Is GPR17 a P2Y/Leukotriene receptor? Examination of uracil nucleotides, nucleotide-sugars, and cysteinyl-leukotrienes as agonists of GPR17

Ai-Dong Qi¹, T. Kendall Harden, and Robert A. Nicholas

Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC

27599-7365
Running Title Page

Running Title: GPR17 is not activated by UDP, UDP-sugars or leukotrienes

Corresponding Author: Dr. Robert A. Nicholas
Department of Pharmacology
The University of North Carolina-Chapel Hill
4046 Genetic Medicine Bldg., CB# 7365
120 Mason Farm Road
Chapel Hill, NC 27599
E-mail: nicholas@med.unc.edu
Phone: (919) 966-6547
FAX: (919) 966-5640

Number of Pages: 34
Number of Tables: 0
Number of Figures: 7
Number of References: 46
Number of Words in Abstract: 217
Number of Words in Introduction: 615
Number of Words in Discussion: 1391

Abbreviations: GPCR, G protein-coupled receptor
LTC4, cysteinyl-leukotriene C4
CysLTR1, cysteinyl-leukotriene receptor 1

Recommended Section: Cellular and Molecular
Abstract

The orphan receptor GPR17 has been reported to be activated by UDP, UDP-sugars and cysteinyl leukotrienes, and coupled to intracellular Ca^{2+} mobilization and inhibition of cyclic AMP accumulation, but other studies have reported either a different agonist profile or lack of agonist activity altogether. To determine if GPR17 is activated by uracil nucleotides and leukotrienes, the HA-tagged receptor was expressed in five different cell lines and the signaling properties of the receptor were investigated. In C6, 1321N1 or CHO cells stably expressing GPR17, UDP, UDP-glucose, UDP-galactose, and cysteinyl-leukotriene C4 (LTC4) all failed to promote inhibition of forskolin-stimulated cyclic AMP accumulation, whereas both UDP and UDP-glucose promoted marked inhibition (>80%) of forskolin-stimulated cyclic AMP accumulation in C6 and CHO cells expressing the P2Y_{14} receptor. Likewise, none of these compounds promoted accumulation of inositol phosphates in COS-7 or HEK293 cells transiently transfected with GPR17 alone or co-transfected with G\alpha_{q/i5}, which links Gi-coupled receptors to the Gq-regulated phospholipase C signaling pathway, or PLC\varepsilon, which is activated by the G\alpha_{12/13} signaling pathway. Moreover, none of these compounds promoted internalization of GPR17 in 1321N1-GPR17 cells. Consistent with previous reports, co-expression experiments of GPR17 with CysLTR1 suggested that GPR17 acts as a negative regulator of CysLTR1. Taken together, these data suggest that UDP, UDP-glucose, UDP-galactose and LTC4 are not the cognate ligands of GPR17.
Introduction

Extracellular adenine and uracil nucleotides regulate a broad range of physiological and pathophysiological responses by activating two main receptor families: P2X receptors, which are ATP-gated cation-selective ion channels and P2Y receptors, which are G protein-coupled receptors activated by adenine and uridine nucleotides. To date, molecular cloning and pharmacological characterization have identified seven mammalian P2X receptors (P2X₁-7) and eight functional mammalian P2Y receptor subtypes (P2Y₁, P2Y₂, P2Y₄, P2Y₆, P2Y₁₁, P2Y₁₂, P2Y₁₃, and P2Y₁₄) (Costanzi et al., 2004; Abbracchio et al., 2006). Based on their sequence identity and signaling properties, P2Y receptors are commonly grouped into two subfamilies. The P2Y₁ receptor subfamily, which encompasses P2Y₁, P2Y₂, P2Y₄, P2Y₆ and P2Y₁₁ receptors, couples to Gq and activation of phospholipase C. In addition to coupling to Gq, the P2Y₁₁ receptor also couples to Gs and activates adenylyl cyclase, albeit with lower efficiency than Gq/phospholipase C (Qi et al., 2001a; Torres et al., 2002). The P2Y₁₂ receptor subfamily members, which include P2Y₁₂, P2Y₁₃, and P2Y₁₄, are all located in a gene cluster on chromosome 3, share 45~55% sequence identity, and couple to Gi/o. An additional receptor in this cluster, GPR87, which shares 45~55% identity with the other P2Y receptors, apparently is not activated by nucleotides, but has been reported to be activated by lysophosphatidic acid (Tabata et al., 2007).

Erroneous designation of new or orphan receptors as P2Y receptors has caused considerable confusion and controversy. Seven receptors (p2y3, p2y5, p2y7, p2y8, p2y9, p2y10, and p2y15) were originally classified as P2Y receptors (Akbar et al., 1996; Webb et al., 1996a; Webb et al., 1996b; Bogdanov et al., 1997; Inbe et al., 2004), but were later shown either to not respond to nucleotides (p2y5, p2y7, p2y9, p2y10, and p2y15) (Herold et al., 1997; Janssens et
al., 1997; Li et al., 1997; Qi et al., 2004), or likely to be species homologues of mammalian P2Y receptors (i.e., the avian P2Y3 receptor and mammalian P2Y6 receptors; the *Xenopus* P2Y8 and mammalian P2Y4 receptors) (Li et al., 1998). Several of the aforementioned receptors were de-orphaned and shown to respond to either leukotriene B4 (p2y7) (Yokomizo et al., 1997), lysophosphatidic acid (p2y5, p2y9, and p2y10) (Noguchi et al., 2003; Murakami et al., 2008; Pasternack et al., 2008), sphingosine-1-phosphate (p2y10; (Murakami et al., 2008)) or the citric acid cycle metabolite, α-ketoglutarate (p2y15) (He et al., 2004; Qi et al., 2004).

An orphan G protein-coupled receptor, GPR17, which is located phylogenetically at an intermediate position between P2Y and cysteinyl-leukotriene receptors (Cys-LTR), was reported to be activated by cysteinyl-leukotrienes, uracil nucleotides and nucleotide-sugars (UDP, UDP-glucose, UDP-galactose) and promote mobilization of intracellular Ca\(^{2+}\) and inhibition of cyclic AMP accumulation (Ciana et al., 2006). Although multiple follow-up studies consistent with this original report have been published by the same group (Parravicini et al., 2008; Pugliese et al., 2009; Buccioni et al., 2011; Daniele et al., 2011; Coppi et al., 2013), Benned-Jensen and Rosenkilde (Benned-Jensen and Rosenkilde, 2010) reported that UDP and UDP-glucose, but not cysteinyl leukotrienes, promoted GPR17-dependent \([^{35}\text{S}]\text{GTP}\gamma\text{S}\) binding, and Maekawa *et al.* (Maekawa et al., 2009) concluded that GPR17 was not activated by any of these presumed agonists, but instead was a negative regulator of CysLTR1. Given these disparate results, we have reexamined the potential activation of GPR17 in a broad range of cell types that either stably or transiently express this GPCR. In addition, four independent downstream signaling responses were quantified in response to uracil nucleotides, nucleotide-sugars or cysteinyl leukotriene. Our data indicate that GPR17 is neither activated nor internalized by these ligands, whereas receptors that are established targets of these ligands demonstrate robust activation and
internalization. Moreover, our data are consistent with GPR17 acting as a negative regulator of Cys-LTR1 as reported previously (Maekawa et al., 2009).
Methods

Materials. All cell culture reagents were supplied by the Lineberger Comprehensive Cancer Center tissue culture facility (University of North Carolina at Chapel Hill). UDP, UDP-glucose, UDP-galactose, cysteinyl leukotriene C4 (LTC4), 3-isobutyl-1-methyl-xanthine (IBMX), and carbachol were from Sigma (St Louis, MO). ATP, and FuGENETM6 transfection reagent were from Roche (Indianapolis, IN). Forskolin was purchased from Calbiochem (La Jolla, CA). Cysteinyl leukotriene-1 receptor (3XHA-Cys-LT1 in pcDNA3.1+) was obtained from the cDNA Resource Center at the Missouri University of Science and Technology (Rolla, MO).

Construction of HA-tagged GPR17 cDNAs. The coding sequence of the short form of GPR17 was amplified from human genomic DNA by PCR with Pfu polymerase (Stratagene, Carlsbad, CA). The upstream primer sequence contained an MluI site at its 5’ end (5’-TGACGCGTCCAAATGGCGCTTGAAGTGGCTCC-3’), while the downstream primer contained an XhoI site following the stop codon (5’-TCCTCGAGCTACAGCTCTGACTTGGCA-3’). The amplified fragment was digested with MluI and XhoI and ligated in-frame into a similarly digested pLXSN retroviral expression vector containing an EcoRI site, Kozak initiation sequence, initiating methionine residue, and the hemagglutinin (HA) epitope tag (YPYDVPDY), followed by an MluI site. To construct pcDNA3-HA-GPR17, pLXSN-HA-GPR17 was digested with EcoRI and XhoI and ligated in-frame into similarly digested pcDNA3 expression vector. The sequence of GPR17 was identical to accession # NP_001154888.1.

Stable Expression of GPR17 and other GPCR in 1321N1, CHO and C6 cells. Stable expression of GPR17 in 1321N1, CHO and C6 cells was accomplished by retroviral infection as described previously (Qi et al., 2001a). Briefly, recombinant retrovirus particles were produced by calcium phosphate-mediated transfection of PA317 cells with pLXSN alone or with pLXSN
containing HA-tagged versions of GPR17, P2Y₆, P2Y₁₄, LTR1, or LPA3 receptors. Recombinant retroviruses were harvested 2 days later and incubated with 1321N1, CHO, and C6 cells in the presence of 8 μg/ml polybrene. After 2 days, geneticin-resistant cells were selected with 1 μg/ml G418-containing medium.

Transient Expression of GPR17 and other GPCRs in COS and HEK293 cells.

Transient transfections were performed with FuGENETM6 (Roche) according to the manufacturer’s protocol. Briefly, 1 x 10⁶ COS-7 or HEK293 cells per 60-mm dish were incubated with 8 μl FuGENETM6 and 2.8 μg pcDNA3-based plasmid construct in 0.4 ml of serum-free DMEM. For co-transfection experiments with G_{αq/i5}, 2 μg receptor DNA and 0.8 μg pcDNA1-G_{αq/i5} DNA (Conklin et al., 1993) per dish were used. Following overnight incubation, the cells were treated with trypsin and plated in 24 well dishes for activity assays carried out 2 days later.

Expression of HA-tagged Cys-LTR1. The pcDNA3.1 expression plasmid for human Cys-LTR1 obtained from the cDNA Resource Center (Rollo, MO) has 3 consecutive HA-tags fused to the amino terminus of the receptor. This vector was used to transiently transfect COS-7 and HEK293 cells, but cell-surface expression was not detected by RIA in two independent transfections. A previous study demonstrated that surface expression of mouse Cys-LTR1 could be improved by fusing a cleavable signal sequence to the amino terminus of the receptor (Martin et al., 2001). Therefore, we made a new construct by fusing the 16 aa prolactin signal sequence (Guan et al., 1992) to the start of the 3X HA-tag of the receptor, and significant cell surface expression was demonstrated when this plasmid was transfected into COS-7 and HEK293 cells. For stable expression in 1321N1 and CHO cells, the fragment encoding the receptor fused to the
prolactin signal sequence was subcloned into pLXSN and the receptor was expressed by retroviral infection as described above.

Assay of inositol phosphate and cyclic AMP accumulation. 1321N1 and CHO cells were seeded in 24-well plates at 10^5 and 5×10^4 cells/well, respectively, and assayed 3 days later when confluent. Transiently transfected COS-7 and HEK293 cells were seeded in 24-well plates at 2×10^5 cells/well and assayed 2 days later. Inositol lipids were radiolabeled by overnight incubation of cells with 200 μl serum-free, inositol-free DMEM containing 0.4 μCi myo-$[^3]$H]inositol. Agonists or antagonists were added at 5X concentration in 50 μl of 50 mM LiCl, 250 mM HEPES, pH 7.25. Following a 30 min incubation (10 min in Fig. 3) at 37°C, the medium was aspirated and the reaction was terminated by adding 0.75 ml boiling EDTA, pH 8.0. $[^3]$H]Inositol phosphates were resolved on Dowex AG1-X8 columns as described previously (Qi et al., 2001a).

To quantify cyclic AMP accumulation, cells were labeled with 200 μl serum-free DMEM containing 0.8 μCi of $[^3]$H]adenine for 2 h. Ten min prior to the assay, cells were supplemented with 50 μl of 40 mM HEPES, pH 7.4, 200 μM isobutyl methylxanthine (final concentrations in the assay). Drugs were added at 6X concentration in 50 μl of Hank’s balanced salt solution for 30 min at 37°C. Reactions were terminated by aspiration of the medium and addition of 1 ml of 5% trichloroacetic acid. $[^3]$H]Cyclic AMP was purified on Dowex and alumina columns as described previously (Qi et al., 2001a). For assays measuring inhibition of cyclic AMP accumulation, cells were labeled and treated as above, except that forskolin (either 10 or 30 μM, final concentration) was included in the drug mixture to increase cyclic AMP levels. Reactions were terminated and $[^3]$H]cyclic AMP levels were quantified as described above.
Intracellular calcium measurements. 1321N1 cells expressing GPR17 were grown on glass coverslips for 1-2 days to ~20% confluency. Prior to calcium measurements, cells were incubated with 1 μM fura2-AM for 30-40 min. Coverslips were then sealed in a Perspex chamber (200 μl total volume) and mounted on the stage of Nikon Diaphot inverted microscope. Cells were continuously superfused (1.4 ml/min) with Hanks' Balanced Salt Solution (HBSS) with or without agonist. Solution changes were accomplished by means of a manual valve attached to a gravity-driven six-well reservoir. Cells were superfused with agonist for 1 min. Calcium responses were recorded with a digital imaging system from Intracellular Imaging (Cincinnati, OH) as previously described (Qi et al., 2001b).

Radioimmunoassay (RIA) of cell-surface receptors. Cells were seeded in 24-well plates at densities between 5 x 10⁴ cells/well to 1 x 10⁵ cells/well and assayed 3 days later when confluent as described previously (Qi et al., 2001b). Briefly, cells were fixed in 4% paraformaldehyde, washed twice with Hank’s balanced salt solution containing Ca²⁺ and Mg²⁺ (HBSS++), and blocked with medium containing 10% fetal bovine serum (FBS). Cells were then incubated with a 1:1000 dilution of mouse anti-HA monoclonal antibody (clone HA.11, Covance, Denver, PA) in medium containing 5% FBS for 1 h, washed twice with HBSS++ and then incubated for 2 h with ¹²⁵I-labeled rabbit anti-mouse antibody in medium containing 5% fetal bovine serum. Cells were washed twice with HBSS++, solubilized overnight with 1 M NaOH, and transferred to glass tubes for quantification of radioactivity by γ-counting.

Receptor internalization. 1321N1 cells expressing HA-GPR17, HA-P2Y₂, or 3XHA-Cys-LTR1 receptors were plated on glass cover slips at 20% confluence and allowed to grow for 48 hours. The cells were cooled to 4°C, labeled with mouse anti-HA antibody, and washed to remove excess antibody. The temperature was then increased to 37°C and the cells were treated
with either PBS (all cells) or with 300 nM LTC4 (GPR17), 100 µM UTP (P2Y₂), 100 µM UDP (GPR17) or 100 µM UDP-glucose (GPR17) for 30 min. The cells were then fixed, permeabilized, and incubated with AlexaFluor 488 goat anti-mouse antibody (Invitrogen/Molecular Probes, Eugene, OR). Cells were imaged by confocal microscopy on an Olympus Fluoview 300 laser scanning confocal imaging system (Olympus Imaging, Melville, NY) configured with an IX70 fluorescence microscope fitted with a PlanApo 60X oil objective.

Functional regulation of Cys-LTR1 by GPR17. 1321N1 cells were serially infected with retroviruses directing expression of 3XHA-tagged Cys-LTR1 and myc-tagged GPR17. Retroviruses directing Cys-LTR1 expression conferred resistance to neomycin, while those directing GPR17 expression conferred resistance to hygromycin. Cells expressing either Cys-LTR1 alone or Cys-LTR1 and GPR17 were submitted to RIA to determine the levels of Cys-LTR1 and challenged with LTC4 to quantify receptor signaling as described above.
Results

Inhibition of cyclic AMP accumulation in C6, CHO, and 1321N1 cells stably expressing GPR17. The orphan G protein-coupled receptor GPR17 was reported to be activated by uracil nucleotides (UDP), nucleotide-sugars (UDP-glucose, UDP-galactose) and cysteinyl leukotrienes (LTC4 and LTD4), and coupled to both inhibition of cyclic AMP accumulation and intracellular Ca^{2+} mobilization (Ciana et al., 2006; Pugliese et al., 2009), while other studies have reported different agonist selectivity (Benned-Jensen and Rosenkilde, 2010) or no activation of GPR17 by these ligands (Heise et al., 2000; Maekawa et al., 2009). To investigate whether these compounds were agonists at GPR17, HA-tagged GPR17 was stably expressed in C6 and CHO cells by retroviral infection, and its capacity to promote inhibition of cyclic AMP accumulation was assessed. UDP, UDP-glucose, and UDP-galactose (all at 100 µM) failed to promote inhibition of cyclic AMP in either C6 or CHO cells expressing GPR17, regardless of whether cyclic AMP levels were raised by 10 µM or 30 µM forskolin (Fig. 1A,C). The lack of activity of these ligands was not due to the absence of GPR17 at the plasma membrane, since GPR17 was well expressed at the cell surface in both cell lines (Fig. 1e). In contrast, both UDP and UDP-glucose decreased cyclic AMP accumulation by 65-75% in C6 and CHO cells expressing the P2Y_{14} receptor, a G_{i}-coupled P2Y receptor activated by UDP and UDP-sugars (Fig. 1b,d) (Carter et al., 2009). C6 cells natively express the P2Y_{12} receptor (Boyer et al., 1993), and therefore 2MeSADP also significantly decreased cyclic AMP accumulation in C6 cells (Fig. 1b). Thus, activation of bona fide Gi-coupled P2Y receptors, whether endogenously or recombinantly expressed, in two different cell lines markedly decreased cyclic AMP accumulation, whereas addition of the same ligands to C6 and CHO cells expressing GPR17 had no effect on cyclic AMP levels.
Activation of GPR17 also was reported to inhibit accumulation of cyclic AMP when expressed in 1321N1 cells (Ciana et al., 2006; Daniele et al., 2011). Therefore, we also examined the capacity of uracil nucleotides, UDP-sugars, and cysteinyl leukotrienes to inhibit adenylyl cyclase in 1321N1 cells expressing GPR17. As in C6 and CHO cells, these compounds had no effect on cyclic AMP levels in cells preincubated with 10 μM or 30 μM forskolin, even though a cell surface RIA confirmed robust expression of the receptor (data not shown).

Although HA-tagged receptors have been used routinely for receptor studies without any effect on signaling, we considered whether the presence of an HA-tag at the N-terminus interfered with receptor activity. Therefore, we stably expressed wild-type GPR17 lacking the HA-tag in CHO cells and examined its capacity to inhibit cAMP accumulation. Similar to the HA-tagged receptor, neither UDP nor UDP-glucose (both at 100 μM) promoted inhibition of cAMP accumulation in CHO cells expressing the non-tagged GPR17 (data not shown).

Inositol phosphate accumulation in HEK293 and COS-7 cells transiently expressing GPR17 alone or with Gaq/i5. We also examined the capacity of GPR17 to couple to Gi in HEK293 and COS-7 cells. For these experiments, we utilized Gaq/i5, a chimeric Gα protein that couples Gi-linked receptors to activation of phospholipase C (Conklin et al., 1993). HEK293 and COS-7 cells were transfected with GPR17 alone or with Gaq/i5, and surface expression was verified by an intact cell RIA (Fig. 2c). Neither UDP, UDP-glucose, UDP-galactose (all at 100 μM), nor LTC4 (100 nM) promoted inositol phosphate accumulation in cells transfected with GPR17 alone or with Gaq/i5 (Fig. 2a,b). In contrast, these compounds promoted robust accumulation of [3H]inositol phosphates in cells expressing their respective cognate receptors, i.e., UDP with P2Y6 receptors, UDP-glucose and UDP-galactose with P2Y14 receptors (when co-expressed with Gaq/i5), and LTC4 with Cys-LTR1 receptors (Fig. 2a,b).
As reported in other studies (Lazarowski et al., 1995; Lazarowski et al., 2003), basal levels of inositol phosphates were significantly increased in COS-7 cells expressing the P2Y6 or P2Y14 (co-transfected with Gαq/i5) (Fig. 2A) and in HEK293 cells co-expressing the P2Y14 receptor with Gαq/i5 (Fig. 2B). This increase is most likely the result of cellular release of nucleotides and nucleotide sugars, which activate their cognate receptors in the absence of added agonists. In contrast, expression of GPR17 alone or with Gαq/i5 in either COS-7 or HEK293 cells had no affect on basal levels of inositol phosphates.

Analysis of GPR17 coupling to other Gα signaling pathways. Since no indication of GPR17 coupling to Gαi was observed, we examined whether GPR17 coupled to other signaling pathways, i.e. Gαq or G12/13. UDP, UDP-sugars, and LTC4 had no effect on [3H]inositol phosphate accumulation following transient expression of GPR17 in HEK293 and Cos-7 cells (Fig. 2a). To examine the capacity of stably expressed GPR17 to couple to Gαq, 1321N1 and CHO cells expressing GPR17 were challenged with UDP, UDP-sugars, or LTC4, and inositol phosphate accumulation was measured. None of the ligands tested stimulated inositol lipid hydrolysis above levels observed in wild type cells (Fig. 3a,b). This was not due to a lack of cell surface-expressed GPR17, as an intact cell RIA showed that the receptor was well expressed in both cell lines (Fig. 3C). In contrast, both carbachol, an agonist for endogenous M3-muscarinic receptors in 1321N1 cells, and ATP, an agonist for endogenous P2Y2 receptors in CHO cells, increased inositol phosphate accumulation 2- to 3-fold over basal in the respective cell lines (Fig. 3A,B).

We also examined the possibility that GPR17 couples to Gα12/13 by co-transfecting COS-7 cells with pcDNA3-HA-GPR17 and pcDNA3-PLC-ε. In this system, activated Gα12/13 interacts with p115-RhoGEF, which in turn catalyzes the formation of GTP-bound RhoA and stimulation of PLC-ε activity (Hains et al., 2006). Neither UDP, UDP-glucose, nor LTC4 increased...
[^3]H]inositol phosphate accumulation in transfected cells, whereas lysophosphatidic acid increased[^3]H]inositol phosphate accumulation in COS-7 cells expressing the LPA1 receptor, which couples to Go12/13, together with PLC-ε (Fig. 4). Moreover, the increase in[^3]H]inositol phosphate accumulation promoted by LPA was markedly decreased in the presence of the RGS domain from p115RhoGEF, indicating that the increase was the result of Go12/13 and not from Gβγ or Goq.

Intracellular Ca\(^{2+}\) mobilization in 1321N1 cells expressing GPR17. An additional observation in the study by Ciana et al. (Ciana et al., 2006) was that UDP, UDP-glucose, and LTC4 resulted in intracellular Ca\(^{2+}\) mobilization in a subset (30%) of 1321N1 cells transfected with GPR17, but not with empty vector. 1321N1 cells stably expressing GPR17 were seeded to coverslips and loaded with Fura2-AM to measure intracellular Ca\(^{2+}\) mobilization promoted by the presumed agonists of the receptor. When UDP, UDP-glucose, UDP-galactose (all at 100 µM) or LTC4 (100 nM) was superfused over 1321N1-GPR17 cells, no Ca\(^{2+}\) responses were observed in any of the >50 cells examined on four coverslips (Fig. 5). In contrast, 1 mM carbachol (acting through an endogenous M\(_3\)-muscarinic receptor) consistently promoted robust intracellular Ca\(^{2+}\) mobilization in 100% of 1321N1 cells examined (Fig. 5).

Internalization of receptors in 1321N1 cells. With few exceptions, G protein-coupled receptors internalize when challenged with their cognate agonists. Therefore, as an additional measure of agonist activity, we also examined whether any of the reported agonists of GPR17 were capable of promoting internalization of GPR17 in 1321N1 cells. 1321N1-GPR17, 1321N1-P2Y\(_2\), and 1321N1-Cys-LTR1 cells were incubated with anti-HA antibody at 4°C, the temperature was increased to 37°C, and ligands were added to promote internalization of the receptors. Addition of LTC4, UDP, or UDP-glucose to 1321N1-GPR17 cells for 30 min did not
promote internalization of the receptor, whereas LTC4 and UTP promoted marked internalization of their cognate receptors in 1321N1-Cys-LTR1 and 1321N1–P2Y2 cells, respectively (Fig. 6).

GPR17 as a negative regulator of Cys-LTR1-promoted signaling. Maekawa et al. reported that GPR17 was not activated by UDP, UDP-sugars or LTC4 in a number of cell lines examined; instead, GPR17 was shown to inhibit Cys-LTR1 signaling, presumably through receptor dimer formation, without any effect on cell surface expression of Cys-LTR1 (Maekawa et al., 2009). Therefore, we investigated the capacity of GPR17 to inhibit Cys-LTR1-dependent signaling activity by infecting 1321N1 cells already expressing HA-tagged Cys-LTR1 with retroviruses harboring myc-tagged GPR17. LTC4 (300 nM) stimulated inositol phosphate accumulation then was measured in those cells expressing either Cys-LTR1 alone or Cys-LTR1 coexpressed with GPR17. LTC promoted a 3- to 4-fold increase in inositol phosphate accumulation in Cys-LTR1-expressing cells, but agonist stimulated response in cells coexpressing Cys-LTR1 with GPR17 was reduced by ~85%. Importantly, the surface expression of LTR1 was reduced by 50% in cells coexpressing this GPCR with GPR17 (Fig. 7). Transient transfection experiments with Cys-LTR1 and GPR17 gave similar results (data not shown). These data are consistent with those reported by Maekawa et al. showing that GPR17 is a negative regulator of Cys-LTR1 (Maekawa et al., 2009).
Discussion

Recent studies highlight the importance of GPR17 in inflammation, neuronal damage sensing, neurorepair, food intake and mylenation (Lecca et al., 2008; Chen et al., 2009; Maekawa et al., 2010; Ren et al., 2012; Franke et al., 2013), but true identity of the endogenous agonists of the receptor remains controversial. Ciana et al. reported that GPR17 is activated by UDP, UDP-sugars, and cysteiny1-leukotrienes (Ciana et al., 2006), whereas Benned-Jensen and Rosenkilde reported activation of GPR17 with nucleotides, but not with leukotrienes (Benned-Jensen and Rosenkilde, 2010). Heise et al. (2000) injected GPR17 cRNA into Xenopus oocytes and also observed no response to LTC4 or LTD4, while these two compounds elicited strong calcium-dependent chloride current in CysLT2 receptor cRNA-injected oocytes. Maekawa et al. demonstrated that LTC4, LTD4, or LTE4 were unable to promote Ca$^{2+}$ mobilization in variety of cell lines (1321N1, CHO, HEK-293T) stably expressing the human or mouse GPR17 (Maekawa et al., 2009).

Data presented in this study show that neither UDP, UDP-sugars, nor cysteiny1-leukotrienes activate GPR17 when the receptor is expressed stably in C6, 1321N1 and CHO cells or transiently in COS-7 and HEK293 cells (with or without Gaq/i5). In all cases, expression of GPR17 at the cell surface was verified by an intact cell RIA (with the exception of experiments with a non-tagged receptor). Our studies extend this question further by examining the potential coupling of GPR17 to each of the G protein signaling pathways. Although receptors known to couple to each G protein pathway mediated predictable positive responses, no GPCR signaling activity was observed in a variety of cells in response to nucleotides or leukotrienes. Receptor activation was measured by inhibition of cyclic AMP accumulation, inositol phosphate production, and by monitoring Ca$^{2+}$ mobilization with Fura2-AM. None of the purported ligands of GPR17
activated the receptor in any of these test systems, whereas the cognate receptors for these ligands showed robust signaling activity. We also demonstrated that these ligands failed to promote internalization of GPR17 in 1321N1 cells, whereas receptors that are activated by these compounds were markedly internalized. Based on these data, we conclude that UDP, UDP-sugars and cysteinyl-leukotrienes are not activators of GPR17.

Maekawa et al. also reported that co-expression of GPR17 with Cys-LTR1 in 1321N1 cells significantly inhibited LTC4- and LTD4-promoted calcium influx and ERK phosphorylation compared to the response in cells expressing the Cys-LTR1 receptor alone (Maekawa et al., 2009). Because GPR17 co-expression did not affect surface expression of the Cys-LTR1 receptor, the authors concluded that GPR17 functions as a negative regulator of the Cys-LTR1 receptor. A more recent study has shown that knock-out of GPR17 in mice increased the immune responses to dust mites, including the recruitment of inflammatory cells, increased levels of IgE, and increased Th2 and Th17 cytokine expression, which was due to the absence of inhibition of Cys-LTR1 signaling activity by GPR17 (Maekawa et al., 2010). We also observed a marked decrease (>80%) in Cys-LTR1 receptor activity when GPR17 was co-expressed, although we also saw a decrease in the level of Cys-LTR1 at the cell surface (~50%). Given that Cys-LTR1 was expressed recombinantly, it is likely that the levels of receptors, although decreased, are more than sufficient for full activity, and that the decrease in receptor signaling is a direct consequence of GPR17 co-expression. Thus, our data are fully consistent with those of Maekawa et al. (Maekawa et al., 2009; Maekawa et al., 2010).

We are unsure why some labs have shown activity of UDP, UDP-sugars, and LTC4 at GPR17, while others (including ours) have not observed activity of some or all these ligands. Early characterization of GPR17 mostly focused on GTPγS-binding studies instead of second messenger
assays, but a recent study of GPR17 by the authors who originally reported activity of these ligands at the receptor showed inhibition of cAMP accumulation and receptor internalization in 1321N1 cells (Daniele et al., 2011). However, using the same conditions (cAMP levels elevated by 10 μM forskolin) and the same cells (1321N1), we failed to observe inhibition of cAMP accumulation in over a dozen independent experiments, even though the receptor was expressed at the cell surface based on an intact cell RIA.

We also examined the sequence of GPR17 in our clones to confirm that its sequence matched the sequence in GenBank. Surprisingly, of the six sequences in GenBank, two of them (Accession numbers AAH31653.1 and BAG54380.1) harbored amino acid differences from the other four. AAH31653.1 contains a L55F mutation, while BAG54380.1 has three mutations: L44P, V225A, and S287R. Our sequence was identical to the other four sequences and matched the sequence reported in Ciana et al. (Ciana et al., 2006).

A recent study by a different group analyzed the pharmacological selectivity of GPR17 expressed in HEK293 cells using the GloSensor cyclic AMP assay, and observed activation by UDP, UDP-galactose, and UDP-glucose (Buccioni et al., 2011). However, the authors were unable to demonstrate inhibition of cyclic AMP accumulation by two different immuno-competitive cyclic AMP assays, and required the increased sensitivity of the GloSensor assay to observe inhibition of adenylyl cyclase. In contrast, Daniele et al. report robust inhibition of cyclic accumulation in 1321N1 cells (Daniele et al., 2011). Thus, there are important discrepancies even among labs that observe activation of GPR17 with nucleotides and nucleotide-sugars. We tested four different cell lines for inhibition of cyclic AMP accumulation, including transfection experiments with Gaqi5, but observed no agonist-dependent activity.
Identification and characterization of new P2Y receptors has been fraught with controversy and misidentification. At least part of the difficulty in identifying new P2Y receptors is the lack of sequence identity between known P2Y receptors; the two P2Y receptor subfamilies, P2Y₁ and P2Y₁₂, share minimal sequence identity (~20%), and thus low homology of an orphan receptor to known P2Y receptors is not a criteria for exclusion. P2Y receptors are found in nearly all cell lines (with the exception of 1321N1 cells), and contribution of endogenous receptors to the signal supposedly emanating from an expressed recombinant one is often difficult to exclude. Finally, the possibility of heterooligomerization of an orphan receptor with endogenous P2Y receptors (including receptors that are not normally expressed or are expressed at low levels, but are “recruited” to the cell surface by expression of the orphan receptor) also could lead to potentially incorrect identification (see e.g. (Bush et al., 2007)).

Because of nucleotide release and/or cell lysis, basal levels of inositol phosphates in COS-7 cells transfected with P2Y receptors are consistently observed to be elevated over vector-transfected controls (Lazarowski et al., 1995; Lazarowski et al., 2003). For example, both the P2Y₆ receptor alone and the P2Y₁₄ receptor co-transfected with Gaq/i5 result in elevated basal levels of inositol phosphates in COS-7 cells compared to cells transfected with empty vector (Fig. 2). In contrast, basal levels of [³H]inositol phosphates in COS-7 (or HEK293) cells expressing GPR17 either alone or with Gaq/i5 were not significantly higher than vector-transfected cells (Fig. 2a,b). These data suggest that neither UDP nor UDP-sugars released into the medium of cells are capable of activating GPR17, although they do increase the activation of their cognate receptors, P2Y₆ and P2Y₁₄. These results are consistent with the lack of activity of nucleotides and nucleotide-sugars at GPR17.
Even though nucleotides are unlikely to activate Cys-LTR1, there does appear to be a function interaction between Cys-LTR1 and P2Y receptors. For example, activation of endogenous P2Y receptors in U937 cells with ATP or UDP strongly cross-desensitized Cys-LT1 receptors, but not vice-versa, and a similar cross-desensitization was observed in COS-7 cells exogenously expressing Cys-LTR1 (Capra et al., 2005). This heterologous desensitization was dependent on protein kinase C, since GF109203X blocked nucleotide-dependent desensitization of Cys-LTR1. A separate study demonstrated that antagonists of leukotriene receptors, monolukast and pranlukast, inhibit nucleotide-promoted activation of P2Y receptors in both differentiated U937 cells and in 1321N1 cells stably expressing P2Y1, P2Y2, P2Y4, or P2Y6 receptors (Mamedova et al., 2005). This antagonism was not competitive, however, since high concentrations of nucleotides were unable to surmount the inhibition, and these antagonists did not block binding of the P2Y1 receptor-selective antagonist, [3H]MRS2279, to the P2Y1 receptor.

In conclusion, our data demonstrate that nucleotides, nucleotide-sugars, and cysteinyl leukotrienes do not promote activation of GPR17 when assessed by standard and well-established signaling assays. While the reasons for the discrepancies between different laboratories are unclear, our data are consistent with an earlier study showing that GPR17 is a negative regulator of Cys-LTR1 function.
Acknowledgments
Authorship Contributions

Participated in research design: Qi, Harden, Nicholas

Conducted experiments: Qi

Performed data analysis: Qi, Harden, Nicholas

Wrote or contributed to the writing of the manuscript: Qi, Harden, Nicholas.
References

Qi AD, Zambon AC, Insel PA and Nicholas RA (2001b) An arginine/glutamine difference at the juxtaposition of transmembrane domain 6 and the third extracellular loop contributes to the markedly different nucleotide selectivities of human and canine P2Y11 receptors. *Mol Pharmacol* 60:1375-1382.

Footnotes

This work was supported by a grant from the National Institutes of Health [R01HL071131] (to R.A.N.). 1Current affiliation: Department of Biochemistry, Vanderbilt University, Nashville, TN
Legends for Figures

Figure 1. UDP and UDP-glucose do not promote inhibition of cyclic AMP accumulation in C6 or CHO cells stably expressing GPR17. UDP-glucose or UDP was added simultaneously with either 10 µM or 30 µM forskolin, and the levels of cyclic AMP accumulation were determined as described in Materials and Methods. (a) C6 cells stably expressing GPR17; (b) C6 cells stably expressing the P2Y₁₄ receptor; (c) CHO cells stably expressing GPR17; (d) CHO cells stably expressing the P2Y₁₄ receptor. (e) Cell surface levels of stably expressed HA-tagged GPR17 or P2Y₁₄ receptors in C6 and CHO cells were determined by an intact cell radioimmunoassay (RIA). Data shown are representative assays performed three times with similar results.

Figure 2. UDP, UDP sugars and LTC4 do not promote accumulation of inositol phosphates in COS-7 or HEK293 cells transiently co-expressing GPR17 and G_{αq/i}5. Application of UDP, UDP-glucose, UDP-galactose (all at 100 µM) and cysteinyl leukotriene C4 (LTC4, 100 nM) all failed to promote significant inositol phosphate accumulation in (a) COS-7 or (b) HEK293 cells transfected with GPR17 alone or co-transfected with GPR17 and G_{αq/i}5, which links Gi/o-coupled receptor to the phospolipase C signaling pathway. In contrast, UDP, UDP-glucose, UDP-galactose, and LTC4 promoted robust accumulation of inositol phosphates in cells expressing their cognate receptors (UDP at P2Y₆ receptors, UDP-glucose and UDP-galactose at P2Y₁₄ receptors, and LTC4 at Cys-LTR1 receptors). (c) Cell surface expression of HA-tagged GPR17 was verified by an intact cell RIA. Data shown are representative assays performed three times with similar results.

Figure 3. Lack of uracil nucleotide- and cysteinyl leukotriene-promoted accumulation of inositol phosphates in 1321N1 or CHO cells stably expressing GPR17.
UDP, UDP-glucose, UDP-galactose (all at 100 µM) or LTC4 (100 nM) failed to promote significant accumulation of inositol phosphates in (a) 1321N1 or (b) CHO cells stably expressing GPR17 compared to cells expressing the empty vector. (c) Cell surface expression of HA-tagged GPR17 was verified by an intact cell RIA. Data shown are from a representative assay performed three times with similar results.

Figure 4. GPR17 does not couple to G12/13 signaling pathways. Co-transfection of the LPA1 receptor with PLC-ε (activated by Go12/13) in COS-7 cells markedly increased LPA-promoted inositol phosphate accumulation, which was blocked by co-transfection of the RGS domain from p115RhoGEF. In contrast, LTC4 (100 nM) failed to promote significant inositol phosphate accumulation in COS-7 cells transfected with GPR17 or co-transfected with GPR17 and PLCε. Inositol phosphate accumulation assays in transfected COS-7 cells. GPR17 expressing cells were stimulated with 300 nM LTC4 (agonist, for 30 min), and all others challenged with 10 µM LPA. Data shown are from a representative assay performed three times with similar results.

Figure 5. Lack of uracil nucleotide- and leukotriene-promoted intracellular Ca^{2+} mobilization in 1321N1-GPR17 cells. GPR17-expressing 1321N1 cells were grown on glass coverslips to a density of 20% of confluence. Cells were placed in a sealed chamber and continuously superfused with HBSS with or without (a) 100 µM UDP, (b) 100 µM UDP-glucose (UDP-G), (c) 100 µM UDP-galactose (UDP-Gal), (d) 100 nM LTC4, or (a-d) 1 mM carbachol (Carb). Each compound was superfused for 1 minute. Traces of intracellular Ca^{2+} concentrations were averaged from 6-9 individual cells/coverlip. Each compound was tested on a minimum of 3 coverslips.

Figure 6. Neither UDP, UDP-glucose, nor cysteinyl leukotriene C4 promotes internalization of GPR17 stably expressed in 1321N1 cells. 1321N1 cells stably expressing
Cys-LTR1, P2Y2, or GPR17 receptors were seeded on glass coverslips for 2 days, then cooled down to 4°C and labeled with mouse monoclonal anti-HA.11 antibody for 1 hr. Cells were washed, warmed to 37°C, and treated with either phosphate-buffered saline or receptor agonists (100 µM UTP, UDP, UDP-glucose, or 100 nM LTC4) for 30 min. The cells were then fixed, permeabilized, and stained with goat anti-mouse A-488 secondary antibody. Localization of receptors was determined by confocal microscopy.

Figure 7. GPR17 negatively regulates Cys-LTR1 function. 1321N1 cells stably expressing 3xHA-tagged Cys-LTR1 were infected with retroviruses directing expression of myc-tagged GPR17, and the resulting cells were assessed for LTC4-promoted inositol phosphate accumulation (a) and Cys-LTR1 expression by a cell surface RIA. Data shown are from a representative assay performed three times with similar results.
Figure 1

A. C6-GPR17 cells

B. C6-P2Y14 cells

C. CHO-GPR17 cells

D. CHO-P2Y14 cells

E. [32P]Secondary Ab (cpm)

GPR17 P2Y14 C6 cells CHO cells
Figure 2

A

COS-7 cells

B

HEK293 cells

C

Secondary antibody (cpm)
Figure 3

A 1321N1 cells

B CHO cells

C
Figure 4
Figure 5

A

B

C

D

Intracellular Calcium (nM)

Time (min)

UDP Carb

UDP-Glu Carb

UDP-Gal Carb

LTC4 Carb

Intracellular Calcium (nM)

Time (min)
Figure 7

A

[\textsuperscript{[\textgreek{p}]}]inositol Phosphates (cpm)

\begin{center}
\begin{tabular}{c|c}
 & \textbf{LTR1} & \textbf{LTR1+GPR17} \\
\hline
Buffer & 6000 & 2000 \\
LTC4 (100 nM) & 6000 & 2000 \\
\end{tabular}
\end{center}

B

[\textsuperscript{[\text{\textgreek{p}}}]] Ab (cpm)

\begin{center}
\begin{tabular}{c|c}
 & \textbf{LTR1} & \textbf{LTR1+GPR17} \\
\hline
w/o primary & 1000 & 200 \\
both Abs & 1000 & 200 \\
\end{tabular}
\end{center}