Effects of Ritobegron (KUC-7483), a Novel Selective β3-Adrenoceptor Agonist, on Bladder Function in Cynomolgus Monkey

Itaru Maruyama, Satoshi Tatemichi, Yoshiaki Goi, Kazuyasu Maruyama, Yuji Hoyano,
Yoshinobu Yamazaki, and Hiroshi Kusama

Central Research Laboratories., Kissei Pharmaceutical Co., Ltd., Azumino, Nagano,
Japan

Running title: Ritobegron on Bladder Function in Cynomolgus Monkey

Corresponding author:
Itaru Maruyama, Discovery Research Laboratory, R&D, Kissei Pharmaceutical Co., Ltd., 4365-1, Kashiwabara, Hotaka, Azumino-City, Nagano-Pref. 399-8304, Japan.
Tel: +81-263-82-8820
Fax: +81-263-82-8827
E-mail: itaru_maruyama@pharm.kissei.co.jp

Number of text pages: 32
Number of tables: 2
Number of figures: 6
Number of references: 26
Number of words in Abstract: 222
Number of words in Introduction: 349
Number of words in Discussion: 988
Abbreviations: AR, adrenoceptor; OAB, overactive bladder; CCh, carbamoylcholine chloride

Section: Gastrointestinal, Hepatic, Pulmonary, and Renal
ABSTRACT

We evaluated the pharmacological profile of ritobegron (KUC-7483; (-)-ethyl 2-[4-(2-((1S,2R)-2-hydroxy-2-(4-hydroxyphenyl)-1-methylethyl)amino)ethyl]-2,5-dimethylphenyloxy]acetate monohydrochloride) and its effects on the bladder in cynomolgus monkeys, by in vitro and in vivo experiments. In vitro, ritobegron decreased the resting tension of the isolated bladder in a concentration-dependent manner (EC$_{50}$: 8.2 ± 2.3 × 10$^{-7}$ M; maximal relaxation : 88.7 ± 3.7%). The β$_3$-adrenoceptor (AR) antagonist SR58894A produced a rightward-shift of this concentration-response curve without altering the maximal response [pK$_B$ value, 6.56 ± 0.35]. In isolated atria, ritobegron increased the atrial rate only at high concentrations (EC$_{50}$: 6.5 ± 1.2 × 10$^{-5}$ M). Ritobegron had no effect on tracheal contraction at concentrations from 10$^{-9}$ M to 10$^{-4}$ M, and even at the highest concentration tested, 10$^{-3}$ M, the maximal relaxation it induced was only 26.7 ± 8.1%. Tests of the selectivity of ritobegron for the bladder gave values of 79.3-fold and 1200-fold higher versus atria and trachea, respectively. In the in vivo study, ritobegron significantly decreased intravesical pressure (ED$_{50}$ value, 1.44 mg/kg) without affecting either mean blood pressure or heart rate. In conclusion, ritobegron displayed potent and selective β$_3$-AR agonistic activity, and relaxed the monkey isolated bladder, and in vivo it decreased intravesical pressure without affecting
cardiovascular parameters. These results suggest that ritobegron may be a promising potential agent for the treatment of overactive bladder.
INTRODUCTION

Overactive bladder (OAB) is a common condition that is characterized by urgency, often accompanied by increased daytime frequency, nocturia, and sometimes by urge incontinence (Abrams et al., 2002). Anti-muscarinic drugs have been widely used for the treatment of OAB. However, these drugs can have severe side effects (dry mouth, constipation, blurred vision) and have the potential to cause voiding difficulty in a patient with a poorly contractile bladder. Thus, there is an urgent need for new therapeutic drugs with alternative mechanisms of action.

The urinary bladder is innervated by both the sympathetic and parasympathetic nervous systems, and sympathetic activation contributes to urine storage by relaxing the bladder smooth muscle via activation of β-adrenoceptors (ARs)(Andersson KE, 1999). β-ARs are currently classified into β₁-, β₂-, and β₃-AR subtypes (Bylund et al., 1994), and there are species differences in the subtypes involved in the relaxation of the mammalian bladder. For example, in cat (Nergardh et al., 1977) and guinea pig (Li et al., 1992) relaxation of the bladder is mainly mediated via β₁-AR, in rabbits (Anderson and Marks, 1984; Levin et al., 1988; Yamazaki et al., 1998) via β₂-AR, in rats (Yamazaki et al., 1998) and pigs (Yamanishi et al., 2002) via both β₂-AR and β₃-AR, and in ferrets (Takeda et al., 2000) and dogs (Yamazaki et al., 1998) via β₃-AR. Furthermore, in
primates such as cynomolgus monkeys (Takeda et al., 2002a) and humans (Igawa et al., 1998, 1999; Yamazaki et al., 1998; Takeda et al., 1999) bladder relaxation is reportedly mediated via β_3-AR, with 97% of the total β-AR mRNA in humans being of the β_3-AR subtype (Yamaguchi, 2002; Nomiya and Yamaguchi, 2003). This evidence indicates that the cynomolgus monkey is an appropriate species for the evaluation of the effects of selective β_3-AR agonists on bladder function.

Ritobegron (KUC-7483) is a phenoxyacetic acid derivative (Tanaka et al., 2001) that was synthesized and developed by Kissei Pharmaceutical Co. Ltd. as a novel selective β_3-AR agonist. In this study, we evaluated its pharmacological profile and its effects on the bladder in the cynomolgus monkey, by means of $\textit{in vitro}$ and $\textit{in vivo}$ experiments.
Methods

Animals. This study was conducted according to guidelines approved by the Laboratory Animal Committee of Kissei Pharmaceutical Co. Ltd. Male and female cynomolgus monkeys (2-5 kg; Toyota Tsusho Corporation, Tokyo, Japan) were used in this study. All monkeys were housed individually at a stable temperature and humidity under a 12 h light-dark cycle, and they were maintained with free access to water and standard laboratory food until the day of the experiment.

In vitro experiments. Monkeys were anesthetized with ketamine (10 mg/kg, intramuscular) and sacrificed by rapid exsanguination. The heart, trachea, and urinary bladder were then isolated. After removal of the fat and mucosa, the ventricles were removed from the heart, and the atria were prepared for experimentation. The trachea was cut into about 10 rings, each 2 mm in length, and these were appropriately prepared. The urinary bladder was opened longitudinally. After removal of the mucosa, a bladder preparation approximately 10 × 3 mm was prepared. Atria were suspended in a 20 mL organ bath, and other preparations in a 10 mL organ bath, each time containing Krebs solution. This bath solution was maintained at 37 °C and continuously gassed with a mixture of 95% oxygen and 5% carbon dioxide. Each preparation was connected to a force-displacement transducer (SB-1T; Nihon-Kohden, Tokyo, Japan) for continuous monitoring.
recording on a rectigragh (Recti-Horiz-8K; NEC San-ei, Tokyo, Japan). The preparations were allowed to equilibrate for 60 min after the establishment of an initial resting tension of 10 mN. After the basal tone had stabilized, we evaluated experimentally induced effects on bladder resting tension. In the case of the trachea, carbamoylcholine chloride (CCh) was added to induce contraction, then concentration-response curves were obtained for each preparation by cumulative addition of the appropriate drug to the bathing fluid.

To test the antagonistic potencies of β-AR antagonists against ritobegron, appropriate antagonist(s) (CGP-20712A, ICI-118551, and/or SR58894A) were added to the bath 60 min before the addition of ritobegron. Concentration-response curves for ritobegron were thus obtained in the presence of the antagonist. Only one agonist concentration-curve was generated per preparation. All experiments were conducted in the presence of 10^{-6} M phentolamine (to block α-ARs), 5 \times 10^{-7} M desipramine and 3 \times 10^{-5} M hydrocortisone (to block neuronal and extraneuronal uptake of catecholamines).

In vivo experiments. Monkeys were initially anesthetized with ketamine (10 mg/kg, intramuscular). Then, after tracheal intubation, they were connected to a respirator (SN-480-5; Shinano Seisakusyo, Tokyo, Japan: 10 ml/kg, 20 strokes/min) and anesthetized with 1.5% enflurane. A cannula (PE-90; Nihon Becton Dickinson, Tokyo,
Japan) filled with heparin-physiological saline solution (20 U/mL) was inserted into the right femoral artery, the other end being led to a transducer amplifier (1829; NEC San-ei, Tokyo, Japan) for blood pressure measurement via a pressure transducer (DT-XX, Nihon Becton Dickinson). Heart rate was measured via a tachometer (1321; NEC San-ei, Tokyo, Japan) connected to the transducer amplifier. A cannula (PE-90; Nihon Becton Dickinson, Tokyo, Japan) filled with physiological saline solution was inserted into the duodenum for intraduodenal drug administration. Through a midline abdominal incision, the ureter on each side and the proximal urethra were ligated, and a polyethylene catheter (PE-50; Nihon Becton Dickinson, Tokyo, Japan) was inserted into the urinary bladder via the top of the bladder dome, then connected through a three-way connector to a pressure transducer and a syringe filled with saline. The initial bladder pressure was adjusted to about 5 cmH₂O by instillation of warmed saline (37 °C) in 5 mL increments. Blood pressure, heart rate, and intravesical pressure were recorded continuously on a rectigraph. At the end of each experiment, isoproterenol (0.1 mg/kg, i.v.) was administered to obtain the maximal intravesical pressure response.

Analysis of data. In the *in vitro* experiments, drug effects on the isolated bladder and trachea were expressed as a percentage of the maximal relaxation response to 10^{-5} M forskolin, while drug effects on atria were expressed as the difference between before
and after drug treatment. The EC$_{50}$ value was calculated for each agonist from its concentration-response curve. Bladder selectivities versus atria and trachea were calculated by comparison with the relevant EC$_{50}$ value. The pK$_B$ value was then calculated using the following formula: pK$_B$=log (CR-1)−log [antagonist], where CR is the ratio of the EC$_{50}$ values obtained in the presence and absence of antagonist. In the in vivo experiments, drug effects on intravesical pressure were expressed relative to the maximal response to isoproterenol (0.1 mg/kg, i.v.) (see legend to Fig. 6). Drug effects on blood pressure and heart rate were assessed as the difference between before and after drug administration.

All results are expressed as mean ± standard error (SE). Statistical analysis was performed using a one-way analysis of variance (ANOVA) followed by Dunnett’s multiple comparison test. A probability less than 0.05 was accepted as significant. The SAS system (version 4.1; SAS Institute, Cary, NC, USA) was used as the resource text for the statistical analysis.

Drugs. Ritobegron (KUC-7483; (-)-ethyl 2-[4-(2-[(1S,2R)-2-hydroxy-2-(4-hydroxyphenyl)-1-methylethyl]amino)ethyl]-2,5-dimethylphenyloxy]acetate monohydrochloride) is a prodrug, so in the in vitro studies we used the active form (KUC-7322; (-)-2-[4-(2-[(1S,2R)-2-hydroxy-2-(4-hydroxyphenyl)
-1-methylethyl]amino}ethyl)-2,5-dimethylphenyloxy]acetic acid), but in the *in vivo* study we used KUC-7483 itself. Ritobegron, its active form (KUC-7322), CL316,243 ((R,R)-5-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]-amino]propyl]-1,3-benzodioxole-2,2-dicarboxylate), and SR58894A (3-(2-allylphenoxy)-1-[(1S)-1,2,3,4-tetrahydronaphth-1-ylamino]-(2S)-2-propanol hydrochloride) were all synthesized in our laboratory (Kissei Pharmaceutical Co. Ltd., Nagano, Japan). The following drugs were obtained from commercial sources: (-)-isoprenaline (+)-bitartrate, phentolamine hydrochloride (Isoproterenol), CCh, hydrocortisone 21-hemisuccinate, and desipramine hydrochloride (Sigma-Aldrich, St. Louis, MO, USA), dimethylsulfoxide (DMSO), 1 N NaOH, and arabic gum (Nacalai tesque, Kyoto, Japan), sodium heparin (Aventis Pharma Japan, Tokyo, Japan), forskolin (Wako, Osaka, Japan), and CGP-20712A ((±)-2-hydroxy-5-[2-[[2-hydroxy-3-[4-[1-methyl-4-(trifluoromethyl)-1H-imidazol-2-yl] phenoxy]propyl]amino]ethoxy]-benzamide methanesulphonate) and ICI-118551 ((±)-1-[(2,3-dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(1-methylethyl)amino]-2-butanol hydrochloride) (Funakoshi, Tokyo, Japan). The Krebs solution was of the following composition (mM): NaCl 118.1, KCl 4.7, CaCl₂ 2.5, MgSO₄ 1.2, NaHCO₃ 25.0, KH₂PO₄ 1.2, and glucose 11.1 (pH7.4). For the *in vitro* study, the active form
(KUC-7322) was dissolved in distilled water containing 2 equivalents of NaOH. SR58894A was dissolved in 10% DMSO, while forskolin and hydrocortisone 21-hemisuccinate were dissolved in 100% DMSO, and the other drugs were dissolved in distilled water. The reported concentrations are the calculated final concentrations in the bath solution. For the in vivo study, ritobegron was suspended in 0.5% arabic gum in distilled water; the other drugs were dissolved in saline.
Results

Effect of ritobegron on monkey bladder. The chemical structures of ritobegron (KUC-7483) (A), KUC-7322 (B), CL316,243 (C), and isoproterenol (D) are shown in Fig. 1. KUC-7322 is the active form of ritobegron. Ritobegron decreased the resting tension of the isolated bladder in a concentration-dependent manner (Figs. 2 and 3). Isoproterenol (nonselective β-AR agonist) and CL316,243 (selective β3-AR agonist) also decreased the resting tension of the isolated bladder, each in a concentration-dependent manner (Fig. 3).

The EC50 values obtained for ritobegron, isoproterenol, and CL316,243 were 8.2 ± 2.3 × 10^-7, 1.9 ± 0.9 × 10^-7, and 5.5 ± 3.1 × 10^-6 M, respectively (Table 1). The rank order of their relaxing potencies was isoproterenol > ritobegron > CL316,243. The maximal relaxant effects of ritobegron, isoproterenol, and CL316,243 were 88.7 ± 3.7, 94.2 ± 4.3, and 73.9 ± 6.7%, respectively (Table 1).

Antagonism by subtype-selective β-AR antagonists of ritobegron-induced relaxation in isolated monkey bladder. In the isolated bladder, addition of the selective β1-AR antagonist CGP-20712A (10^-7 M) plus the selective β2-AR antagonist ICI-118551 (10^-7 M) had no effect on the relaxation induced by ritobegron (Fig. 4A). In the combined presence of CGP-20712A and ICI-118551, the β3-AR antagonist
SR58894A (3 × 10⁻⁶ M) produced a rightward-shift of the concentration-response curve for ritobegron without altering the maximal response (Fig. 4B). The pKᵦ value obtained for SR58894A was 6.56 ± 0.35 (Fig. 4B).

Effects of ritobegron and isoproterenol on isolated atrial rate and isolated trachea precontracted with CCh. Both ritobegron and isoproterenol concentration-dependently increased atrial rate (Fig. 5A). The EC₅₀ values for ritobegron and isoproterenol were 6.5 ± 1.2 × 10⁻⁵ M and 2.2 ± 0.2 × 10⁻⁹ M, respectively (Table 2). Isoproterenol produced concentration-dependent relaxation of tracheas precontracted with 10⁻⁷ M CCh (Fig. 5B), the EC₅₀ value being 1.6 ± 0.4 × 10⁻⁷ M. In contrast, ritobegron had no such effect at between 10⁻⁹ M and 10⁻⁴ M (Fig. 5B). Even at the highest concentration tested, 10⁻³ M, the maximal tracheal relaxation induced by ritobegron was only 26.7 ± 8.1%, indicating an EC₅₀ value of 10⁻³ M or more (Table 2). Ritobegron was about 30,000 times less potent than isoproterenol in these two tissues (Table 2).

Bladder selectivity of ritobegron. The selectivity of ritobegron for the bladder was 79.3-fold higher versus the atria, and more than 1200-fold higher versus the trachea (Table 2). Ritobegron displayed much higher selectivity for the bladder than isoprotrenol (actually, isoproterenol did not display any bladder selectivity) (Table 2).

Effects of ritobegron in anesthetized monkey. The mean values obtained for
intravesical pressure before administration of ritobegron were not significantly different among the groups. Ritobegron, at a dose of 0.3 mg/kg, had no evident effects on intravesical pressure (Fig. 6A). However, from 1 to 10 mg/kg it significantly decreased the intravesical pressure (Fig. 6A). The ED$_{50}$ value obtained for ritobegron at 90 min after its administration was 1.44 mg/kg. Ritobegron had no effects on either mean blood pressure or heart rate (Fig. 6, B and C). At the end of experiments, the effects of intravenous administration of isoproterenol (0.1 mg/kg) on mean blood pressure and heart rate were assessed in each treated group. Isoproterenol reduced mean blood pressure by 25.92 mmHg (vehicle group), 35.83 mmHg (ritobegron 0.3 mg/kg group), 37.25 mmHg (ritobegron 1 mg/kg group), 38.87 mmHg (ritobegron 3 mg/kg group), and 33.59 mmHg (ritobegron 10 mg/kg group). Heart rate was increased by isoproterenol by 57.89 beats/min, 44.12 beats/min, 44.77 beats/min, 36.55 beats/min, and 58.03 beats/min, respectively, in those groups.
Discussion

In the present in vitro and in vivo experiments, we evaluated the pharmacological profile of the novel selective \(\beta_3 \)-AR agonist ritobegron and its effects on the cynomolgus monkey bladder.

It has been reported that in primates such as cynomolgus monkey (Takeda et al., 2002a) and humans (Igawa et al., 1998, 1999; Yamazaki et al., 1998; Takeda et al., 1999), bladder relaxation is mediated via \(\beta_3 \)-AR, and that in humans, 97% of total \(\beta \)-AR mRNA is represented by the \(\beta_3 \)-AR subtype (Yamaguchi, 2002; Nomiya and Yamaguchi, 2003). For the above reason, in this study we used the cynomolgus monkey to evaluate the potential usefulness of ritobegron as a drug with beneficial effects on bladder function.

In the first in vitro experiment, we examined the relaxing effects of ritobegron, isoproterenol, and CL316,243. While all three drugs decreased the resting tension of the isolated bladder, the slopes of their concentration-response curves were different from each other. It has been reported that \(\beta_3 \)-AR agonists (BRL37344, CL316,243) induce responses with a slower onset than that to isoproterenol (Roberts et al., 1999). Therefore, it seems reasonable that the slopes of the curves differed, depending on the drug. The maximal relaxation to ritobegron was equivalent to that induced by isoproterenol, and
both agents displayed full agonistic activities. In contrast, CL316,243 had a relatively weak relaxing effect, its EC₅₀ value being about 7 times higher than that of ritobegron. Moreover, CL316,243 displayed evidence of partial agonistic activity, with the maximum relaxing effect even at the highest concentration being only 73.9%. These results are consistent with previous reports that classical selective β₃-AR agonists, such as CL316,243 and BRL37344, exhibit partial agonistic activities in both the monkey and human bladder at the same concentration as the maximum concentration employed in this study (1 × 10⁻⁴ M). (Takeda et al., 2002a; Igawa et al., 1999, 2001). The above results suggest that in humans, ritobegron might produce sufficient bladder relaxation and be more potent than classical β₃-AR agonists.

In the second in vitro experiment, we tried, by using subtype-specific β-AR antagonists, to determine which β-AR subtypes might be involved in the ritobegron-induced bladder relaxation. The relaxing effect of ritobegron was not antagonized by either CGP-20712A (10⁻⁷ M) or ICI-118551 (10⁻⁷ M), even though at that concentration they occupy virtually all β₁- or β₂-AR, respectively (Takeda et al., 2002a). Thus, neither β₁-nor β₂-AR would appear to be involved in ritobegron-induced bladder relaxation in the cynomolgus monkey. In contrast, in the combined presence of CGP-20712A and ICI-118,551, the selective β₃-AR antagonist SR58894A effectively antagonized the
ritobegron-induced bladder relaxation, with the pK_B value being 6.56. This pK_B value is comparable to the pA_2 value of 6.24 obtained for isoproterenol-induced relaxation of the human bladder, an effect that is known to be mediated predominantly through \(\beta_3 \)-AR (Igawa et al. 1999). On those grounds, the ritobegron-induced cynomolgus monkey bladder relaxation would appear to be mediated via \(\beta_3 \)-AR.

In view of the above interpretation, and since monkey bladder relaxation has previously been reported to be mediated via \(\beta_3 \)-AR (Takeda et al., 2002a), we performed the third in vitro experiment to estimate the \(\beta_3 \)-AR subtype-selectivity of ritobegron. To this end, bladder selectivity was evaluated using the pharmacologically characterized atrium (\(\beta_1 \)-AR subtype) and trachea (\(\beta_2 \)-AR subtype). The bladder selectivity of ritobegron was 79.3-fold higher and more than 1200-fold higher versus atria and trachea, respectively. Thus, ritobegron is highly selective for the \(\beta_3 \)-AR subtype, which is found in the monkey and human bladder. Unfortunately, we do not have data obtained using recombinant human \(\beta \)-AR, and to elucidate the effect on the human bladder would require such experimentation.

Finally, in the in vivo experiment we established that in anesthetized monkeys, ritobegron significantly decreased intravesical pressure without affecting either mean blood pressure or heart rate. These results are consistent with previous reports that
selective β3-AR agonists improve bladder functions in rats with minimal effects on the cardiovascular system (Takeda et al., 2000, 2002b; Kaidoh et al., 2002). Moreover, when we measured the plasma concentration of ritobegron in cynomolgus monkeys that had received an intraduodenal administration of 1, 3, or 10 mg/kg, the maximum plasma values we obtained were 3.7 × 10^{-7}, 1.3 × 10^{-6}, and 4.4 × 10^{-6} M, respectively (data not shown). Comparing these plasma concentrations to the concentrations used to obtain the *in vitro* results suggests that the latter results are well in line with our *in vivo* results. Actually, the concentration achieved in the plasma following administration of 1 mg/kg of ritobegron (viz. 3.7 × 10^{-7} M) was enough to induce relaxation of the isolated bladder. In addition, 4.4 × 10^{-6} M (the plasma concentration achieved by giving 10 mg/kg of ritobegron) did not induce a β1- or β2-AR-mediated effect in the present isolated tissues. Therefore, even at the highest dose used here, 10 mg/kg of ritobegron, the heart rate elevation and blood pressure reduction attributed to β1- and β2-AR (Brodde, 1988; Ferro et al., 1993) did not occur in our *in vivo* study. Thus, we demonstrated that because of its high selectivity for β3-AR, ritobegron decreased intravesical pressure in our monkeys without affecting cardiovascular parameters.

There is compelling *in vivo* evidence to support selective β3-AR agonists improving the urine-storage function in rat models in which bladder overactivity is induced by
bladder-outlet obstruction (Woods et al., 2001), intravesical infusion of prostaglandin E₂ (Takeda et al., 2002b), or cerebral infarction (Kaidoh et al., 2002). In a cystometric study in rats, selective β₃-AR agonists significantly prolonged micturition interval and increased bladder capacity without affecting voiding functions (Takeda et al., 2000). Collectively, these pieces of evidence predict a useful role for β₃-AR agonists in the treatment of OAB.

In conclusion, our data indicated that ritobegron has potent and selective β₃-AR agonistic activity and that it relaxes the isolated monkey bladder via β₃-AR. Moreover, in vivo ritobegron decreased intravesical pressure without affecting cardiovascular parameters. To judge from these results, ritobegron shows promise as a potential agent for the treatment of OAB.

Authorship Contributions

Participated in research design: Itaru Maruyama, Satoshi Tatemichi, Yoshiaki Goi, Yoshinobu Yamazaki

Conducted experiments: Itaru Maruyama, Satoshi Tatemichi, Yoshiaki Goi, Yoshinobu Yamazaki

Performed data analysis: Itaru Maruyama, Satoshi Tatemichi, Yoshiaki Goi, Yoshinobu Yamazaki
Yamazaki

Wrote or contributed to the writing of the manuscript: Itaru Maruyama, Satoshi Tatemichi, Kazuyasu Maruyama, Yuji Hoyano, Yoshinobu Yamazaki, and Hiroshi Kusama
References

Nergardh A, Boreus LO, and Naglo AS (1977) Characterization of the adrenergic

Figure legends

Fig. 1. Chemical structures of ritobegron (KUC-7483) (A), KUC-7322 (B), CL316.243 (C), and isoproterenol (D). KUC-7322 is the active form of ritobegron.

Fig. 2. Typical tracing of the effect of ritobegron on resting tension in isolated cynomolgus monkey bladder. Concentrations of ritobegron are shown as log M. Forskolin was applied at 10^{-5} M.

Fig. 3. Effects of ritobegron, isoproterenol, and CL316,243 on resting tension in isolated cynomolgus monkey bladder. Data are expressed as a percentage of the maximal relaxation response to 10^{-5} M forskolin. Data represent the mean ± S.E. from 5 experiments.

Fig. 4. Antagonism by subtype-selective β-AR antagonists of ritobegron-induced relaxation in cynomolgus monkey bladder.

Data are expressed as a percentage of the maximal relaxation response to 10^{-5} M forskolin. Data represent the mean ± S.E. from 7 experiments.
Fig. 5. Effects of ritobegron and isoproterenol on isolated cynomolgus monkey tissues.

Data are shown for atrial rate (A) and relaxation of CCh-precontracted trachea (B). Data for atrial rate are expressed as the difference between before and after drug treatment, and for trachea are expressed as a percentage of the maximal relaxation response to 10^{-5} M forskolin. Data represent the mean ± S.E. from 5-7 experiments.

Fig. 6. Effects of intraduodenal administration of ritobegron on intravesical pressure (A), mean blood pressure (B), and heart rate (C) in anesthetized cynomolgus monkeys. Data for intravesical pressure are expressed relative to the maximal response to isoproterenol (0.1 mg/kg, i.v.) (i.e., that dose of isoproterenol would have reduced intravesical pressure from 100% to 0%). Data represent the mean ± S.E. from 3 animals. * $P < 0.05$, ** $P < 0.01$ vs. vehicle. (Dunnett’s multiple comparison test)
TABLE 1. EC$_{50}$ values and maximal relaxation response to ritobegron, isoproterenol, and CL316,243 in isolated cynomolgus monkey bladder. Data represent the mean ± S.E. from 5 experiments.

<table>
<thead>
<tr>
<th>Drug</th>
<th>EC$_{50}$ (M)</th>
<th>Maximal Relaxation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ritobegron</td>
<td>8.2 ± 2.3 × 10$^{-7}$</td>
<td>88.7 ± 3.7</td>
</tr>
<tr>
<td>Isoproterenol</td>
<td>1.9 ± 0.9 × 10$^{-7}$</td>
<td>94.2 ± 4.3</td>
</tr>
<tr>
<td>CL316,243</td>
<td>5.5 ± 3.1 × 10$^{-6}$</td>
<td>73.9 ± 6.7</td>
</tr>
</tbody>
</table>
TABLE 2. EC₅₀ values in various tissues and bladder selectivities of ritobegron and isoproterenol in isolated cynomolgus monkey tissues. Data represent the mean ± S.E. from 5 experiments.

<table>
<thead>
<tr>
<th>Drug</th>
<th>EC₅₀ (M)</th>
<th>Bladder selectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bladder</td>
<td>atria</td>
</tr>
<tr>
<td>Ritobegron</td>
<td>8.2 ± 2.3 × 10⁻⁷</td>
<td>6.5 ± 1.2 × 10⁻⁵</td>
</tr>
<tr>
<td>Isoproterenol</td>
<td>1.9 ± 0.9 × 10⁻⁷</td>
<td>2.2 ± 0.2 × 10⁻⁹</td>
</tr>
</tbody>
</table>
Fig. 1