In Vivo Occupancy of Dopamine D₃ Receptors by Antagonists Produces Neurochemical and Behavioral Effects of Potential Relevance to Attention-Deficit-Hyperactivity Disorder

1Lilly Research Laboratories (VB, ABN, CO, SDG, MW, AMJ, KP, GGN, JMW)
Eli Lilly and Company
Indianapolis, Indiana USA

2INSERM U-952 (ETT, BG)
Université Pierre et Marie Curie
Paris, France
Correspondence:
J. M. Witkin
Psychiatric Drug Discovery, Lilly Research Laboratories
Lilly Corporate Center, Indianapolis, IN 46285-0501
317 277-4470 - phone
317 276-7600 - fax
jwitkin@lilly.com

Running Title:
Right – Occupancy of D3 receptors and ADHD

Document Statistics

Text pages 30
Tables 0
Figures 9
Abstract 254 words
Introduction 781 words
Discussion 1481 words
References 42

Non-Standard Abbreviations

ACh acetylcholine
ADHD attention-deficit hyperactivity disorder
ANOVA analysis of variance
DAT dopamine transporter
KO knockout
7-OH-DPAT 2-Dipropylamino-7-hydroxy-1,2,3,4-tetrahydronaphthalene
PHNO (+)-4-propyl-9-hydroxynaphthoxazine
SB-277011A trans-N-[4-[2-(6-cyano-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-4-
quinolinecarboxamide
U99194 2,3-dihydro-5,6-dimethoxy-N,N-dipropyl-1H-inden-2-amine
WT wildtype
Abstract

Dopamine D₃ receptors have eluded definitive linkage to neurological and psychiatric disorders since their cloning nearly 20 years ago. We report a new method that does not employ a radiolabel for simultaneously defining \textit{in vivo} receptor occupancy (RO) of D₃ and D₂ receptors in rat brain after systemic dosing using the tracer epidepride (N-[(2S)-1-ethylpyrrolidin-2-yl]methyl]-5-iodo-2,3-dimethoxybenzamide). Decreases in epidepride binding in lobule 9 of cerebellum (rich in D₃ receptors) were compared to nonspecific binding in the lateral cerebellum. The \textit{in vivo} occupancy of the dopamine D₃ receptors was dose-dependently increased by SB-277011A (trans-N-[4-[2-(6-cyano-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-4-quinolinecarboxamide) and U99194 (2,3-dihydro-5,6-dimethoxy-N,N-dipropyl-1H-inden-2-amine). Both antagonists increased extracellular levels of acetylcholine (ACh) in the medial prefrontal cortex of rats and modified brain tissue levels of ACh and choline. Consistent with these findings, the D₃ receptor antagonists enhanced the acquisition of learning of rats either alone or in the presence of the norepinephrine uptake blocker, reboxetine, as with the attention-deficit hyperactivity disorder (ADHD) drug methylphenidate. Like reboxetine, the D₃ receptor antagonists also prevented deficits induced by scopolamine in object recognition memory of rats. Mice in which the dopamine transporter (DAT) has been deleted exhibit hyperactivity that is normalized by compounds that are effective in the treatment of (ADHD). Both D₃ receptor antagonists decreased the hyperactivity of DAT -/- mice without affecting the activity of wild type controls. The present findings indicate that dopamine D₃ receptor antagonists engender cognition-enhancing and hyperactivity-dampening effects. Thus, D₃ receptor blockade could be considered as a novel treatment approach for cognitive deficits and hyperactivity syndromes, including those observed in ADHD.
Introduction

Dopamine D₃ receptors are a member of the D₂ family of proteins. D₃ receptors are localized with high density in ventral striatum (Levant, 1997) and in lower concentration in other central nervous system sites. The receptor was cloned in 1990 (Sokoloff et al., 1990) and yet, after over twenty years and much investigation, the functional significance of this receptor has not been fully elucidated. D₃ receptors have been implicated in the control of drug dependence disorders, schizophrenia, and Parkinson’s disease (Micheli and Heidbreder, 2006; Joyce, 2004; Newman et al., 2012). A number of selective ligands have been discovered but only the D₃ receptor-preferring agonist pramipexole is in clinical use for the treatment of Parkinson’s disease and restless leg syndrome (Rascol et al., 2011; Scholz et al., 2011). Pramipexole has been reported to have a range of selectivities of D₃ to D₂ receptors that range from none (Sautel et al., 1995) to about 100-fold (Millan et al., 2002) with both studies using iodosulpiride as a radioligand.

There have been a host of obstacles blocking the definitive identification of the functional significance of D₃ receptors. The relatively low density of these receptors and the lack of a range of selective pharmacological agents with high affinity and selectivity for D₃ receptors have been one set of limitations impeding success in this area. The lack of a method for identification of D₃ receptor activity in vivo has been another serious impediment. Although several methods have been proposed, many of these have been shown to be inconsistent when pharmacological data and data in D₃ receptor deficient mice are compared, or they are not consistent across the range of D₃ receptor antagonists studied (c.f., Perachon et al., 2000). Recently two new in vivo assays have been proposed to define D₃ receptor blockade (Witkin et al., 2004; Collins et al., 2005).

Recent work has also enabled the measurement of the occupancy of dopamine D₃ receptors by ligands in vivo. For example, imaging and ex vivo binding with [¹¹C]-PHNO has been successfully employed for dopamine D₃ receptors in vivo (McCormick et al., 2010; Gallezot, 2012). Additionally,
techniques have been established leveraging the discreet expression of dopamine D₃ receptor in lobules 9 and 10 of the cerebellum in vivo (Kiss, 2011). We now report a new LC-MS/MS based method for defining the occupancy of compounds at D₃ receptors after systemic dosing that enables simultaneous assessment of D₂ receptor occupancy by using this regional specificity. This method uses a non-labeled tracer measured by LC/MS/MS, as previously reported for dopamine D₂, NK₁, 5HT₂A, and opioid receptors mu, kappa, and delta (Chernet et al., 2005; Barth et al., 2006; Need et al., 2007). In the present study, LC/MS/MS receptor occupancy data were used to guide investigation of the in vivo activities of two D₃ receptor antagonists, SB-277011A and U99194. Specifically, we inquired as to whether blockade of D₃ receptors might impact acetylcholine (ACh) efflux and turnover, and whether these neurochemical effects were associated with the ability of the D₃ receptor antagonists affect the acquisition of behavior (learning) and to prevent memory deficits induced by the muscarinic receptor antagonist scopolamine, similar to effects produced by ADHD-treatment-related drugs. Since these neurochemical and behavioral data were aligned, we then showed that the D₃ receptor antagonists also significantly attenuated the hyperactivity of mice without dopamine transporters (DAT -/- mice), a model that detects the activity of drugs used in the therapeutic resolution of ADHD symptoms (Wickens et al., 2011; Fan et al., 2012).

SB-277011A and U99194 are structurally-distinct antagonists of D₃ receptors with nanomolar affinities for the receptor. SB-277011A is 100-fold selective for D₃ receptors in its binding profile over D₂ receptors (Reavill et al., 2000) and U99194 displays only a 20-fold selectivity (Waters et al., 1993). Binding at these receptors however does not necessarily define in vivo selectivity and does not always even predict functional selectivity in vitro (Sautel et al., 1995). Previous data have also suggested that some molecules might not function as selective D₃ receptor antagonists in vivo (Pearchon et al., 2000). However, both molecules have recently been reported to prevent yawning induced by the D₃ receptor agonist (+)-PD128,907 which has been pharmacologically validated as a D₃ mediated event in rats.
(Collins et al., 2005). Consistent with these observations, we now report that both SB-277011A and U99194 occupy D₃ receptors in rat brain in vivo after systemic dosing with relatively low levels of D₂ receptor occupancy. Using doses of these antagonists that selectively impact D₃ receptors in vivo we were able to produce neurochemical and behavioral effects of these D₃ receptor antagonists that are consistent with the potential for beneficial effects in disorders of cognitive impairment and of attention-deficit hyperactivity syndrome (ADHD).
Methods

Compounds. Epidepride, SB-277011A, and reboxetine SO₄ were synthesized at Eli Lilly & Company. U99194 was purchased from Tocris; scopolamine HBr and methylphenidate HCl were purchased from Sigma Chemical Company. Structures of the dopaminergic ligands are shown in figure 1. SB-277011A was dissolved in 25% beta-cyclodextrin; U99194, methylphenidate, and reboxetine were dissolved in water, and scopolamine was dissolved in 0.9% NaCl. For behavioral studies, compounds were injected i.p., or s.c., 30 min prior to testing (except for the object recognition experiments, see below). Compounds were dosed in a volume of 1 ml/kg for rats except in the behavioral acquisition studies (5 ml/kg) and 10 ml/kg (mice).

Receptor Occupancy. “Cold” epidepride was used as an occupancy tracer in the LC/MS/MS-based experiments and was administered at an intravenous dose of 3 μg/kg dissolved in sterile water (Chernet et al., 2005; Barth et al., 2006). The D₃ tracer used, epidepride (fig. 1), had an affinity for D₃ receptors of 0.12 nM ([³H]-7-OH-DPAT binding) and for D₂ receptors of 0.80 nM ([³H]-7-OH-DPAT binding).

Adult male Sprague-Dawley rats (HSD, Indianapolis, IN, USA) weighing 240-260 grams were housed 6 to a cage in a room using a 12-hour on/off lighting schedule (lights on at 6 AM). Room temperature was maintained at 21 ± 3 °C. Animals had *ad libitum* access to food and water and were permitted at least 2 days after arrival at our site to adapt to housing conditions before testing.

Dopamine D₃ receptor occupancy in vivo. Tracer dose (3μg/kg) and survival interval (40 min) were optimized for epidepride to generate detectable and quantifiable *in vivo* levels in lateral cerebellum, lobules 9 and 10 of the cerebellum, and dorsal striatum by liquid chromatography coupled to tandem mass spectrometry (Barth et al., 2006). Tissue levels of epidepride in the lateral cerebellum represent nonspecific binding, those in lobules 9 and 10 of the cerebellum represent total binding for D₃ receptor occupancy measurements, and epidepride levels in the dorsal striatum represent the total
binding for D₂ receptor occupancy measurements. To examine D₃ dose-occupancy relationships, groups of 4-6 rats were pretreated with SB-277011A (s.c.) or U99194 (i.p.) or compound vehicle. One hour later, animals were briefly restrained and administered a low intravenous dose of non-labeled epidepride tracer via the lateral tail vein. Rats were sacrificed by cervical dislocation, and brain lateral cerebellum, lobules 9 and 10 of the cerebellum, and the dorsal striatum were dissected and weighed.

Analysis of non-labeled epidepride levels. Previously weighed brain tissue samples were placed in conical 1.5 mL polypropylene centrifuge tubes to which 4 volumes (w/v) of acetonitrile containing 0.1% formic acid was added. Samples were then homogenized using an ultrasonic dismembrator probe (Fisher Scientific model 100, Pittsburgh, PA, USA), vortexed and centrifuged for 16 min at 16,000 x g (Eppendorf model 5417R, Westbury, NY, USA). 100µL of supernatant was then added to 300 µL of water in 1.5 mL autosampler vials and vortexed.

Epidepride concentration measurements were made using a liquid chromatograph (HPLC, Agilent Technologies model 1100, Wilmington, DE, USA) with triple quadrapole mass spectral detection. The HPLC system employed a C18 column (ZORBAX Eclipse, 2.1 x 50mm, 3.5 micron particle size, Agilent) with an aqueous mobile phase consisting of 23% acetonitrile with 0.1% formic acid. Epidepride was quantified after elution from the HPLC column using an API 3000 triple quad mass spectrometer (Applied Biosystems, Foster City, CA, USA) in positive electrospray mode using MRM methods to monitor the transition from precursor to fragment ions with mass to charge ratios of 419.2 and 112.1 respectively. Chromatographic assays were calibrated using a standard curve generated by extracting a series of brain tissue samples from non-treated animals to which known quantities of epidepride had been added.

Receptor occupancy calculation. Receptor occupancy calculations were made for each animal employing the widely used ratio method (Farde et al., 1988; Kapur et al., 1999; Wadenberg et al., 2000) and the following equation: \[100\times\{1-\frac{\text{Ratio}_t-1}{\text{Ratio}_c-1}\}\] = % Occupancy. The ‘Ratioₜ’ represents
the ratio of epidepride concentrations measured in the striatum or lobules 9 and 10 to those measure in
the lateral cerebellum in individual animals pretreated with compounds or vehicle. The ‘Ratioce’
represents the average ratio of epidepride levels measured in the striatum or lobules 9 and 10 to that
measured in the lateral cerebellum for the vehicle-pretreated group.

In vivo microdialysis in rats. All studies were performed according to the guidelines set forth by the
National Institutes of Health and implemented by the Animal Care and Use Committee of Eli Lilly and
Company. Male Wistar or Sprague-Dawley rats (250-300 g, purchased from Harlan Sprague-Dawley,
Indianapolis, IN) were used for the experiments.

Surgical procedures. Two weeks prior to the microdialysis experiments, the rats were
anaesthetized with a mixture of chloral hydrate and pentobarbital, placed in a stereotaxic apparatus and
implanted with a guide cannula (Bioanalytical Systems (BAS), West Lafayette, IN) in the medial
prefrontal cortex (AP: 3.2, ML: 0.6, DV: -2.2), according to Paxinos and Watson (1996). Twenty-four
hours before testing, a 4 mm concentric microdialysis probe (BAS, model BR-4) was inserted through
the guide cannula. The actual location of the probes was verified histologically at the end of the
experiment.

Acetylcholine (ACh) measurements. ACh determination in dialysates from the different brain
regions was performed as described previously (Shirazi-Southall et al., 2002; Tzavara et al., 2006a). On
the day of the experiment, a modified Ringer’s solution (147.0 mM NaCl, 3.0 mM KCl, 1.3 mM CaCl2,
1.0 mM MgCl2, 1.0 mM Na2HPO4 x 7H2O, 0.2 mM NaH2PO4 x H2O pH = 7.25) supplemented with 0.1
µM neostigmine was perfused at a rate of 2.4 µl/min in the medial prefrontal cortex. Samples were
collected every 15 min and analyzed immediately, on-line, with HPLC coupled to electrochemical
detection, with a 150 × 3mm ACH-3 column (Environmental Sciences Associates (ESA), Inc., MA)
maintained at 35°C. The mobile phase (100 mM di-sodium hydrogen phosphate, 2 mM 1-octanesulfonic
acid and 50 µl/l of a microbicide reagent (MB, ESA, Inc.); pH 8.0, adjusted with phosphoric acid) was
delivered by an HPLC pump (ESA, Inc.) at 0.4 ml/min. The potentiostat used for electrochemical
detection (ESA, Inc.; model Coulochem II) was connected with a solid phase reactor for ACh (ESA,
Inc.; model ACH-SPR) and with an analytical cell with platinum target (ESA, Inc.; model 5041).

Data analysis. Data were expressed as multifold change from baseline, which is the average of
the five basal values before any manipulation and were analyzed either with one-way, i.e. treatment
(between subjects variable), two-way, i.e. treatment (between subjects variable) X time (within subjects
variable), or three-way (treatment 1 X treatment 2 X time) ANOVA followed by Duncan’s test. The
effects of each of the drugs are presented both over a course of time every 15 min after the injection of
the drug as well as overall average effects during the 3-hour observation period after the injection of the
drug (index of area under curve); data analyzed with one-way ANOVA followed by Bonferroni’s test).

Acetylcholine and choline tissue levels in rats.

Male Sprague-Dawley rats (175-225 g, purchased from Harlan Sprague-Dawley, Indianapolis, IN) were
used for the experiments. Rats were injected i.p. with the compounds under study and 30 min later they
were decapitated with a guillotine and their brains quickly removed and placed on an ice cold plate. The
cortex, hippocampus and striatum were dissected free hand on ice, weighed and stored at -80°C until
they were assayed. Tissue preparation, extraction and measurement of ACh and choline were made
essentially as reported previously (Bymaster et al., 1985). Results for ACh and choline are expressed as
nmol/g tissue from which the ratio of choline/ACh (turnover index) are calculated; all data from each
brain region are analyzed with one-way ANOVA followed by the Tukey’s LSD test for multiple
comparisons.

Acquisition of behavior.
Male Sprague Dawley rats (Harlan Sprague Dawley) weighing 40-50 g upon arrival were randomly placed 5 per cage with free access to food and water. Each rat was studied in only one experiment. The shuttle boxes (Med Assoc.), 21 cm on each side separated by a guillotine door, were equipped with metal grid floors through which electrical stimuli could be delivered and scrambled across the grids (Med Assoc.).

The experimental protocol was a modification of that used previously (Fox et al., 2003). After dosing, the rats were put into individual cages for the duration of pre-treatment interval after which they were placed into the right side of shuttle box. Ten seconds later the light was turned on and the door opened. If the animal did not cross over into the left hand side of the shuttle box within 180 seconds, the trial ended the door closed; 10 sec later the door was re-opened and the next trial began. When the animal crossed to the other side of the box, the timer is stopped, the door closed and 7 sec later the grid floor was electrified (0.2 mA, 1 sec). After current delivery, the rat was manually removed and placed back into the right hand side of the shuttle box and the procedure was repeated until 5 trials were completed. All events and timers were controlled by a computer operating Med Associates software.

The latency to cross over to the left hand side was recorded for each of the 5 trials. Trial latencies were analyzed using ANOVA followed by Dunnett’s test. Comparison of vehicle to drug treatments across trials was evaluated by two-tailed, two-way ANOVA. For this analysis, trials 3-5 were used. Probabilities < 0.05 were considered significant.

Object recognition in rats. Male Sprague-Dawley rats (250-300 g, Harlan Sprague-Dawley, Indianapolis, IN) were used as per Tzavara et al. (2006a). A three minute interval between the training trial and the test trial was used to maximize the memory retention baseline. Each rat was dosed i.p. with either vehicle, reboxetine (3, 10, 30 mg/kg), SB-277011A (10, 30 mg/kg), or U99194 (10, 30 mg/kg) 40 min before the session. Scopolamine HBr (1 mg/kg, sc) was then administered 30 min before the session. Each rat was placed in a clear 25x25 cm Plexiglas observation box with two identical objects,
designated A. The rat was allowed to explore for 2 min and the time interacting with the objects (sniffing, gnawing and behavior oriented to an object) was recorded. After 3 minutes the rat was returned to the observation box for the test trial. The test box contained a familiar object (object A) and a novel (object B) object.

A separate study was conducted in which the ability of SB-297011A to augment the protective effects of reboxetine against scopolamine degradation was evaluated. In this study, a non-effective dose of reboxetine (3 mg/kg) was given alone or in combination with with low, non-effective doses of SB-297011A (1 or 3 mg/kg). In an additional study, rats were studied for effects of SB-2977011A in the absence of scopolamine. The study was conducted as above with the exception that the interval between exploration periods 1 and 2 was 3 hr instead of 3 min.

The amount of time spent interacting with each object during the 2-min test was recorded. Results are expressed as the percentage of time spent interacting with the new object B and were analyzed with a one-way ANOVA. The ability of compounds to produce effects statistically differentiated from that of either vehicle, scopolamine, or reboxetine + scopolamine were evaluated by post-hoc Dunnett’s tests.

Dopamine transporter knockout mice.

Breeding, genotyping and maintenance of the mice. DAT KO mice were obtained by homologous recombination (Giros et al., 1996) and maintained on two inbred genetic backgrounds: C57BL/6JOrl (B6) and DBA/2JOrl (D2). Homozygous null mutants and their wild-type (WT) littermates of a hybrid B6xD2F1 genetic background were obtained from the mating of B6-DAT-heterozygous females with D2-DAT-heterozygous males. All mice used in this study were on a B6xD2F1 background. The genotype of the mice was determined by polymerase chain reaction (PCR) analysis as follows. Genomic DNA (50 ng) from tail biopsies was amplified with primers DAT-1
(CCGTCTACCCATGAGTAAAA), DAT-2 (CTCCACCTCCTAGCACTAAC), and NEO2 (TGACCGCTTCCTCGTG), generating a 870 bp product (DAT-1/NEO2) for the recombined DAT gene and a 580 bp product (DAT-1/DAT-2) for the wild-type DAT gene. After weaning, mice were housed two to four per cage and maintained under standard housing conditions with food and water available ad libitum. All experiments were carried out in accordance with the European Communities Council Directive (86/809/EEC) regarding the care and use of animals for experimental procedures and approved by the local ethical committee.

Locomotor activity. Locomotor activity in DAT KO mice and WT littermates was measured after an acute administration of the following drugs: SB-277011A (1, 3 and 10 mg/kg); U99194 (10, 30, 60 mg/kg); d-amphetamine (3 mg/kg), and reboxetine (5 and 10 mg/kg), all injected i.p. in a volume of 10 ml/kg. Thirty min after the injection, horizontal locomotor activity of DAT KO and WT mice, injected with one of the above compounds or respective vehicles, was measured in an actimeter over 60 min. For this, mice were placed in individual transparent cages (20 cm X 10 cm X 10 cm) and their horizontal movements (measure of ambulatory behavior) were recorded by four infrared sensors (Imetronic, Bordeaux, France) as in a previous study (Tzavara et al., 2006b). Results are expressed as ambulations over the 60 min period. Statistical analysis was performed by two-way ANOVA (genotype x treatment) and Duncan’s post-hoc test.
Results

Receptor occupancy. The *in vivo* occupancy of D₃ receptors was increased in a dose-dependent manner by both SB-277011A and U99194 (n=6 and n=5, SB-277011A and U99194, respectively) (fig. 2). Greater than 90% occupancy was measured one hour after s.c. administration of 10 mg/kg SB-277011A. At the highest dose tested, SB-277011A had a D₃ receptor occupancy of 111 ± 5.0% (mean ± S.E.M.) The occupancy measured one hour after i.p. administration of U99194 at 60 mg/kg was 81 ± 9.9. Selectivity for the D₃ receptor relative to the D₂ receptor was demonstrated as these doses generated D₂ occupancies of only 3 ± 5.6 and 20 ± 14 for SB-277011A and U99194, respectively. The high variability at low receptor occupancy values is not uncommon for these methods (e.g., Chernet et al., 2005). Regardless, it is clear that the separation of occupancies of D₂ and of D₃ dopamine receptors at the higher doses of both SB-277011A and U99194 is substantial and statistically significant.

Neurochemistry. Both SB-277011A and U99194 increased cortical dialysate levels of ACh in a dose-dependent manner (fig. 3). Significant increases in ACh microdialysate levels were achieved at multiple 15 min time points postdosing of SB-277011A (15-90 min) and U99194 (0-45 min) at 30 mg/kg (fig. 3). At this dose level, the effect of SB-277011A on cortical ACh levels was more pronounced than the effect of U99194, when the data were expressed and analyzed as overall average effects (inserts in figure 3), which was due to the fact that SB-277011A exerted a longer-lasting effect on ACh compared to the effect of U99194 (fig. 3).

To further explore the effects of these D₃ receptor antagonists on cholinergic neurochemistry, tissue levels of ACh and choline were examined. Figure 3 shows, in accord with the increases in extracellular levels of ACh in the medial prefrontal cortex, corresponding significant and dose-dependent decreases in tissue levels of ACh in the hippocampus, the cortex, and the striatum after SB-277011A administration. SB-277011A also increased choline levels in the hippocampus and the striatum at 60 mg/kg (fig. 4). The SB-277011A-induced increases in the ratio choline/ACh were found significant.
in the hippocampus and cortex at 30 and 60 mg/kg, and in the striatum at 60 mg/kg. Generally, comparable effects were observed after dosing with U99194 at doses of 30 and 60 mg/kg, although it did not significantly affect choline in any of the brain regions studied or the ratio of choline/ACh in the striatum (fig. 5).

Acquisition of behavior. Drugs were evaluated for their ability to enhance the acquisition of behavior of rats. Under the conditions studied, the performance of the rats increased over successive trails ($F_{4,49} = 6.7$, $p < 0.001$) (fig. 6). Post-hoc Dunnett’s test revealed that performance on trials 3, 4, and 5 were significantly better than on trial ($p < 0.05$).

Methylphenidate significantly enhanced the acquisition of behavior ($F_{2,69} = 7.5$, $p < 0.05$). For reboxetine, a trend toward significance was achieved ($F_{2,81} = 5.9$, $p = 0.07$). Analysis of the 10 mg/kg dose of reboxetine relative to vehicle revealed a significant enhancement of behavioral acquisition ($F_{1,54} = 7.6$, $p < 0.05$). A similar trend for enhancement was seen with U99194 ($F_{2,63} = 5.9$, $p = 0.08$); when the 30 mg/kg dose of U99194 was compared to vehicle, a significant augmentation in acquisition of behavior was observed ($F_{1,45} = 7.6$, $p < 0.05$). SB-277011A did not significantly enhance behavioral acquisition ($F_{2,66} = 1.8$, $p = 0.5$).

Object recognition. Scopolamine produced a significant degradation in performance in the object recognition task (fig. 7). Both SB-277011A and U99194 prevented these effects of scopolamine at both 10 and 30 mg/kg. Reboxetine was also effective in preventing scopolamine-induced performance effects at 10 and 30 but not at 3 mg/kg (fig. 7).

SB-277011A was also evaluated for its ability to enhance novel object recognition on its own was also evaluated. In this experiment, a 3 hr delay instead of 3 min was imposed before presentation of the novel object. Under these conditions, performance compared to the 3 min condition was degraded to a level like that imposed by scopolamine. The percent time exploring the novel object was vehicle = 48.9%; 10 mg/kg SB-277011A = 56.7%; and 30 mg/kg SB-277011A = 46.4%. Although there was a
trend for an effect with 10 mg/kg, these effects were not significantly different than vehicle control values.

In order to evaluate the potential for D₃ receptor blockade to enhance the efficacy of reboxetine, lower doses of SB-277011A were tested. Neither 1 nor 3 mg/kg SB-277011A significantly prevented the effects of scopolamine (fig. 8). When these doses of SB-277011A were tested against a non-effective dose of reboxetine (3 mg/kg), SB-277011A dose-dependently augmented the protective effects of reboxetine (fig. 8).

Dopamine transporter null mice (DAT -/-). DAT -/- mice had markedly enhanced basal locomotor activity levels than age-matched wild-type (WT controls) (fig. 9). d-Amphetamine (3 mg/kg, i.p.) significantly decreased activity levels in the KO mice and significantly increased activity of WT mice (two way ANOVA shows significant interaction between genotype and treatment, F₁,₃₁=52.9; p<0.0001). In contrast to the effects of d-amphetamine, SB-277011A (3-30 mg/kg, i.p.) (two-way ANOVA shows significant interaction between genotype and treatment with F₃,₃₀=13; p<0.0001) and U99194 (30 and 60 mg/kg, i.p.) (two-way ANOVA shows significant interaction between genotype and treatment with F₃,₃₄=3.02; p<0.05) significantly attenuated the hyperactivity of DAT KO mice without significantly altering the activity of WT mice. Reboxetine (an analogue of atomoxetine, a non-stimulant drug with proven efficacy in patients with ADHD) was also studied. Under these conditions, reboxetine significantly decreased locomotor hyperactivity of the DAT KO mice at doses of 5 and 10 mg/kg, i.p. without affecting levels of activity of WT mice (two way ANOVA shows significant interaction between genotype and treatment of F₂,₆₁=5.1; p<0.001).
Discussion

The present report provides a new method for determining \textit{in vivo} receptor occupancy of dopamine D$_3$ receptors, the first to utilize an antagonist ligand and a technique that does not require radioactivity. The method capitalizes upon the acceptable tracer characteristics of epidepride for D$_3$ receptors in combination with the selective expression of D$_3$ receptor in lobules 9 and 10 of the cerebellum. \textit{In vivo} receptor occupancy was readily measured by comparison of the binding of epidepride to lobules 9 and 10 of cerebellum with nonspecific binding in the lateral cerebellum. A powerful addition to the present method was the ability to simultaneously measure the occupancy of D$_2$ receptors in the same rats by comparisons of epidepride binding in dorsal striatum vs. cerebellum. Although with more painstaking efforts, simultaneous D$_2$ and D$_3$ receptor occupancy can be measured by the agonist radioligand $[^{11}\text{C}]$-PHNO, a second radioligand (e.g., ^{3}H-raclopride) is often employed for establishment of dopamine D$_2$ occupancy (Kiss et al., 2011). Availability of a method for detection of the occupancy of D$_3$ receptor ligands to D$_3$ receptors and their selectivity for the closely related D$_2$ receptors, as described here, provides another important tool for making inroads into the discovery and development of novel dopamine D$_3$ receptor compounds. By leveraging the LC-MS/MS version of this technique, simultaneous measurements were possible linking occupancy at multiple central receptor sites. Additionally, this technique alleviates the costs associated with using radioactive ligands and increases the speed of compound evaluation relative to similar recently published techniques (Kiss, 2011).

Using these methods, we determined that both SB-277011A and U99194 can achieve significant occupancy of D$_3$ receptors in rat brain upon systemic administration. Further, both SB-277011A and U99194 can selectively occupy D$_3$ over D$_2$ receptors. SB-277011A was more potent than U99194 \textit{in vivo} in accord with its higher affinity for D$_3$ receptors. Significant D$_3$ receptor occupancy (\sim60\%) was
achieved at 3 mg/kg SB-277011A and 90% occupancy was observed at 10 mg/kg. In contrast, U99194 was about 10-fold less potent in occupying D₃ receptors and at the highest dose tested of 30 mg/kg only occupied ~80% of the D₃ sites. In addition, SB-277011A was more selective for D₃ than D₂ receptors. At the lowest dose of each molecule that occupied at least 80% D₃ receptors, the occupancy of D₂ receptors by SB-277011A was <5%, whereas the occupancy of D₂ receptors by U99194 was about 20%.

The ability to measure occupancy of receptors in vivo is key to defining the relationship of target engagement to biological effect. The receptor occupancy data on these molecules extends the limited findings in the published literature. The occupancy of D₃ receptors in vivo by SB-277011A is thus consistent with one dose-response finding reported with an agonist radioligand (Rabiner et al., 2009). We cannot find any data in the literature on the occupancy of dopamine receptors in vivo by U99194. Our current data on U99194 is a key testament to the need for such in vivo target engagement bioassays in assessing the value of research tools. It is generally appreciated that high in vitro potency or selectivity do not necessarily translate in vivo (e.g., Pearchon et al., 2000). Although SB-277011A is 100-fold selective for D₃ receptors in its binding profile over D₂ receptors (Reavill et al., 2000), U99194 is only 20-fold selectivity (Waters et al., 1993), suggesting that the compound at higher doses will cross over significantly to D₂ receptors in vivo. Indeed, it is often assumed that low potency or selectivity in vitro translates to poor potency or selectivity in vivo. However, the high occupancy of D₃ receptors by U99194 at 60 mg/kg (81%) and the ability of U99194 to block a D₃-mediated behavioral effect (Collins et al., 2005) indicate that the low selectivity of this molecule in vitro is less of a liability than previously supposed.

Both of the D₃ receptor antagonists studied produced large increases in ACh efflux in medial prefrontal cortex of rats as did the ADHD medication atomoxetine (Tzavara et al., 2006a). Lacroix et al. (2003) had also reported increases in ACh efflux measured from rat cingulate cortex. In order to
understand these effects further we examined ACh and choline tissue levels and determined the ratio of choline/ACh that is considered a measure of ACh turnover rate in three brain areas (hippocampus, striatum, and cortex). Both D3 receptor antagonists dose-dependently decreased ACh tissue levels, probably due to its enhanced release, and increased ACh turnover rate, most likely due to an increase in its synthesis and release, in all three brain regions studied. Combined, these neurochemical results, thus, demonstrate that the two D3 receptor antagonists given at doses that engage the receptor, stimulate ACh release and synthesis in the brain captured by both in vivo and ex vivo methods. To the best of our knowledge the effects of D3 receptor blockade on brain tissue levels of ACh and choline have not previously been reported. Importantly, the fact that the effects on tissue ACh and choline levels mirror the findings in ACh efflux in response to D3 receptors antagonists offers an additional robust and reliable tool in the study of neurochemical coupling to dopamine D3 receptor blockade in the brain.

Corresponding to the increases in cortical ACh and increases in brain ACh turnover, the dopamine D3 receptor antagonists prevented the effects of scopolamine in a novel object recognition task while occupying D3 receptors. The positive effects of both compounds in this behavioral model of cognitive impairment that are associated with enhancements in ACh function in the brain were also observed with reboxetine, an analog of the ADHD-treatment drug atomoxetine, which also prevents scopolamine-induced deficits (Tzavara et al., 2006a). SB-277011A also enhanced the effects of reboxetine in this task. In addition, U99194 enhanced the learning of rats in a 5-trial shuttle box procedure also sensitive to the ADHD drug methylphenidate and to reboxetine (present study) as well as to other pro-cognitive mechanisms (e.g., Fox et al., 2003). These findings implicate D3 receptors as negative regulators of attentional processing and are consistent with a literature of cognitive improvements with D3 receptor antagonism (Laszy et al., 2005; Braszko et al., 2010; Micale et al., 2010) that oppose cognitive deficits impacted by D3 receptor agonists (Smith et al., 1999).
2004; Bombin et al., 2008) and D₃ receptor blockade might be associated with some of the beneficial cognitive impacting effects of atypical antipsychotic agents and of selective D₃ receptor antagonists (Lacroix et al., 2003; Lumme et al., 2007; Millan and Brocco, 2008). However, clinical data also have suggested cognitive benefit from the anti-Parkinson D₃/2 receptor agonist pramipexole (Levin et al., 2009).

In vivo models for predicted drug efficacy in ADHD are imperfect. However, although no disease models exist, multiple in vivo readouts do detect effects of drugs used in ADHD therapeutics such as methylphenidate, *d*-amphetamine, and atomoxetine (Wickens et al., 2011). In the present study, effects on cognitive aspects of the disorder including attentional deficits were studied in rats, where methylphenidate and the atomoxetine analog, reboxetine, were used as positive controls. Modeling of the hyperactivity symptoms of ADHD has utilized the dopamine transporter (DAT) -/- mouse. Indeed, several genetic studies show an association between a polymorphism in the non-coding regions of the DAT gene and ADHD, suggesting that DAT-mediated processes could significantly contribute to the pathogenesis of this disorder. In the DAT KO mice, a five-fold increase in extracellular DA in the brain is associated with dramatic hyperactivity. This hyperactivity, paradoxically, is inhibited by psychostimulants, like amphetamine and methylphenidate, thereby providing a simple model in which the effects of ADHD pharmacological agents can be assessed (Gainetdinov and Caron, 2003).

In the present study, we showed that the ADHD drugs *d*-amphetamine and reboxetine decreased the profound hyperactivity of DAT -/- mice. This dampening effect was also observed with two structurally distinct D₃ receptor antagonists SB-277011A and U99194. In contrast to *d*-amphetamine but comparable to that of reboxetine, the D₃ antagonists produced this effect in DAT -/- mice without stimulating locomotion in WT control mice (DAT +/+). Thus, in conjunction with the binding to D₃ receptors, the subsequent rise in ACh efflux in the medial prefrontal cortex, augmentation of ACh turnover rate, reversal of the cognitive impairments induced by the known amnestic drug scopolamine,
and the augmentation of the pro-cognitive effects of reboxetine, these anti-hyperactivity data support the potential application of dopamine D₃ receptor antagonists in the treatment of ADHD.

Despite the potential therapeutic applications of dopamine D₃ receptor antagonists, there are no selective drugs approved for clinical use. The present findings combined with other data discussed above, encourage further discovery and development on this interesting biological mechanism. The promise of bringing such compounds into clinical use (Micheli and Heidbreder, 2006) has also been improved recently by the identification of a crystal structural complex of D₃ receptors with eticlopride (Chien et al., 2010).
Acknowledgements

We thank Dei Zhang for help in chemical synthesis and Dr. H. C. Fibiger for encouragement in this area.
Author Contributions

Contributed new reagents or analytic tools: A. M. Johansson

Wrote or contributed to the writing of the manuscript: V. Barth, A. B. Need, E. T. Tzavara, B. Giros, C. Overshiner, S. D. Gleason, M. Wade, A. M. Johansson, K. Perry, G.G. Nomikos, and J. M. Witkin
References

Footnotes

A portion of the data presented were previously presented in abstract form at the American College of Neuropsychopharmacology, 2005.
Legends for Figures

Figure 1. Structures of epidepride, SB-277011A and U99194.

Figure 2. Occupancy of dopamine D₃ and D₂ receptors by SB-277011A (s.c.) and U99194 (i.p.). Rats were injected with the D₃ antagonists and 60 min later, epidepride was administered at 3 µg/kg (i.v.) followed by a 40 minute survival interval. Occupancy of D₃ and D₂ receptors were then determined as described in Methods. The percent occupancy of D₂ receptors is represented by the horizontal line within each bar. Data represent the mean ± SEM of 5-6 rats.

Figure 3. Temporal effects of SB-277011A and U99194 on microdialysate levels of acetylcholine (ACh) from the medial prefrontal cortex of rats. Data in inserts represent the overall average effects on ACh levels. Each point represents the mean ± SEM of 5-6 rats. * p< 0.05 compared to vehicle.

Figure 4. Effects of SB-277011A on tissue levels of acetylcholine (ACh), choline and the ratio choline/ACh in the hippocampus, cortex and striatum of rats. Each point represents the mean ± SEM of 6 rats. * p< 0.05, ** p< 0.01 compared to vehicle (0 mg/kg).

Figure 5. Effects of U99194 on tissue levels of acetylcholine (ACh), and choline and the ratio choline/ACh in the hippocampus, cortex and striatum of rats. Each point represents the mean ± SEM of 6 rats. * p< 0.05, ** p< 0.01, *** p< 0.001 compared to vehicle (0 mg/kg).

Figure 6. Effects of methylphenidate, reboxetine, SB-277011A and U99194 on the acquisition of behavior of male Sprague-Dawley rats. All compounds were dosed i.p., 30 min prior to testing. Each point represents the mean ± SEM of 7-10 rats. Solid circles represent vehicle values. Methylphenidate: open circles= 1 mg/kg; inverted triangle=3 mg/kg.
Reboxetine: inverted triangle = 3 mg/kg; triangle = 10 mg/kg. SB-277011A: inverted triangle = 10 mg/kg; triangle = 30 mg/kg. U99194: inverted triangle = 10 mg/kg; triangle = 30 mg/kg.

Figure 7. Effects of reboxetine, SB-277011A and U99194 on scopolamine-disrupted novel object recognition performances of rats. Each bar represents the mean ± SEM of 6-8 rats. Statistical comparisons were made by Dunnett’s test after significant ANOVA with p<0.05 indicated by * compared to scopolamine.

Figure 8. Augmentation of the behavioral effects of reboxetine by SB-277011A on novel object recognition of rats after scopolamine disruption. SB-277011A (i.p.) was given alone 40 min prior to testing or with reboxetine (3 mg/kg, s.c. + 40 min) and tested against a scopolamine challenge (1 mg/kg, s.c. + 30 min). Each bar represents the mean ± SEM of 4 rats. Statistical comparisons were made by Dunnett’s test after significant ANOVA with p<0.05 indicated by * compared to vehicle (v); # compared to scopolamine (s); $ compared to reboxetine (r) + scopolamine.

Figure 9. Effects of d-amphetamine, reboxetine, and the dopamine D3 receptor antagonists U99194 and SB-277011A (d) and on locomotor activity of DAT -/- (KO mice)(unfilled bars) or DAT +/- (WT mice)(filled bars). Results represent total horizontal locomotor activity (ambulations) over a 60 min period. Each bar represents the mean ± SEM of mice (n=5-7 for SB-277011A and U99194; 7-11 for d-amphetamine, and 6-18 mice/group for reboxetine). *p<0.05; **p<0.01; ***p<0.001 as compared to vehicle of the same genotype.
Figure 1
Figure 2

This article has not been copyedited and formatted. The final version may differ from this version.

JPET Fast Forward. Published on November 29, 2012 as DOI: 10.1124/jpet.112.198895

at ASPET Journals on May 27, 2022 jpet.aspetjournals.org Downloaded from
Figure 3
Figure 4

[Graphs showing changes in ACh, Choline, and Choline/ACh Ratio with SB-277011A (0, 10, 30, 60 mg/kg, i.p.) treatment.]
Figure 5

ACh (nmol/g tissue)

Choline (nmol/g tissue)

Choline / ACh Ratio

U99194A (0, 30, 60 mg/kg, i.p.)

Hippocampus
Cortex
Striatum

** ***
** ***
*

This article has not been copyedited and formatted. The final version may differ from this version.
Figure 6

This article has not been copyedited and formatted. The final version may differ from this version.

JPET Fast Forward. Published on November 29, 2012 as DOI: 10.1124/jpet.112.198895

at ASPET Journals on May 27, 2022 jpet.aspetjournals.org Downloaded from
Figure 7
Figure 8

% time exploring new object B

Treatment

veh s 1/s 3/s v/r/s 1/r/s 3/r/s

56 68 # $ 56 68 # $
Figure 9