MT$_2$-Receptors Mediate the Inhibitory Effects of Melatonin on Nitric Oxide-Induced Relaxation of Porcine Isolated Coronary Arteries

1Radhika R Tunstall, 1Praveen Shukla, Anna Grazul-Bilska, Chengwen Sun, and Stephen T O'Rourke

Department of Pharmaceutical Sciences
North Dakota State University
Fargo, ND 58108
(RRT, PS and STO)

and

Department of Animal Sciences
North Dakota State University
Fargo, ND 58108
(AGB)
Running Title Page

Running Title: MT₂-receptors in porcine coronary artery

Address correspondence to: Dr. Stephen T. O’Rourke
Department of Pharmaceutical Sciences
North Dakota State University
Fargo, ND 58108-6050
Tel: (701) 231-7836
Fax: (701) 231-7606
Email: stephen.orourke@ndsu.edu

Number of Text pages: 30
Number of tables: 0
Number of figures: 7
Number of references: 45
Number of words in Abstract: 238
Number of words in Introduction: 396
Number of words in Discussion: 1223

Abbreviations: EC₅₀, concentration necessary to produce 50% of the maximal response; Eₘₐₓ, maximal decrease in tension; cGMP, guanosine 3',5'-cyclic monophosphate; GTP, guanosine triphosphate; 5-MCA-NAT, 5-methoxycarbonylaminon-N-acetyltryptamine; NO, nitric oxide; pD₂, -log (M) EC₅₀; 4P-PDOT, 4-phenyl-2-propionamidotetralin; SNP, sodium nitroprusside; U44619, 9,11-dideoxy-11a,9a-epoxymethano-prostaglandin F₂α.

Recommended section assignment: Cardiovascular
ABSTRACT

Previous studies from our laboratory demonstrated that melatonin inhibits nitric oxide (NO)-induced relaxation in porcine coronary arteries. The present study was designed to further characterize the mechanisms underlying this inhibitory effect of melatonin. Western immunoblot studies identified the presence of melatonin type-2 (MT2)-receptors, but not MT1- or MT3-receptors, in porcine coronary arteries. Immunohistochemical analysis revealed that MT2-receptors co-localized with α-actin in the smooth muscle cell layer. In coronary arterial rings suspended in organ chambers for isometric tension recording, melatonin (10^-7 M) inhibited relaxations induced by the exogenous NO-donor, sodium nitroprusside (SNP; 10^-9 – 10^-5 M), and by the α2-adrenoceptor agonist, UK14,304 (10^-9 – 10^-6 M), an endothelium-dependent vasodilator. The inhibitory effect of melatonin on SNP- and UK14,304-induced relaxations was abolished in the presence of the selective MT2-receptor antagonists, 4P-PDOT (10^-7 M) or luzindole (10^-7 M). In contrast to melatonin, the selective MT3-receptor agonist, 5-MCA-NAT (10^-7 M), had no effect on the concentration-response curves to either SNP or UK14,304. Melatonin (10^-7 M) had no effect on coronary artery relaxation induced by 8-Br-cGMP, but it significantly attenuated the increase in intracellular cyclic GMP levels in response to SNP (10^-5 M). This effect of melatonin was abolished in the presence of 4P-PDOT (10^-7 M). Taken together, these data support the view that melatonin acts on MT2-receptors in coronary vascular smooth muscle cells to inhibit NO-induced increases in cyclic GMP and coronary arterial relaxation, thus demonstrating a novel function for MT2-receptors in the vasculature.
INTRODUCTION

Melatonin is the primary hormone secreted by the pineal gland and is thought to play a central role in the biological regulation of circadian rhythms. Several extra-pineal sources of melatonin have also been identified, including mast cells, leukocytes, platelets, and endothelial cells (Finocchiaro et al., 1991; Kvetnoy, 1999). Increasing evidence indicates that melatonin plays a role in cardiovascular homeostasis by regulating blood vessel diameter, thereby impacting arterial blood pressure and local blood flow to organs and tissues (Krause et al., 2000; Pandi-Perumal et al., 2008). Moreover, alterations in circulating melatonin levels are associated with several cardiovascular disorders, including hypertension (Jonas et al., 2003), ischemic heart disease (Brugger et al., 1995), myocardial infarction (Domínguez-Rodríguez et al., 2002), and heart failure (Girotti et al., 2003).

Melatonin regulates vascular tone by interacting with specific receptors that are present in mammalian arteries (Viswanathan et al., 1990; Stankov et al., 1992). Three distinct melatonin receptor subtypes, termed MT₁-, MT₂, and MT₃-receptors, have been identified and mediate the physiological effects of melatonin (Nosjean et al., 2000; Dubocovich et al., 2003). The effects of melatonin on vascular function are complex inasmuch as melatonin receptor activation causes vasoconstriction in certain arteries (Evans et al., 1992; Geary et al., 1997; Ting et al., 1997; Viswanathan et al., 1997) and vasodilation in others (Satake et al., 1991; Weekley, 1991; Doolen et al., 1998). Furthermore, melatonin receptors are not expressed in all blood vessels (Mahle, 1997), thus limiting the actions of the hormone to specific regions of the circulation. It is also
clear that melatonin receptor expression in the cardiovascular system is altered in a variety of conditions, such as Alzheimer’s disease (Savaskan et al., 2001), aging (Sanchez-Hidalgo et al., 2008), myocardial infarction (Sallinen et al., 2007), and coronary artery disease (Ekmekcioglu et al., 2003).

In addition to directly causing vasoconstriction or vasodilation, we have reported that melatonin activates receptors in coronary arteries to exert a powerful *indirect* effect on vascular tone by inhibiting nitric oxide (NO)-induced smooth muscle relaxation (Yang et al., 2001). Since NO is a key regulator of coronary arterial smooth muscle tone, inhibition of the NO signaling pathway likely contributes to the mechanism(s) by which melatonin influences coronary arterial function under normal and pathophysiological conditions. Thus, the primary goal of the present study was to identify the melatonin receptor subtype that mediates the inhibitory effects of melatonin on NO-induced relaxation in porcine coronary arteries.
METHODS

Tissue Preparation

Fresh porcine hearts were obtained from a local abattoir and were immediately immersed in cold physiological salt solution. After transfer to the laboratory, the left anterior descending coronary artery was dissected from surrounding myocardium, cleaned of adherent fat and connective tissue, and cut into rings 4–5 mm in length. Four to eight coronary arterial rings were prepared from each heart. In some rings, the endothelium was removed by gently rubbing the intimal surface with a fine forceps.

Western Immunoblot Analysis

After collection, coronary arteries from six hearts were immediately frozen in liquid nitrogen. Tissues were homogenized in lysis buffer, supplemented with a protease and phosphatase inhibitor cocktail (Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA), at 4°C using an IKA® Ultra, Turrax-T8 homogenizer (IKA Works Inc., Wilmington, NC, USA). The tissue homogenates were kept on ice for 10 min and afterwards centrifuged for 10 min at 10,000 g. Supernatant was collected, followed by protein determination using a Bio-Rad DC Protein assay kit (Biorad Laboratories, Hercules, CA, USA). Aliquots of supernatant containing equal amounts of protein (100 µg) were separated on 12% polyacrylamide gel by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and proteins were electroblotted onto a PVDF membrane (Biorad Laboratories). Blots were blocked with 5% nonfat dry milk in phosphate buffered saline (PBS, pH 7.4) and then incubated overnight at 4°C with a primary antibody specific for MT1-receptors (sc-13186), MT2-receptors (sc-13177), or MT3-receptors (sc-32942).
using a dilution of 1:200 (Santa Cruz Biotechnology Inc.). Membranes were washed two times for 15 minutes using PBS Tween-20 (PBST) and incubated with a horseradish peroxidase-linked secondary antibody (sc-2020) (Santa Cruz Biotechnology Inc.). To ensure equal loading, the blots were analyzed for β-tubulin expression using an anti-β-tubulin antibody (sc-9935; Santa Cruz Biotechnology). Immunodetection was performed using an enhanced chemiluminescence light detecting kit (Thermo Scientific, Rockford, IL, USA).

Immunohistochemistry

Frozen tissue blocks of freshly isolated porcine coronary arteries (n=4) were sectioned at 8 µm and mounted onto ProbeOn™ Plus microscopic slides (Fisher Scientific, Pittsburgh, PA, USA). Sections were fixed with ice-cold acetone and air dried for 30 min at room temperature. Non-specific antibody binding was blocked with normal donkey serum (1.5%, vol/vol; Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA) in PBS for 1 hr at room temperature. Sections were incubated overnight at 4°C in PBS containing a primary antibody against MT$_2$-receptors (Santa Cruz Biotechnology Inc.) and/or smooth muscle α-actin (Santa Cruz Biotechnology Inc.). For co-localization of the MT$_2$-receptors with smooth muscle α-actin, double immunofluorescent staining was performed by incubating the tissue sections with more than one primary antibody at the same time. Detection of the primary antibodies against the MT$_2$-receptors and smooth muscle α-actin was accomplished using Alexa Fluor 488-conjugated (i.e., rabbit anti-goat IgG, Molecular Probes, Eugene, OR, USA) and Texas red-conjugated (i.e., goat anti-mouse IgG, Santa Cruz Biotechnology Inc.) secondary antibody, respectively.
Controls were incubated with either non-immune goat IgG or primary antibody immunoneutralized with a specific blocking peptide (Santa Cruz Biotechnology Inc.), instead of primary antibody. All dilutions and thorough washes between stages were performed using PBS containing Triton-X100 (0.3%, vol/vol) unless otherwise stated. Sections were drained by blotting with filter paper and a drop of mounting medium containing an anti-fade reagent (Vector Laboratories, Inc., Burlingame, CA, USA) provide source for this medium) was added to the slides. The images of the sections were obtained using an Olympus confocal laser-scanning microscope. The images were generated using FV300 (v. 4.3) Confocal Software and Adobe Photoshop 5.5.

Organ Chamber Studies

Coronary arterial rings were suspended in water-jacketed organ chambers filled with 25 ml of physiological salt solution, as previously described (Yang et al., 2001). The organ chamber solution was aerated with a mixture of 95% O₂/5% CO₂ and the temperature was maintained at 37°C throughout the experiment. Each ring was suspended by means of two fine stainless-steel wire clips passed through the lumen; one clip was anchored inside the organ chamber, the other connected to a force transducer (Model FT03, Grass Instrument Company, Quincy, MA, USA). Isometric tension was measured and recorded on a Grass polygraph. The tissues were stretched progressively to the optimal point of their length–tension relationship, using KCl (20 mM) to generate a standard contractile response. After this procedure, the rings were allowed to equilibrate at their optimal length for at least 30 min prior to exposure to any vasoactive substances. The absence or presence of intact endothelium was confirmed
in each preparation by the absence or presence of relaxation to the endothelium-dependent vasodilator, bradykinin (10^{-7} \text{M}).

Relaxation of coronary arteries was studied in rings contracted with the thromboxane A_{2}-mimetic, 9, 11-dideoxy-11\alpha,9\alpha-epoxymethano-PGF_{2\alpha} (U46619, 1-3 \times 10^{-9} \text{M}), which produces a contraction that is approximately 25-50\% of the maximal response to U46619. After the U46619-induced contraction had reached a stable plateau, relaxation responses to increasing concentrations of sodium nitroprusside (SNP; 10^{-9}–10^{-5} \text{M}), the \alpha_{2}-adrenoceptor agonist, UK14,304 (10^{-9}–10^{-5} \text{M}), or 8-Br-cGMP (10^{-7}–10^{-4} \text{M}) were obtained in the absence and presence of melatonin (10^{-7} \text{M}), which was added to the organ chambers immediately prior to the addition of U46619. This concentration of melatonin and incubation time were previously determined to have the greatest inhibitory effect on responses to NO (Yang, et al., 2001). In some experiments, the preparations were incubated with the MT_{2}-receptor antagonists, 4P-PDOT (10^{-7} \text{M}) or luzindole (10^{-7} \text{M}), for 30 min prior to exposure to melatonin, and these inhibitors were present in the organ chambers throughout the remainder of the experiment. In a separate series of experiments, concentration-response curves to SNP and UK14,304 were also obtained in the absence and presence of the MT_{3}-receptor selective agonist, 5-MCA-NAT (10^{-7} \text{M}), which was added to the organ chambers in place of melatonin.

Cyclic GMP Measurements

An enzyme linked immunosorbent assay was used to measure cGMP levels in porcine coronary arteries. Coronary arterial rings were suspended in water-jacketed
organ chambers filled with 25 ml of physiological salt solution and were allowed to equilibrate for at least 1 hr at 37°C. After equilibration, coronary artery rings were treated with SNP (5 min, 10^{-5} M) in the presence and absence of melatonin (5 min, 10^{-7} M). In some experiments the rings were pretreated with 4P-PDOT (20 min, 10^{-7} M) prior to exposure to melatonin and SNP. After drug treatments, rings were frozen in liquid nitrogen and homogenized with an IKA® Ultra, Turrax-T8 homogenizer (IKA works. Inc., Wilmington, NC, USA) at 4°C in 0.1 N hydrochloric acid. The tissue homogenates were centrifuged for 10 min at ≥ 600g. The cyclic GMP and total protein content was determined in the supernatant using a direct cyclic GMP enzyme immunoassay kit (Assay design, Ann Arbor, MI, USA) and a Bio-Rad DC Protein assay kit (Biorad Laboratories, Hercules, CA, USA), respectively. Cyclic GMP levels were expressed as pmol/µg of protein.

Data Analysis

Relaxation responses are expressed as a percentage of the initial tension induced by U46619. For each vasodilator, both the maximal percent relaxation (E_{max}) and the concentration necessary to produce 50% of its own maximal response (EC_{50}) were determined. The EC_{50} values were converted to the negative logarithms and expressed as -log molar EC_{50} (pD_{2}). Results are expressed as mean ± S.E. and n refers to the number of animals from which blood vessels were taken. Values were compared by Student’s t-test for paired or unpaired observations, or by analysis of variance with a post hoc Bonferroni’s multiple comparison analysis to determine
significance between groups, as appropriate. Values were considered to be significantly different when $P < 0.05$.

Drug and Solutions

The following drugs were used: bradykinin, melatonin, sodium nitroprusside (Sigma Chemical Co., St Louis, MO, USA); luzindole, 5-MCA-NAT (5-methoxy-carbonylamino-N-acetyltryptamine), 4P-PDOT (4-Phenyl-2-propionamidotetralin), UK14,304 (5-Bromo-6-(2-imidazolin-2-ylamino)quinoxaline) (Tocris, Ellisville, MO, USA); and U46619 (Cayman Chemical Company, Ann Arbor, MI, USA). Drug solutions were prepared daily, kept on ice, and protected from light until used. All drugs were dissolved initially in distilled water with the exception of melatonin, 5-MCA-NAT, 4P-PDOT and luzindole, which were dissolved in ethanol before further dilution in distilled water. Drugs were added to the organ chambers in volumes not greater than 0.2 ml. Drug concentrations are reported as final molar concentration in the organ chamber. The composition of the physiological salt solution was as follows (in mM): NaCl 118.3, KCl 4.7, CaCl$_2$ 2.5, MgSO$_4$ 1.2, KH$_2$PO$_4$ 1.2, NaHCO$_3$ 25.0, and glucose 11.1.
RESULTS

Receptor expression

Western immunoblot analysis revealed the presence of melatonin receptor protein in porcine coronary arteries. A strong immunoreactive band at 36 kDa corresponding to MT$_2$-receptors was detected in immunoblots of porcine coronary artery homogenates (Figure 1, lanes 1-3), and in rat heart used as a positive control (Figure 1, lane 5; Sanchez-Hidalgo et al., 2009). The MT$_2$-receptor protein immunoreactivity was abolished when the primary antibody was neutralized with a specific blocking peptide. By contrast, neither MT$_1$- nor MT$_3$-receptor expression was detected in porcine coronary arteries (data not shown).

In immunohistochemical studies, MT$_2$-receptor protein was immunodetected in porcine coronary arteries (Figure 2A), and localized to the smooth muscle cell layer and adventitia (Figure 2A and C). Incubation of arteries with non-immune IgG followed by the secondary antibody resulted in a complete lack of staining (Figure 2A, inset). Smooth muscle cell actin (SMCA) was detected in the smooth muscle cell layer (Figure 2B), and MT$_2$-receptors were co-localized with SMCA in the smooth muscle cell layer of the coronary artery (Figure 2C).

Pharmacologic studies

Sodium nitroprusside (SNP; 10^{-9} – 10^{-5} M), an exogenous NO-donor (Kowaluk et al., 1992), caused concentration-dependent relaxations in isolated porcine coronary artery rings, without endothelium, contracted with the thromboxane A$_2$ mimetic, U46619
(1–3 × 10⁻⁹ M) (Figure 3, upper panel). In the presence of melatonin (10⁻⁷ M), the concentration-response curve to SNP was shifted to the right in a parallel manner (Figure 3, upper panel). The pD₂ values for SNP in the absence and presence of melatonin were 7.49 ± 0.1 and 6.79 ± 0.2, respectively (P < 0.05). Melatonin had no effect on the maximal response to SNP, inasmuch as SNP caused complete (i.e. 100%) relaxation in both untreated and melatonin-treated rings. Melatonin itself had no direct effect on resting tension or on the level of U46619-induced contraction in coronary artery rings, as previously reported (Yang, et al., 2001).

The endothelium-dependent vasodilator, UK14,304 (10⁻⁹ – 10⁻⁵ M) (Flavahan et al., 1989; Bockman et al., 1996), caused concentration-dependent relaxations in endothelium-intact coronary arterial rings (Figure 3, lower panel). The response to UK14,304 was markedly inhibited in the presence of melatonin (10⁻⁷ M) (Figure 3, lower panel). Melatonin caused a rightward shift in the concentration-response curve to UK14,304 (pD₂ = 7.65 ± 0.2 vs. 6.73 ± 0.2 in the absence and presence of melatonin, respectively; P <0.05), as well as a reduction in the maximal level of relaxation (Eₘₐₓ = 80 ± 9% relaxation vs. 53 ± 8% relaxation, in the absence and presence of melatonin, respectively; P <0.05).

In contrast to melatonin, the MT₃-receptor selective agonist, 5-MCA-NAT (10⁻⁷ M) (Pintor et al., 2001), had no effect on the concentration-response curves to either SNP or UK14,304 (Figure 4; P > 0.05). Pretreatment of coronary arterial rings with either of the selective MT₂-receptor antagonists, 4P-PDOT (10⁻⁷ M) or luzindole (10⁻⁷ M)
(Dubocovich, 1988; Dubocovich, et al., 1997; Browning et al., 2000), abolished the inhibitory effect of melatonin on relaxation induced by either SNP (Figure 5) or UK14,304 (Figure 6). The concentration-response curves to SNP and UK14,304 were unaffected by the presence of either antagonist alone (data not shown).

Cyclic GMP studies

SNP (10⁻⁵ M) significantly increased cyclic GMP levels in coronary arteries (Figure 7). Incubation of coronary arteries with melatonin (10⁻⁷ M) had no effect on basal cyclic GMP levels but markedly attenuated the SNP-induced increase in cyclic GMP. In the presence of 4P-PDOT (10⁻⁷ M), the inhibitory effect of melatonin on the SNP-induced increase in cyclic GMP was abolished. 4P-PDOT itself had no effect on cyclic GMP levels.

In isolated coronary artery rings contracted with U46619, the cell membrane-permeable cyclic GMP analog, 8-Br-cGMP (10⁻⁷–10⁻⁴ M), caused concentration-dependent relaxations (pD₂= 4.75 ± 0.2, E_max= 99 ± 1%; n=3) that were unaffected by the presence of melatonin (10⁻⁷ M) (pD₂= 4.55 ± 0.3, E_max= 99 ± 1%; P > 0.05)
DISCUSSION

The results of this study demonstrate the presence of structural and functional MT₂-receptors in porcine coronary arterial smooth muscle cells, and that activation of these receptors by melatonin inhibits NO-induced increases in cyclic GMP as well as the ability of the smooth muscle to relax in response to NO. These conclusions are supported by the observations that: 1) MT₂-receptor protein is expressed in porcine coronary arteries; 2) MT₂-receptor proteins co-localized with α-actin, thus indicating that MT₂-receptors are present in the smooth muscle cell layer; and 3) the inhibitory effect of melatonin on NO-induced cyclic GMP accumulation and smooth muscle relaxation was abolished in the presence of selective MT₂-receptor antagonists. These findings suggest a novel role for MT₂-receptors in regulating vascular tone, since prior to the present study the only previously known vasomotor response to MT₂-receptor activation was vasodilation (Doolen, et al., 1998; Masana, et al., 2002).

High affinity melatonin binding sites have been identified, characterized, and labeled as MT₁, MT₂ and MT₃ (Dubocovich and Markowska, 2005). Whereas MT₁- and MT₂-receptors belong to the G-protein-coupled family of membrane receptors, the MT₃-receptor is identified as the enzyme quinone reductase 2, an intracellular melatonin binding site (Nosjean et al., 2000). Specific membrane melatonin receptors have been detected in many tissues (e.g. brain, retina, heart, adipocytes) from several different species (Stankov et al., 1992; Mahle et al., 1997; Brydon et al., 2001; Masana et al., 2002; Dubocovich and Markowska, 2005). Within the cardiovascular system, high affinity melatonin binding sites were identified in several vascular beds (Viswanathan et
al., 1990; Stankov et al., 1992; Stankov and Fraschini, 1993), suggesting a role for melatonin in local control of blood vessel diameter. Indeed, a functional role for melatonin binding sites/receptors was established by studies demonstrating that melatonin causes vasoconstriction in certain vascular beds and vasodilation in others. For example, in rats melatonin causes direct vasoconstriction of cerebral arteries (Capsoni et al., 1995; Geary et al., 1997; Viswanathan et al., 1997) and vasodilation in caudal arteries (Doolen et al., 1998; Masana et al., 2002).

The coronary circulation is also a site of action for the receptor-dependent effects of melatonin. Previous studies from our laboratory demonstrated that, in isolated porcine coronary arteries, physiologically relevant concentrations of melatonin have no direct effect on vasomotor tone but cause inhibition of NO-induced smooth muscle relaxation. This effect of melatonin is abolished by the specific MT-receptor antagonist, S20928 (Yang et al., 2001); however, S20928 is nonselective with regard to individual MT-receptor subtypes (Petit et al., 1999; Audinot et al., 2003). Thus, in the present study we used a combination of molecular and pharmacologic techniques to identify the specific MT-receptor subtype mediating the inhibitory effect of melatonin on NO-induced relaxation.

At present, a limited number of potent and selective drugs are available for pharmacologically characterizing MT-receptor subtypes. The most useful agents include luzindole and 4P-PDOT, which at low concentrations (≤ 0.1μM) are selective antagonists of MT₂-receptors (Boutin et al., 2005), and 5-MCA-NAT, which is a selective
MT$_3$-receptor agonist (Pintor et al., 2001). There are currently no commercially available antagonists that are selective for MT$_1$-receptors. Using these pharmacologic probes in functional studies, we found that in contrast to melatonin, 5-MCA-NAT had no effect on NO-induced relaxation of isolated coronary arteries, suggesting that the inhibitory effect of melatonin does not involve activation of MT$_3$-receptors. However, the inhibitory effect of melatonin on NO-induced relaxation was abolished in the presence of either 4P-PDOT or luzindole, two chemically unrelated antagonists (Boutin et al., 2005), strongly suggesting a role for MT$_2$-receptors in the response to melatonin in coronary arteries. The results of these functional studies are consistent with our immunoblot data indicating that neither MT$_1$- nor MT$_3$-receptors are expressed in these arteries. Moreover, the expression of MT$_2$-receptors in the coronary vascular smooth muscle cells, which is the site of action for NO, was confirmed by immunoblot and immunohistochemical studies. Taken together, these data strongly support the view that melatonin acts on MT$_2$-receptors in vascular smooth muscle to inhibit the actions of NO in porcine coronary arteries.

The physiologic role of MT$_2$-receptors in the vasculature is not yet fully understood. In the rat caudal artery, MT$_2$-receptors are expressed in the vascular smooth muscle layer, where they mediate vasodilation in response to melatonin (Doolen et al., 1998; Masana et al., 2002). MT$_2$-receptors are also expressed in human coronary arteries (Ekmekcioglu et al., 2003), but the functional effects of melatonin in the human coronary circulation are unknown. The present findings demonstrate that in addition to mediating vasodilation in some arteries (Doolen et al., 1998; Masana et al., 2002), MT$_2$-
receptors may also be functionally coupled to impaired NO-induced vasodilation in others, e.g. coronary arteries, and may provide new strategies for assessing melatonin receptor function in human coronary arteries.

In the present studies, melatonin inhibited porcine coronary arterial relaxation in response to both the α_2-adrenoceptor agonist, UK14,304, an endothelium-dependent vasodilator that acts solely by releasing NO from endothelial cells in this tissue (Flavahan et al., 1989; Bockman et al., 1996), and to SNP, an exogenous NO-donor (Kowaluk et al., 1992). One potential site of action for melatonin could be endothelial NO synthase (eNOS). Indeed, melatonin inhibits NO production in rat microvascular endothelial cells (Silva et al., 2007), though this effect is not observed in larger arteries of the rat (Monroe and Watts, 1998). Although an effect of melatonin on eNOS in porcine coronary arteries cannot be ruled out, the observation that melatonin also inhibits relaxation induced by SNP, an exogenous NO donor that is independent of eNOS (Kowaluk et al., 1992), suggests a site of action for melatonin other than, or in addition to, eNOS. A likely possibility is that melatonin acts directly on the vascular smooth muscle cells, which express MT_2-receptors (Figures 1 and 2) and are the primary site of action for the vasorelaxing effect of NO. The primary mechanism by which NO relaxes vascular smooth muscle is by increasing intracellular cyclic GMP levels, followed by activation of protein kinase G and the subsequent phosphorylation of several regulatory proteins (Ignarro et al., 1981; Murad, 1986). Thus, our observation that melatonin attenuates the NO-induced increase in intracellular cyclic GMP levels in coronary arteries provides a plausible mechanism that could account for the inhibitory
action of melatonin on relaxation to either endogenous or exogenous NO. Moreover, the
effects of melatonin on both NO-induced increases in cyclic GMP and arterial relaxation
were attenuated by pharmacologic blockade of MT₂-receptors, further suggesting that
MT₂-receptors mediate both effects of melatonin and that they are functionally linked to
one another. These results are consistent with previous reports that activation of
melatonin receptors is linked to decreased cyclic GMP accumulation in some other cell
types (Petit et al., 1999; Stumpf et al., 2008). Judging from the lack of effect of
melatonin on 8-Br-cGMP-induced relaxation, it is unlikely that melatonin inhibits
signaling events downstream from the NO-induced increase in intracellular cyclic GMP
levels.

In summary, the results of the present study support the view that melatonin acts
on MT₂-receptors on vascular smooth muscle cells to inhibit NO-induced increases in
intracellular cyclic GMP and coronary arterial relaxation, thus demonstrating a novel
function for MT₂-receptors in the vasculature. Since MT₂-receptors are expressed in
human coronary arteries and their expression is altered in cardiovascular disease
(Ekmekcioglu et al., 2003), these findings may provide clues as to the physiological and
pathophysiologica role of melatonin in the human coronary circulation.
AUTHORSHIP CONTRIBUTIONS

Participated in research design: RRT, PS, AGB, CS, STO
Conducted experiments: RRT, PS,
Contributed new reagents or analytic tools:
Performed data analysis: RRT, PS, AGB, CS, STO
Wrote or contributed to the writing of the manuscript: RRT, PS, AGB, STO
Other: STO obtained funding for the research
REFERENCES

Dubocovich ML, Masana MI, Iacob S and Sauri DM (1997) Melatonin receptor antagonists that differentiate between the human Mel1a and Mel1b recombinant subtypes are used to assess the pharmacological profile of the rabbit retina ML1 presynaptic heteroreceptor. *Naunyn Schmiedebergs Arch Pharmacol* **355**:365-75.

FOOTNOTES

This work was supported by a grant to S.T.O. from the National Institutes of Health National Heart, Lung, and Blood Institute [Grant # HL077204].

Address for reprint requests: Dr. Stephen T. O’Rourke, Department of Pharmaceutical Sciences, North Dakota State University, PO Box 6050, ND 58108

Email: stephen.orourke@ndsu.edu

¹These authors contributed equally to this work
LEGENDS FOR FIGURES

Figure 1. Western analysis of MT₂-receptor protein in porcine coronary artery homogenates. Immunoreactive bands at 36 kDa are for porcine coronary artery samples from 3 animals (lanes 1-3) and rat heart used as a positive control (lane 5). No immunoreactivity was detected in loading buffer (negative control, lane 4).

Figure 2. Representative images of immunofluorescent co-localization of MT₂-receptors and smooth muscle cell actin (SMCA) in porcine coronary artery. (A) MT₂-receptor – green fluorescence, (B) SMCA – red fluorescence, (C) co-localized areas showing yellow fluorescence, (D) image taken using light microscopy; insert in (A) demonstrates lack of staining after incubation of arteries with non-immune IgG followed by the secondary antibody. Bar = 50 µM.

Figure 3. Log concentration-response curves for sodium nitroprusside (SNP, upper panel) or UK14,304 (lower panel) in producing relaxation of isolated porcine coronary arteries in the absence and presence of melatonin (10⁻⁷ M). Data are expressed as a percentage of the initial increase in tension induced by U46619 (1–3 × 10⁻⁹ M), which averaged 2.48 ± 0.2 and 2.31 ± 0.3 g in the absence and presence of melatonin, respectively (P>0.05; Student’s t-test). Each point represents the mean ± S.E.M. (n = 4-5). * indicates a statistically significant difference in the presence of melatonin (P<0.05; ANOVA).
Figure 4. Log concentration-response curves for sodium nitroprusside (SNP, upper panel) or UK14,304 (lower panel) in producing relaxation of isolated porcine coronary arteries in the absence and presence of 5-MCA-NAT (10^{-7} M). Data are expressed as a percentage of the initial increase in tension induced by U46619 (1–3 × 10^{-9} M), which averaged 5.09 ± 0.9 and 5.15 ± 0.7 g in the absence and presence of melatonin, respectively (P>0.05; Student’s t-test). Each point represents the mean ± S.E.M. (n = 4).

Figure 5. Effect of the selective MT_{2}-receptor antagonists, 4P-PDOT (10^{-7} M) (upper panel) or luzindole (10^{-7} M) (lower panel) on sodium nitroprusside (SNP)-induced relaxation of isolated porcine coronary artery arteries (without endothelium) in the absence and presence of melatonin (10^{-7} M). Data are expressed as a percentage of the initial increase in tension induced by U46619 (1–3 × 10^{-9} M), which averaged 2.66 ± 0.2 g in control rings and did not differ significantly in rings treated with melatonin, 4P-PDOT, or luzindole (P>0.05; ANOVA). Each point represents the mean ± S.E.M. (n = 4-5). * indicates a statistically significant difference from untreated control (P<0.05; ANOVA).

Figure 6. Effect of the selective MT_{2}-receptor antagonists, 4P-PDOT (10^{-7} M) (upper panel) or luzindole (10^{-7} M) (lower panel) on UK14,304-induced relaxation of isolated porcine coronary artery arteries (with endothelium) in the absence and presence of melatonin (10^{-7} M). Data are expressed as a percentage of the initial increase in tension induced by U46619 (1–3 × 10^{-9} M), which averaged 2.28 ± 0.3 g in control rings and did not differ significantly in rings treated with melatonin, 4P-PDOT, or luzindole (P>0.05;
ANOVA). Each point represents the mean ± S.E.M. (n = 4-7). * indicates a statistically significant difference from untreated control (P<0.05; ANOVA).

Figure 7. Effect of melatonin (Mel) (10^{-7} M) on sodium nitroprusside (SNP) (10^{-5} M)-induced increases in coronary artery cyclic GMP levels, in the absence and presence of the MT2-selective antagonist 4P-PDOT (10^{-7} M). Data are expressed as mean ± S.E.M. (n=6). * indicates a statistically significant difference between treatment groups (P<0.05; ANOVA).
Figure 2

A B

IgG Control

C D
Figure 3

Graph showing the effect of SNP and UK 14,304 on tension with and without Mel.
Figure 4

% of initial tension vs. SNP (log M)

% of initial tension vs. UK 14,304 (log M)
Figure 5

- Mel
- + Mel
- + Mel + 4P-PDOT

% of initial tension vs. SNP (log M)

- Mel
- + Mel
- + Mel + luzindole

% of initial tension vs. SNP (log M)