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LVX - levofloxacin 

MOX - moxifloxacin  

pATM/ATR substrate - phosphorylated-(Ser/Thr) ATM/ATR substrate 

pH2A.X - phosphorylated histone 2A.X 

PI3K - phosphoinositide 3-kinase 

RAW cells - RAW 264.7 murine macrophages  

TNF - tumor necrosis factor-alpha 

TopIIa - eukaryotic topoisomerase II-alpha 

TVX - trovafloxacin 

WORT - wortmannin 
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Abstract 
 
Trovafloxacin (TVX) is a drug that has caused idiosyncratic, drug-induced liver injury 

(IDILI) in humans.  In a murine model of IDILI, otherwise nontoxic doses of TVX and the 

inflammagen, lipopolysaccharide (LPS), interacted to produce pronounced 

hepatocellular injury.  The liver injury depended on a TVX-induced, small but significant 

prolongation of tumor necrosis factor-alpha (TNF) appearance in the plasma (Shaw et 

al., 2009ab).  The enhancement of TNF expression by TVX was reproduced in vitro in 

RAW 264.7 murine macrophages (RAW cells) stimulated with LPS.   The current study 

was designed to identify the molecular target of TVX responsible for this response in 

RAW cells.  An in silico analysis suggested a favorable binding profile of TVX to 

eukaryotic topoisomerase II-alpha (TopIIa), and a cell-free assay revealed that TVX 

inhibited eukaryotic TopIIa activity.  Topoisomerase inhibition is known to lead to DNA 

damage, and TVX increased the DNA damage marker phosphorylated H2A.X in RAW 

cells.  Moreover, TVX induced activation of the DNA damage sensor kinases, ataxia 

telangiectasia mutated (ATM) and Rad3-related (ATR).  The ATR inhibitor NU6027 

prevented the TVX-mediated increases in LPS-induced TNF mRNA and protein release, 

whereas a selective ATM inhibitor (KU55933) was without effect. TVX prolonged TNF 

mRNA stability, and this effect was largely attenuated by NU6027. These results 

suggest that TVX can inhibit eukaryotic topoisomerase, leading to activation of ATR and 

potentiation of TNF release by macrophages, at least in part through increased mRNA 

stability.  This off-target effect might contribute to the ability of TVX to precipitate IDILI in 

humans. 
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Introduction 

 

 Idiosyncratic, drug-induced liver injury (IDILI) is an adverse response to 

numerous pharmaceuticals.  IDILI is responsible for approximately 13% of all cases of 

acute liver failure (Ostapowicz et al., 2002) and for many of the FDA-imposed 

restrictions on drug use (Lasser et al., 2002).  Although typically rare, these reactions 

cause significant morbidity and mortality and pose a financial burden to pharmaceutical 

companies when offending drugs must be withdrawn from the market (Shaw et al., 

2007).  Although drugs from several pharmaceutical classes have been associated with 

human IDILI, many are antibiotics.  For example, in the class of broad-spectrum, 

fluoroquinolone antibiotics, trovafloxacin (TVX), ciprofloxacin (CPX) and moxifloxacin 

(MOX) have caused IDILI in human patients, whereas levofloxacin (LVX) has shown 

little to no such liability (Leitner et al., 2010).   

 Several hypotheses have emerged to explain IDILI, yet none has been proven 

conclusively (Shaw et al., 2010).  One hypothesis states that a transient inflammatory 

episode can interact with a normally nontoxic dose of a drug to bring about liver injury.  

Rodent models of IDILI based on this inflammatory stress hypothesis have been 

developed for several drugs, including TVX, sulindac, amiodarone and others (Roth and 

Ganey, 2011).  In these models, drugs associated with IDILI in humans synergize with 

an inflammagen such as lipopolysaccharide (LPS) to precipitate hepatotoxicity.  At the 

doses used in these models, LPS exposure prompts an early increase in tumor necrosis 

factor-alpha (TNF) in the plasma but no liver necrosis.  IDILI-associated drugs do not by 

themselves cause liver injury or TNF expression, but coadministration of drug with LPS 

causes a small prolongation of the LPS-stimulated TNF appearance that is critical to the 
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pathogenesis of liver injury in cotreated animals (Lu et al., 2012; Shaw et al., 2007; 

Shaw et al., 2009a; Zou et al., 2009).   

 An example is a murine model involving TVX/LPS coexposure.  TVX is not 

hepatotoxic in mice even when given at large doses.  However, when mice were 

cotreated with TVX and an otherwise nontoxic dose of LPS, pronounced hepatocellular 

necrosis occurred.  Interestingly, this hepatotoxic interaction with LPS did not occur 

upon cotreatment with LVX.  The liver injury from LPS/TVX cotreatment was absent in 

TNF receptor knockout mice or when TNF was neutralized by etanercept treatment 

(Shaw et al., 2007; Shaw et al., 2009b).  Importantly, when etanercept was 

administered at the peak of LPS-stimulated TNF appearance to prevent the 

prolongation of TNF appearance in TNF/LPS-cotreated mice, liver injury was prevented.  

Thus, although the prolongation was relatively brief and the increase was minor in 

magnitude compared to that which occurred from LPS alone, it was required for 

hepatotoxicity (Shaw et al., 2007; Shaw et al., 2009b).   

 Examination of the TVX-LPS interaction in the murine model in vivo did not 

reveal a specific molecular target of TVX.  The enhancement of LPS-stimulated TNF 

release by TVX could arise from a direct effect of the drug on TNF-producing cells in the 

liver.  Indeed, pretreatment of murine RAW 264.7 cells (RAW cells) with TVX 

potentiated LPS-induced TNF release (Poulsen et al., 2014).  Thus, the influence of 

TVX on LPS-stimulated TNF appearance that occurs in vivo was recapitulated in a 

macrophage cell line, thereby providing an in vitro system that can be employed to 

evaluate mechanisms of the LPS-drug interaction.  
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 The antibiotic activity of the fluoroquinolones derives from their ability to inhibit 

bacterial topoisomerases and gyrases (Brighty and Gootz, 1997).  Interestingly, in 

addition to their ability to inhibit prokaryotic topoisomerases, fluoroquinolones TVX, CPX 

and MOX have weak inhibitory activity against eukaryotic topoisomerase II-alpha 

(TopIIa) (Albertini et al, 1995; Barrett et al., 1989; Herbold et al., 2001; Reuveni et al., 

2008).  It is well recognized that inhibiting (“poisoning”) topoisomerases can lead to 

DNA damage (Drummond et al., 2011; Ryan et al., 1991).  DNA damage prompts 

intracellular signaling involving activation of kinases that might enhance TNF 

expression.  Accordingly, we tested the hypothesis that potentiation of LPS-induced 

TNF production in RAW cells by TVX results from topoisomerase inhibition and the 

consequent DNA damage response. 
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Methods 

 

Chemicals and Inhibitors 

 All chemicals and reagents were purchased from Sigma-Aldrich (St. Louis, MO) 

unless stated otherwise.  Antibiotic/antimycotic and DMEM were purchased from Life 

Technologies (Grand Island, NY).  KU55933 was purchased from Tocris Bioscience 

(Bristol, United Kingdom). 

 

In silico docking of TVX and LVX to topoisomerase II-alpha (TopIIa)   

The docking routine of TVX and LVX onto TopIIa consisted of 1) ligand 

optimization, 2) protein preparation and 3) protein-ligand docking.   A brief description of 

each procedure follows:  1) The 3D geometries of TVX and LVX were optimized using 

Density Functional Theory (DFT), employing the B3LYP/6-31G basis set, and 

calculations were carried out with the Gaussian 03 software package (Vreven et al., 

2003). Open Babel was used to transform optimized geometries to Mol2 format for 

subsequent processing (Guha et al., 2006).  2)  Experimental coordinates of the X-ray 

crystallographic structure of TopIIa (PDB ID: 1ZXN, chains A and B) were downloaded 

from Protein Data Bank (PDB). Sybyl-X 2.0 Suite (SYBYL-X 2.0, Molecular modeling 

software 2012, Tripos. St. Louis, MO) was employed to prepare protein structures for 

molecular docking. During this process ligands and water molecules were removed, 

side chains repaired, and hydrogen atoms added to the protein.  The binding sites for 

the ligands on TopIIa were defined utilizing MGL Tools 1.5.0 (Sanner et al., 1999) by 

forming a cube with the dimensions 86 × 70 × 90 Å, engulfing the whole protein 
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structure, using a grid point spacing of 1.0 Å and center grid boxes of 63.249, 3.440 and 

58.618, in X, Y and Z coordinates, respectively.  3) Molecular docking methods were 

employed to model the ability of TVX and LVX structures to form complexes with TopIIa. 

Protein-ligand docking calculations were performed with AutoDock Vina 1.0 program 

(Trott and Olson, 2010). All calculations with AutoDock Vina included 20 number 

modes, an energy range of 1.5, and exhaustiveness equal to 25. Five hundred docking 

runs were executed for each ligand, saving the best-obtained pose for each one. The 

average binding affinity for these poses was computed as the affinity value for a given 

predicted complex. As the docking procedure allowed the identification of several 

binding sites within the same protein, in silico affinities, measured as Kcal/mol, were 

presented for each theoretical binding site suggested by AutoDock Vina. 

 

Topoisomerase Decatenation Assay 

 TopIIa isoform activity was analyzed in the presence of VEH or TVX at various 

concentrations using etoposide as a positive control with the Human Toposiomerase II 

Assay Kit (TopoGEN Inc, Port Orange, FL).  Briefly, 1 unit of human TopIIa was 

incubated with 200 ng kinetoplastid DNA (kDNA) in the presence of VEH or TVX in 

complete assay buffer at 37°C for 30 minutes.  One unit of topoisomerase is defined as 

the amount of enzyme required to separate the highly catenated kDNA substrate at 

37°C for 30 minutes.  The reaction was stopped using the stop buffer provided, and the 

reaction products were loaded onto a 1% agarose gel for analysis of topoisomerase 

activity.   
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Cell Culture 

 RAW 264.7 macrophage-like cells (American Type Culture Collection, Manassas, 

VA) were maintained in DMEM supplemented with 10% heat-inactivated FBS and 1% 

antibiotic/antimycotic (Life Technologies) at 37°C in 5% CO2.  Cells were harvested by 

detachment with a sterile spatula and plated at a density of 4 X 104 cells per well in 24-

well plates (Costar, Lowell, MA) for cytokine release and RNA isolation or 1.5 X 105 

cells per well in 6-well plates (Costar).  24 h after plating, cells were synchronized by 

replacing medium with 0.5% FBS-containing medium. After overnight incubation, cells 

were exposed to drug. Exposure to TVX (100 μM) was not cytotoxic to RAW cells (3.6 

+/- 0.6% release of LDH over 6 hours) in the absence or presence of LPS. 

 

Quantitative Polymerase Chain Reaction (qPCR) 

 Total RNA was isolated from RAW cells using TRIzol reagent (Life 

Technologies).  cDNA was prepared with the iScript cDNA synthesis kit using 1 μg of 

isolated RNA (Bio-Rad Laboratories, Hercules, CA). The expression level of TNF was 

analyzed using the StepOne Real-Time PCR machine and SYBR Green reagents for 

amplicon detection (Applied Biosystems, Foster City, CA).  Expression level was 

normalized to beta actin (β-actin).  TNF mRNA stability was assessed by treating cells 

with TVX or an equal volume of 0.1N KOH vehicle (VEH) for 1 hour before adding 5 

μg/ml actinomycin D (ActD) to stop transcription.  RNA was isolated at 15 minute-

intervals after the addition of ActD and converted to cDNA, and TNF mRNA was 

measured and normalized to β-actin. 
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 PCR primers used were: mouse TNF [5’ -TCTCATGCACCACCATCAAGGACT- 

3’ (forward) and 5’ - ACCACTCTCCCTTTGCAGAACTCA- 3’ (reverse)] and mouse β-

actin [5’ –TGTGATGGTGGGAATGGGTCAGAA- 3’ (forward) and 5’ –

TGTGGTGCCAGATCTTCTCCATGT- 3’ (reverse)]. 

 

Western Analysis 

 Cells were lysed in radioimmunoprecipitation assay (RIPA) buffer supplemented 

with HALT protease and phosphatase inhibitor cocktail (Thermo Scientific).  Protein 

concentration in cell isolates was determined by the bicinchonic assay (BCA).  Western 

analyses were performed by loading 20 μg of protein on precast NuPAGE® SDS-PAGE 

gels (Life Technologies) using all NuPAGE® reagents.  Samples were separated on 

precast 12% gels.  Separated proteins were transferred to polyvinylidene difluoride 

(PVDF) membranes (Millipore, Billerica, MA) for 1 hour at 4° C.  Membranes were 

blocked in 5% BSA dissolved in tris-buffered saline plus 0.1% Tween20 (TBST) and 

then probed for phospho-(Ser/Thr) ATM/ATR substrate (pATM/ATR substrate), 

phospho-histone H2A.X (Ser139) (Cell Signaling Technology, Boston, MA). Membranes 

were then stripped with Restore western blot stripping agent (Thermo Scientific) and 

reprobed for Lamin B1 (Abcam, Cambridge, MA). 

 

Measurement of TNF Concentration  

 For determination of TNF protein in culture medium, an enzyme-linked 

immunosorbent assay (ELISA) was performed (BD Biosciences, San Jose, CA).  Cell 

culture medium was withdrawn at various times and stored at -20°C until the time of 
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analysis.   Ninety-six-well plates were coated with an anti-TNF capture antibody in a 

coating buffer overnight at 4°C.  Medium was diluted to remain within standard curve 

concentrations. 

 

Studies with inhibitors 

 Inhibitors KU55933 (Hickson et al., 2004), NU6027 (Peasland et al., 2011) and 

wortmannin (Powis et al., 1994) were dissolved in DMSO at a stock concentration of 10 

mM and diluted to final concentrations in 0.5% FBS-containing medium.  Inhibitors or an 

equivalent volume of DMSO vehicle were added at the moment RAW cells were 

exposed to VEH or TVX, unless noted otherwise. 

 

Statistical Analysis 

 A one- or two-way Analysis of Variance (ANOVA) was performed on data sets 

with Tukey’s post-hoc test applied for comparisons among groups.  The criterion for 

significance was p < 0.05. 
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Results 
 

TVX interaction with TopIIa: in silico analysis 

 

 Human TopIIa was selected for analysis because it is the eukaryotic homolog 

to prokaryotic DNA gyrase and topoisomerase IV (Bates et al., 2011; Drummond et al., 

2011).  TVX binding to eukaryotic TopIIa occurred at two binding sites (Figure 1A), the 

most frequently occupied of which (99.4%) was the one with the greatest predicted 

affinity (-9.3±0.0 Kcal/mol) (Figure 1B).  In contrast, LVX was predicted to bind to TopIIa 

at three sites (Figure 1C). The site most frequently occupied by LVX (95%) (Figure 1D) 

differed from that to which TVX was most commonly bound.  In addition, the absolute 

affinity for LVX binding to TopIIa (-8.5±0.0 Kcal/mol) was smaller than that observed for 

TVX.  These results indicate that TVX is predicted to bind to eukaryotic TopIIa and does 

so at a different site and with greater affinity than LVX.   

 

TVX inhibits TopIIa-dependent decatenation of kDNA 

 

 The ability of TVX to inhibit TopIIa-dependent decatenation of kDNA was 

evaluated in a cell-free assay (Figure 2). In this assay, decatenation of kDNA by TopIIa 

results in two distinct DNA catenates of different molecular weights that migrate through 

the agarose gel, whereas kDNA remains in the loading wells.  In the absence of TopIIa 

(lane labeled kDNA), the kDNA does not migrate.  As a positive control, VP-16, a potent 

inhibitor of human TopIIa, completely prevented kDNA decatenation.  Although 10 μM 

TVX did not affect TopIIa, the presence of TVX at concentrations of 30 – 300 μM 
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decreased decatenated DNA products and increased kDNA retention as compared to 

VEH control containing only TopIIa. This indicated that TVX could inhibit eukaryotic 

topoisomerase at concentrations near those attained in the plasma during TVX therapy 

(Teng et al., 1996). 

 

TVX increases DNA lesions in RAW 264.7 cells 

 

 Poisoning of topoisomerase activity in cells leads to several outcomes, one of 

which is the formation of double-stranded lesions in DNA (Drummond et al., 2011; Ryan 

et al., 1991). Phosphorylated histone 2A.X (pH2A.X) is a sensitive marker of DNA 

lesions and is induced rapidly after the onset of a lesion by the damage-sensing 

kinases, ataxia telangiectasia mutated (ATM) and ataxia telangiectasia mutated and 

Rad3-related (ATR) (Kastan et al., 2000).  After a 2-hour incubation of RAW cells with 

TVX, pH2A.X increased in a concentration-dependent manner (Figure 3A).  LVX, 

however, did not increase pH2A.X in RAW cells over the same duration of exposure 

(Figure 3B).   

 

TVX activates ATM/ATR-dependent signaling 

 

 ATM and ATR are phosphoinositide 3-kinases (PI3Ks) that share a common 

minimal phosphorylation motif on protein substrates; i.e., a serine or threonine residue 

is phosphorylated if the amino acid occurs between leucine and glutamine (Kim et al., 

1999).  Incubation of RAW cells with TVX for 1 hour increased phosphorylation of a 
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substrate containing the minimal ATM/ATR phosphorylation motif (Figure 4A).  This 

increase was absent after a 2-hour exposure to TVX.  KU55933, a selective ATM 

inhibitor, and NU6027, an ATR-signaling inhibitor (Peasland et al., 2011), each 

prevented generation of the pATM/ATR substrate in VEH- or TVX-exposed RAW cells 

(Figure 4B), indicating that ATM- and ATR-dependent signaling was activated by TVX.  

 

TVX increases TNF mRNA in an ATR-selective manner 

 

 As noted above, TNF is a critical factor in the pathogenesis of liver injury in 

TVX/LPS cotreated mice, and TVX increases TNF expression in LPS-stimulated RAW 

cells in vitro (Poulsen et al., 2014; Shaw et al., 2007).   The influence of ATM and ATR 

activation on TVX-dependent TNF expression in RAW cells was assessed.  TVX 

increased TNF mRNA after a two-hour exposure to the drug (Figure 5A).  The increase 

in TNF mRNA was reduced by NU6027 but not by KU55933 or by the nonselective 

PI3K inhibitor, wortmannin (WORT).  

  One way that increases in mRNA can occur is by stabilization of the transcript.  

To address this possibility, RAW cells were exposed to TVX for one hour before adding 

ActD to prevent RNA synthesis.  This time of ActD addition was chosen because it 

coincides with the TVX-mediated increase in ATR signaling (Figure 4A) but precedes 

the increase in TNF mRNA (seen at 2h; Figure 5A).  TVX markedly increased the 

stability of TNF mRNA (Figure 5B), and NU6027 prevented this increased stability.  This 

result suggested that the TVX-mediated increase in TNF mRNA depicted in Figure 5A 

was likely due to an ATR-dependent stabilization of TNF transcripts.   
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TVX increases LPS-induced TNF protein release in an ATR-dependent manner 

 

 The role of ATR in the TVX-mediated increase in TNF release from RAW cells 

was assessed next.  As expected, LPS stimulated the release of TNF from RAW cells 

(Figure 6).  TVX-pretreatment increased TNF release 3h after saline (SAL) or LPS 

exposure (Figure 6A, black bars).  As found with TNF mRNA (Figure 5), the increase in 

TNF protein release was insensitive to KU55933 or WORT but was reduced by 

NU6027.  In cells cotreated with TVX and LPS, NU6027 reduced TNF release to the 

level stimulated by LPS alone.  Unlike the results after 3h, TNF release 6h after LPS 

exposure was largely unaffected by NU6027 (Figure 6B). At this time, NU6027 reduced 

the increase in TNF due to exposure to TVX alone but did not prevent the increase in 

LPS-induced TNF release caused by TVX pretreatment. Taken together, the results 

suggested that the TVX-mediated increase in LPS-induced TNF release depended on 

ATR at 3h but not 6h after LPS exposure.   

 

 

 

 

 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on May 9, 2014 as DOI: 10.1124/jpet.114.214189

 at A
SPE

T
 Journals on A

pril 10, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


JPET #214189 
 

 17

Discussion 

 

 Global gene expression analysis of livers from rats or primary hepatocytes 

treated with TVX suggested that TVX selectively targets eukaryotic topoisomerases, an 

off-target effect for a prokaryotic topoisomerase poison (Liguori et al., 2008; Waring et 

al., 2006).  Additionally, TVX affected chromosomal expression patterns in a manner 

similar to the known eukaryotic topoisomerase poisons, etoposide and doxorubicin, 

suggesting further that TVX might act as a topoisomerase poison in mammalian cells 

(Reymann and Borlak; 2008).  In silico binding analysis (Figure 1) suggested that TVX 

binds favorably to eukaryotic TopIIa.  Moreover, TVX prevented human TopIIa-

dependent decatenation of kinetoplastid DNA in a concentration-dependent manner 

(Figure 2).  Taken together, these results raised the possibility that the IDILI liability 

associated with TVX might be attributed to off-target poisoning of eukaryotic 

topoisomerase.  Topoisomerase inhibition in cells can lead to double-strand DNA 

breaks (DSBs) generated from topoisomerase-DNA covalent complexes (Drummond et 

al., 2011; Li et al., 2010; Liu et al., 1983; Ryan et al., 1991).  pH2A.X was chosen as a 

sensitive marker of DSBs.  TVX increased pH2A.X in a concentration-dependent 

manner in RAW cells after a 2-hour incubation (Figure 3A). 

 TVX is associated with IDILI in humans, whereas LVX does not share this liability 

(Leitner et al., 2010).  In mice, TVX/LPS coexposure precipitated hepatotoxicity, but 

LVX/LPS did not (Shaw et al., 2007).  The results in silico (Figure 1) suggested that 

TVX has the capacity to bind to TopIIa in a distinct manner compared to LVX.  Unlike 

TVX, LVX did not increase pH2A.X (Figure 3B) or increase TNF expression (Poulsen et 
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al., 2014).  Thus, the difference in the association with IDILI for these two drugs was 

reflected in their abilities to cause modest DNA damage and augment TNF expression 

as well as to interact with LPS in mice to precipitate liver injury. 

 A recent screen of novel bacterial type II topoisomerase inhibitors in murine 

L5178Y lymphoma cells used pH2A.X as an indicator of topoisomerase inhibition 

(Smart and Lynch, 2012).  A substantial proportion (22/63) of the novel inhibitors, as 

well as CPX and MOX modestly increased pH2A.X in mammalian cells, and this 

increase coincided with a >6-fold increase in mutation frequency, suggesting that many 

bacterial topoisomerase inhibitors, including fluoroquinolones like CPX and MOX, can 

induce weak genotoxic effects in eukaryotic cells (Smart and Lynch, 2012).  The 

phosphorylation of H2A.X that we observed with TVX was quite modest compared to 

the effect of potent eukaryotic DNA damaging agents (Anderson and Osheroff, 2001; 

Smart and Lynch, 2012).   This modest, otherwise nontoxic damage is consistent with in 

vivo studies with TVX, in the sense that TVX was nontoxic even at large doses in mice 

in the absence of a concurrent inflammatory stress (Shaw et al., 2007).  

 Taken together, the results in Figures 1-3 suggest that TVX poisons 

topoisomerase in RAW cells and that this leads to DNA damage which does not result 

in cell death.  Accordingly, it is likely that the TVX-induced DNA damage is within the 

capacity of the cells to repair, but the signaling activated in response to DNA lesions 

predisposes cells to enhance synthesis of TNF in response to LPS. DNA lesions 

activate several mediators and intracellular signaling pathways in a coordinated and 

dynamic manner that is referred to as the DNA damage response (DDR) (Ciccia and 

Elledge, 2010).  ATM and ATR are rapidly activated kinases that are critical to the DDR 
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(Kastan et al., 2000).   Treatment with TVX caused an increase in phosphorylation of an 

epitope in proteins (Figure 4A) that is a target for both ATM and ATR (Kim et al., 1999).  

This occurred prior to pH2A.X generation (Figure 3), and ATM and ATR inhibitors 

prevented TVX-induced phosphorylation of this epitope (Figure 4B), suggesting that 

TVX exposure activated ATM and ATR.  The results in Figures 1 - 4 support a scenario 

in which TVX poisons eukaryotic topoisomerase, damages DNA and activates DDR 

kinases. 

 A large amount of evidence supports a link between induction of DNA damage 

and upregulation of cytokine expression.  For example, potent eukaryotic 

topoisomerase poisons doxorubicin and etoposide, as well as the anti-metabolite 5-

fluorouracil, can increase cytokine expression in murine macrophages in vitro and in 

mice in vivo (Elsea et al., 2008; Wood et al., 2006). The increase in TNF mRNA caused 

by TVX in RAW cells was sensitive to inhibition of ATR but unaffected by inhibition of 

ATM and to nonselective PI3K inhibition by WORT (Figure 5A).   ATR is far less 

sensitive to inhibition by WORT than ATM or DNA-PK (Sarkaria et al., 1998), so it was 

likely that the enhanced TNF expression was downstream of ATR-mediated signaling.  

Thus, although several PI3Ks, including ATM, ATR and DNA-PK, are activated in 

response to DNA lesions (Ciccia an Elledge, 2010), only ATR was implicated in the 

enhancement of TNF expression by TVX.  TNF mRNA rapidly degrades in the absence 

of an inflammatory stimulus (Deleault et al., 2008).  Interestingly, treatment with TVX 

stabilized TNF mRNA prior to LPS exposure (Figure 5B), and NU6027 markedly 

reduced this effect, suggesting that TVX-dependent ATR activation stabilizes TNF 

mRNA.   
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 Since ATR was implicated in the TVX-induced increase in TNF mRNA (Figure 5), 

the involvement of ATR in LPS-induced TNF protein release was examined.  KU55933 

and NU6027 were included only during the period of exposure to TVX and were 

removed before addition of LPS or SAL.  This was done to determine if the critical TVX-

induced signaling changes occurred prior to LPS exposure.  TVX pretreatment 

enhanced LPS-induced TNF protein release within 3h after LPS addition, and this 

increase was prevented by NU6027 (Figure 6A).  When NU6027 was added after LPS 

addition, the TVX-mediated potentiation of TNF release was not prevented 

(Supplemental Figure 1).  Accordingly, the critical ATR activation must have occurred 

during the TVX pretreatment period, not after LPS addition.  Elimination of the LPS-TVX 

interaction by NU6027 was evident 3h after LPS addition, but not at 6h (Figure 6B).   

One potential explanation for the lack of effect at 6 h is that ATR could be activated after 

withdrawal of NU6027-containing medium if the DNA damage persists during the time of 

LPS exposure.  

 The effect of TVX on cytokine expression has been addressed in two other 

studies (Khan et al., 1998; Purswani et al., 2000).  In both of these studies, TVX 

decreased TNF expression in LPS-pretreated cells (Khan et al., 1998; Purswani et al., 

2000), contrasting with the increase identified in this study.  A key difference in those 

studies is that TVX was added to monocytes or peripheral mononuclear cells after 

stimulation with LPS, whereas in our study TVX was present only before LPS addition.  

In both of the studies in which TVX decreased TNF mRNA and protein release, the 

results were attributed to TVX acting as a topoisomerase inhibitor in eukaryotic cells 

(Khan et al., 1998; Purswani et al., 2000).  Accordingly, the difference between the 
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results could be due to temporal differences in TVX exposure relative to LPS.  As the 

results from the current study indicate, the TVX-mediated DDR and consequent 

activation of ATR before LPS exposure appears to be critical for the TVX-mediated 

increase in LPS-induced TNF release. 

  Taken together, the results of in silico, cell-free and cultured cell 

approaches indicate that TVX, but not LVX, can decrease topoisomerase activity and 

induce DNA damage at concentrations that approach those occurring in patients treated 

with TVX (Teng et al., 1996).  TVX activated ATM/ATR-dependent signaling, and ATR 

played a critical role in mediating increased TNF mRNA stability and LPS-induced TNF 

protein release from macrophages.   The results from this study uncovered a previously 

unknown role for the DDR and specifically ATR in increasing TNF expression by 

macrophages exposed to a modest genotoxic stimulus. The results suggest that 

topoisomerase inhibition might contribute to IDILI caused by TVX and perhaps other 

fluoroquinolone antibiotics. 
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Figure Legends 
 
Figure 1.  In silico analysis of TVX binding to TopIIa.  A) Theoretical binding sites for 

TVX on TopIIa molecule are shown with binding affinities displayed in Kcal/mol. B) 

Theoretical frequency of occupation (BF; the number of docking runs in which the drug 

bound to a site) for TVX in sites 1 and 2. C) Theoretical binding sites for LVX on TopIIa 

molecule are shown with binding affinities displayed in Kcal/mol. D) Theoretical 

frequency of occupation for LVX in sites 1-3. For explanation of analysis and 

calculations, see Methods.  

 

Figure 2. Effect of TVX on TopIIa activity. A reaction mixture containing kinetoplastid 

DNA (kDNA) in the absence (1st lane on the left; kDNA) or presence of TopIIa (all other 

lanes) was incubated with 0 (VEH), 10, 30, 100 or 300 μM TVX or 10 μM VP-16.  After 

30 minutes, the reaction was quenched, and samples were separated on a 1% agarose 

gel and stained with ethidium bromide to visualize DNA decatenate migration. Image is 

representative from a minimum of n=3. 

 

Figure 3. TVX-induced DNA damage in RAW cells.  A) RAW cells were exposed to 

vehicle (VEH) or TVX (1-300 μM) for 2 hours.  pH2A.X was assessed in protein extracts 

by western blot.  Signals for pH2A.X were densitized and normalized to actin.  B) RAW 

cells were exposed to TVX (100 μM) or LVX (300 μM) for 2 hours.  pH2A.X induction 

was assessed in protein extracts. Signals for pH2A.X were densitized and normalized to 

actin.  Blots are representative from a minimum of n=3. a - Significantly different from 

VEH, p<0.05. 
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Figure 4.  ATM and ATR activation by TVX in RAW cells.  A) RAW cells were 

exposed to VEH or TVX (100 μM) for 1 or 2 hours. pATM/ATR substrate motif was 

assessed in isolated protein extracts by western analysis, and signal was densitized 

and normalized to lamin B1.  B) RAW cells were exposed to VEH or TVX (100 μM) and 

to ATM inhibitor KU55933 (1 μM), ATR inhibitor NU6027 (10 μM) or their DMSO 

(0.05%) vehicle for 1 hour.  pATM/ATR substrate motif was assessed in isolated protein 

extracts by western analysis and normalized to lamin b1. Blots are representative from 

a minimum of n=3. a - Significantly different from VEH, p<0.05. 

 

Figure 5.  ATR-dependent expression of TNF mRNA in response to TVX.  A) RAW 

cells were coexposed to VEH or TVX (100 μM) and to WORT (1 μM), KU55933 (1 μM), 

NU6027 (10 μM) or their DMSO (0.05%) vehicle for 2 hours.  TNF mRNA was assessed 

by RT-PCR.  Values are expressed as fold of VEH/DMSO ± SEM or VEH/Inhibitor ± 

SEM, n=3-6. a - p<0.05 vs. VEH group with same inhibitor, b - p<0.05 vs. TVX/DMSO.  

B) RAW cells were exposed to TVX (100 μM) or its VEH and to NU6027 (10 μM) or its 

DMSO (0.05%) vehicle for 1 hour before addition of ActD (5 μg/ml), and RNA was 

isolated at indicated times after ActD.   TNF mRNA was normalized to the t = 0 value for 

each group.  Values are expressed as %TNF remaining ± SEM, n=6. a - p<0.05 vs. 

VEH/DMSO at the same time, b - p<0.05 vs. TVX/DMSO at the same time 
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Figure 6. Effect of ATM and ATR inhibition on TVX-mediated increases in LPS-

induced TNF release from RAW cells. RAW cells were pretreated with VEH or TVX 

(100 μM) and with NU6027 (10 μM), WORT (1 μM), KU55933 (1 μM), or their DMSO 

(0.05%) vehicle for 2 hours, after which time medium was replaced with one containing 

SAL or LPS (10 ng/ml) without inhibitors.  TNF protein release was assessed at A) 3h 

B) 6h after LPS exposure.  Values are means ± SEM from 3-6 separate experiments, 

each performed in triplicate.  a - Significantly different from  VEH/SAL with same 

inhibitor treatment, p<0.05, b – Significantly different from  VEH/LPS with same inhibitor 

treatment, p<0.05, c – Significantly different from TVX/SAL/DMSO group, p<0.05, d – 

Significantly different from TVX/LPS/DMSO group, p<0.05. 
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