral efflux transporters on hepatic TCA exposure. Cellular TCA concentrations in human and rat SCH were simulated based on the TCA model scheme depicted in Fig. 1 and parameter estimates (Table 1) for (A) human SCH, (B) rat SCH, and (c) rat SCH where CL Uptake was 5x the value listed in Table 1. Parameters representing transport-mediated efflux (CL BL and CL Bile) were decreased by 10-fold in isolation, or in combination, to represent impaired function of canalicular efflux transporters (solid line with open circle), basolateral efflux transporters (dashed line), and both pathways (dashed line with closed circle). Simulations were performed for 200 minutes to obtain steady-state intracellular concentrations; the time to reach steady-state was longer when efflux pathways were impaired compared to control.

Figure 5. Net effects of inhibition of uptake and efflux transporters on hepatic TCA exposure. Cellular TCA concentrations in human SCH were simulated as a function of decreased (10- to 100-fold) CL Uptake and CL Efflux (CL BL + CL Bile); both efflux pathways (CL BL and CL Bile) were assumed to be impaired to the same extent. The Z-axis represents the fold-change in steady-state hepatic TCA concentrations: 10-
to 100-fold (orange), 5- to 10-fold (yellow), 1- to 5-fold (light green), 0.1- to 1-fold (dark green), and 0.001- to 0.1-fold (blue).
Tables

Table 1. Summary of recovered parameter estimates based on the model scheme depicted in Fig. 1 describing taurocholic acid (TCA) disposition in human and rat sandwich-cultured hepatocytes (SCH) without (Control) or with 10 µM Troglitazone (+TGZ) pre-incubation. Human and rat SCH were treated with 1 µM \(^{3}\text{H}\)TCA (see Fig. 1 for details of incubation conditions) and the model was fit simultaneously to all data from each preparation.

<table>
<thead>
<tr>
<th>Conditions</th>
<th>(\text{CLU}_{\text{Uptake}}) (mL/min/g liver)</th>
<th>(\text{CL}_{\text{Bile}}) (mL/min/g liver)</th>
<th>(\text{CL}_{BL}) (mL/min/g liver)</th>
<th>(K_{\text{Flux}}) (min(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human SCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>2.2 ± 0.42</td>
<td>0.14 ± 0.04</td>
<td>0.042 ± 0.019</td>
<td>0.043 ± 0.015</td>
</tr>
<tr>
<td>+TGZ</td>
<td>0.23 ± 0.04*</td>
<td>0.084 ± 0.069</td>
<td>0.022 ± 0.018</td>
<td>0.070 ± 0.036</td>
</tr>
<tr>
<td>Rat SCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>1.2 ± 0.46</td>
<td>0.34 ± 0.074</td>
<td>0.26 ± 0.071</td>
<td>0.053 ± 0.015</td>
</tr>
<tr>
<td>+TGZ</td>
<td>0.20 ± 0.040</td>
<td>0.18 ± 0.052*</td>
<td>0.22 ± 0.064</td>
<td>0.077 ± 0.038</td>
</tr>
</tbody>
</table>

Data are presented as mean ± SD of individual fits from n=3 SCH preparations; *, significantly different from Control (\(P < 0.05\))
Figure 1

A Standard HBSS ($X_{\text{Cell+Bile}}$, X_{Buffer^+})

<table>
<thead>
<tr>
<th>Troglitazone</th>
<th>Std HBSS 30 min</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UPTAKE</td>
</tr>
<tr>
<td></td>
<td>Sampling (Cell +Bile)</td>
</tr>
<tr>
<td>Std HBSS</td>
<td>Std HBSS 10 min</td>
</tr>
<tr>
<td></td>
<td>Taurocholate</td>
</tr>
<tr>
<td>Std HBSS</td>
<td>Std HBSS 20 min</td>
</tr>
<tr>
<td></td>
<td>EFFLUX</td>
</tr>
<tr>
<td></td>
<td>Sampling (Cell+Bile, Buffer)</td>
</tr>
<tr>
<td>Wash</td>
<td>Std HBSS 10 or 15 min</td>
</tr>
</tbody>
</table>

B Ca$^{2+}$-free HBSS (X_{Cell}, X_{Buffer^-})

<table>
<thead>
<tr>
<th>Troglitazone</th>
<th>Std HBSS 30 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca$^{2+}$-Free HBSS</td>
<td>Ca$^{2+}$-Free HBSS 10 min</td>
</tr>
<tr>
<td></td>
<td>UPTAKE</td>
</tr>
<tr>
<td></td>
<td>Sampling (Cell)</td>
</tr>
<tr>
<td>Ca$^{2+}$-Free HBSS</td>
<td>Taurocholate</td>
</tr>
<tr>
<td>Std HBSS</td>
<td>Std HBSS 20 min</td>
</tr>
<tr>
<td></td>
<td>EFFLUX</td>
</tr>
<tr>
<td></td>
<td>Sampling (Cell, Buffer)</td>
</tr>
<tr>
<td>Wash</td>
<td>Ca$^{2+}$-Free HBSS 10 or 15 min</td>
</tr>
</tbody>
</table>

Buffer

Buffer

Cell

Cell

C_{Buffer}^+

V_{Buffer}

C_{Buffer}^-

V_{Buffer}

C_{Cell}^+

V_{Cell}

C_{Cell}^-

V_{Cell}

K_{Flux}

CL_{Uptake}

CL_{BL}

CL_{Bile}
Figure 3

A. ATP-dependent DHEAS Uptake (pmol/min/mg protein)
- Control
- 10 μM TS

B. V (pmol/min/mg protein)

DHEAS Concentration (μM)
Figure 5