FYX-051: A novel and potent hybrid type inhibitor of xanthine oxidoreductase

Koji Matsumoto, Ken Okamoto, Naoki Ashizawa, and Takeshi Nishino

Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan (K.M., K.O., T.N.); Research Laboratories 2, Fuji Yakuhin Co., Ltd., Saitama, Japan (K.M., N.A.)
Running Title:

Analysis of hydroxylated compounds of FYX-051.

Corresponding Author: Takeshi Nishino,

Department of Biochemistry and Molecular Biology, Nippon Medical School,

1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan

TEL; 81(Japan)-3-3822-2131 Ext 5237, Fax; 81-3-5685-3054

E-mail: nishino@nms.ac.jp

Number of Text Pages: 33

Number of Figures: 9

Number of References: 26

Number of Words in Abstract: 182

Number of Words in Introduction: 480

Number of Words in Discussion: 1268

Abbreviations: XOR, xanthine oxidoreductase; XO, xanthine oxidase; XDH, xanthine dehydrogenase; FYX-051, 4-[5-(pyridin-4-yl)-1H-1,2,4-triazol-3-yl]pyridine-2-carbonitrile;

2-hydrorxy-FYX-051, 4-[5-(2-hydroxypyridin-4-yl)-1H-1,2,4-triazol-3-yl]pyridine-2-carbonitrile;

dihyroxy-FYX-051,

6-hydrorxy-4-[5-(2-hydroxypyridin-4-yl)-1H-1,2,4-triazol-3-yl]pyridine-2-carbonitrile;
trihydroxy-FYX-051,

4-[5-(2,6-dihydroxypyridin-4-yl)-1H-1,2,4-triazol-3-yl]-6-hydroxypyridine-2-carbonitrile;

allopurinol, 4-hydroxyrazolo(3,4-d)pyrimidine; oxipurinol,

4,6-dihydroxypyrazolo(3,4-d)pyrimidine; AFR, activity to flavin ratio; DTT, dithiothreitol;

Mo-pterin, molybdopterin.

Recommended Assignment: Metabolism, Transport, and Pharmacogenomics
Abstract:

FYX-051, 4-[5-(pyridin-4-yl)-1H-1,2,4-triazol-3-yl]pyridine-2-carbonitrile, is a potent inhibitor of bovine milk xanthine oxidoreductase (XOR). Steady-state kinetics study showed that it initially behaved as a competitive-type inhibitor with a K_i value of 5.7×10^{-9} M, then after a few minutes it formed a tight complex with XOR via a Mo-oxygen-carbon atom covalent linkage, as previously reported (Okamoto et al., 2004). Thus, FYX-051 is a hybrid-type inhibitor exhibiting both structure-based and mechanism-based inhibition. The FYX-051 XOR complex decomposed with a half-life of 20.4 hours, but the enzyme activity did not fully recover. This was found to be due to XOR-mediated conversion of FYX-051 to 2-hydroxy-FYX-051, as well as formation of di- and trihydroxy-FYX-051 during prolonged incubation for up to 72 hours. A distinct charge-transfer band was observed concomitantly with the formation of trihydroxy-FYX-051 XOR complex. Crystallographic analysis of the charge-transfer complex indicated that a Mo-nitrogen-carbon bond was formed between molybdenum of XOR and the nitrile group of trihydroxy-FYX-051. FYX-051 showed a potent and long-lasting hypouricemic effect in a rat model of potassium oxonate-induced hyperuricemia, and it seems to be a promising candidate for clinical treatment of hyperuricemia.
Introduction:

Mammalian xanthine oxidoreductase (XOR) catalyzes the last two steps in the purine degradation pathway prior to formation of uric acid, i.e., hydroxylation of hypoxanthine to xanthine and of xanthine to uric acid. The enzyme is a homo-dimer with molecular mass of 290 kDa; each subunit contains one molybdenum cofactor, two [2Fe-2S] centers, and one FAD center. The oxidative hydroxylation of purine substrates takes place at the molybdenum center, and reducing equivalents thus introduced are transferred via the two [2Fe-2S] centers to the FAD center, where reduction of the physiological electron acceptor, NAD$^+$ or O$_2$, occurs. XOR is a good target of drugs to treat gout and hyperuricemia. Allopurinol (Fig. 1C), a hypoxanthine isomer, was introduced by Elion et al. (1963) as an inhibitor of XOR more than 40 years ago and has been extensively prescribed for gout and hyperuricemia patients since then. Massey et al. (1970) reported that the hydroxylated metabolite produced by XOR, oxipurinol, binds tightly to the reduced Mo(IV) of the enzyme. Crystal structure analysis of the oxipurinol-bound form of the reduced bovine XOR indicated that the water-exchangeable -OH ligand of the Mo(IV) atom was replaced by N2 of oxipurinol (Okamoto et al., 2008) (Fig. 1D). It is known, however, that oxipurinol dissociates with $t_{1/2} = 300$ min at 25 °C from the molybdenum owing to spontaneous reoxidation of Mo(IV) to Mo(VI) (Massey et al., 1970). Therefore, despite the excellent pharmacokinetics properties of allopurinol, administration at a relatively high dose is normally required and it can, though rarely, cause serious adverse effects such as fulminant hepatitis, renal failure or Stevens-Johnson syndrome (Arellano and Sacristan, 1993).
Many researchers have attempted to develop new inhibitors without these drawbacks. TEI-6720 (febuxostat) was recently developed as a non-purine selective inhibitor of XOR, showing a more potent and longer-lasting urate-lowering effect than allopurinol in rodents (Osada et al., 1993) and chimpanzees (Komoriya et al., 1993). Clinical efficacy and tolerance to febuxostat have been confirmed (Becker et al., 2005), and the drug has been approved both in the United States and European Union for the treatment of gout.

FYX-051 (Fig. 1A) has recently been developed as another new type of XOR inhibitor. It not only forms a covalent linkage to molybdenum via oxygen in the hydroxylation reaction intermediate, but also interacts with amino acid residues of the solvent channel, like the structure-based inhibitor TEI-6720 (Okamoto et al., 2004; Okamoto et al., 2003) (Fig. 1B). In addition, because FYX-051 has high bioavailability and safety in animals (Shimo et al., 2005), it is a candidate drug for hyperuricemia and gout. Here we investigated the inhibitor-enzyme interaction and the \textit{in vivo} hypouricemic effect of FYX-051 in order to clarify the biochemical and pharmacological properties of this new inhibitor and its hydroxylated derivatives. We also report the prominent spectral perturbation of a trihydroxylated metabolite of the inhibitor, together with the results of crystallographic analysis of the enzyme-inhibitor complex.
Materials and Methods:

Chemicals. FYX-051 and 2-hydroxy-FYX-051 were synthesized at Zieben Chemicals (Tokyo, Japan) and Fuji Yakuhin (Saitama, Japan), respectively. Allopurinol, oxipurinol and potassium oxonate were purchased from Sigma-Aldrich (St. Louis, MO). All other reagents used were of the highest grade commercially available. For in vitro study, FYX-051 was dissolved in 0.1 N HCl. 2-Hydroxy-FYX-051, allopurinol and oxipurinol were dissolved in 0.1 N NaOH. For in vivo study, FYX-051 and allopurinol were suspended in 0.5% (w/v) methylcellulose solution at a constant volume of 5 ml/kg body weight.

Protein purification. Bovine milk xanthine oxidase (XO) was purified using the method of Ball (1939). The active form of the enzyme was further separated from the inactive desulfo-form by folate affinity chromatography according to the method of Nishino et al. (1981). The activity to flavin ratio (AFR) values of the prepared enzyme, which were obtained by dividing the absorbance change per minute at 295 nm under standard assay conditions by the enzyme absorbance at 450 nm (Bray, 1975), were more than 180 (fully active enzyme has a value of 210) (Massey et al., 1970). The xanthine dehydrogenase (XDH) form of the enzyme was prepared according to the method of Eger et al. (2000). The concentration of the enzyme was determined spectrophotometrically using a molar extinction of 37,800 M\(^{-1}\)cm\(^{-1}\) at 450 nm (Massey et al., 1969). The prepared enzyme was stored on ice without freezing in 20 mM pyrophosphate buffer (pH 8.5), 40 mM Tris-HCl buffer (pH 7.8), 1 mM salicylate, and 0.2 mM EDTA. Prior to use in experiments, the stored enzyme was subjected to gel filtration for
removal of salicylate.

Enzyme assay. Xanthine-O$_2$ activity was measured with a spectrophotometer (U-3200, Hitachi) at 295 nm by following the conversion of xanthine to uric acid. Assay mixture with various concentrations of xanthine and inhibitor in 0.1 M pyrophosphate buffer (pH 8.5) containing 0.2 mM EDTA was preincubated for several minutes, and reactions were started by adding XO to the mixture under the aerobic conditions at 25 °C.

Kinetic study. For the experiment on the time course of XO inhibition, the enzyme activity was measured by following the absorbance change for 1800 seconds in 3 ml of solution containing various concentrations of inhibitor, 0.15 mM xanthine, 0.1 M pyrophosphate buffer (pH 8.5), 0.2 mM EDTA, and 1 nM XO (AFR = 182). For the experiment on determination of K_i values, the enzyme activity was measured by following the absorbance change for 60 seconds in 3 ml of solution containing various concentrations of xanthine and inhibitor, 0.1 M pyrophosphate buffer (pH 8.5), 0.2 mM EDTA, and 5 nM or 10 nM XO (AFR = 186). Lineweaver-Burk plots of XO inhibition were made from reciprocal xanthine concentration and absorbance change per minute calculated from the change during the first few seconds of the initial phase. K_i and K'_i values were obtained from secondary plots of the slopes and $1/V_{\text{max}}$ of the Lineweaver-Burk plots, respectively.

Determination of recovery half-lives of the enzyme-inhibitor complexes. Four-fifths equivalent of FYX-051 (5.1 µM) was first mixed anaerobically with 6.4 µM XO (AFR = 189) in 1 ml of solution containing 20 mM pyrophosphate buffer (pH 8.5), 40 mM Tris-HCl buffer (pH 7.8), and 0.2 mM
EDTA and then the mixture was exposed to air. Aliquots were withdrawn for determination of urate formation activity at various incubation time points at 25 °C under aerobic conditions. A 2-fold excess of 2-hydroxy-FYX-051 (32 μM) was also initially mixed with the enzyme (16 μM), then reduced with a 10-fold excess of hypoxanthine (320 μM) in 0.4 mL of the above buffer under anaerobic conditions. The mixture was incubated for 30 minutes at room temperature. Excess inhibitor and hypoxanthine were removed by gel filtration on a Sephadex G-25 column, then incubation was started at 25 °C under aerobic conditions. Recovery half-lives of enzyme-inhibitor complexes were calculated from semilogarithmic plots of inhibition of urate formation.

Determination of metabolites by HPLC, LC/MS, and NMR. Various concentrations of FYX-051 or allopurinol were mixed aerobically with 40 μM XO (AFR = 189) in 1 mL of solution containing 20 mM pyrophosphate buffer (pH 8.5), 40 mM Tris-HCl buffer (pH 7.8), and 0.2 mM EDTA and the mixtures were incubated at 25 °C under aerobic conditions. At various incubation time points, to eliminate proteins, 5 volumes of methanol was added to an aliquot of the enzyme-inhibitor complex solution, followed by centrifugation at 15,000 rpm for 10 minutes at 4 °C. Twenty μl of the supernatant was subjected to high-pressure liquid chromatography (HPLC; Alliance 2690 system / 468 UV-VIS detector, Waters) at 40 °C on an Mighty sil RP-18 GP column (Kanto Chemical). The mobile phase for the analysis of FYX-051 and its metabolites consisted of 0.5% acetic acid / acetonitrile (84:16), and that for allopurinol and oxipurinol consisted of 0.5% acetic acid at a flow rate of 1 ml/min. The UV absorbance was monitored at 300 nm for the former analysis and at 250 nm for
the latter. Mass spectra of two unknown metabolites formed after prolonged incubation of the enzyme-FYX-051 complex were measured with a liquid chromatography / mass spectrometry (LC/MS) system (AP1150EX, Applied Biosystems) under the following operating conditions: column, Mightysil RP-18 GP; column temperature, 35 °C; mobile phase, 0.5% acetic acid / acetonitrile (84:16); flow, 0.2 ml/min; injection volume, 5 μl; ionization, positive mode electrospray. The metabolites were purified by solid-phase extraction with OASIS HLB cartridges (Waters) after sufficient amounts had been obtained by scaling up the enzyme-FYX-051 mixture volume. The chemical structure of one metabolite was assigned by nuclear magnetic resonance (NMR) spectroscopy (JMN-EX270, JEOL). The other was used for the experiment on spectral changes of the enzyme-metabolite complex.

Measurement of the absorption spectra of enzyme-FYX-051 (or metabolite) complex. For the preparation of the complex of the enzyme with FYX-051, four-fifths equivalent of FYX-051 (10 μM) and fully active XO (13 μM) were mixed anaerobically in 1 ml of solution containing 20 mM pyrophosphate buffer (pH 8.5), 40 mM Tris-HCl buffer (pH 7.8), and 0.2 mM EDTA. For the preparation of the complex of the enzyme with trihydroxy-FYX-051, equivalent amounts of purified trihydroxy-FYX-051 (11 μM) and fully active XO (11 μM) in 1 ml of the above buffer was mixed anaerobically, followed by reductive titration with sodium dithionite using a gas-tight titrating syringe. Spectral changes of both complexes after incubation at room temperature were measured with a spectrophotometer (DU-7400, Beckmann).
Crystallization of XDH–FYX-051 (or metabolite) complex. Crystals of the FYX-051 complex of bovine XDH were obtained by modification of a published method (Eger et al., 2000). To obtain the metabolite complex, salicylate was removed from enzyme stock solutions by gel filtration, and the sample was then diluted to a protein concentration of about 6 mg/ml. One and a half volumes of FYX-051 was mixed anaerobically with the enzyme, and the absorption spectrum of the mixture was monitored at room temperature until the charge transfer band around 600 nm reached the maximum. Then the enzyme-inhibitor mixture was transferred to an argon atmosphere, under which all subsequent manipulations were performed. The enzyme-inhibitor mixture was concentrated with a centrifugal filter unit (Microcon YM-100, Millipore) to a protein concentration of about 60 mg/ml, and then 30 mg/ml enzyme solution containing 30% (wt/vol) glycerol and 5 mM DTT was prepared. Aliquots (10 μl) of enzyme solution were mixed with 10 μl of 50 mM potassium phosphate buffer (pH 6.5) containing 8.0–9.5% polyethylene glycol 4,000, 30% glycerol (wt/vol), 0.2 mM EDTA, and 5 mM DTT. The solutions were dropped on siliconized glass plates, and kept in the dark at 22 °C in the argon-filled box. Crystals grew after 5 days; they belonged to the same C2 space group as the original crystals, with almost the same unit cell parameters of a = 168.9 Å, b = 124.7 Å, c = 146.2 Å, and β = 91.0°. The crystals were collected with a nylon loop, shock-frozen, and stored in liquid nitrogen.

Data collection and data refinement. A complete 2.2 Å diffraction data set was collected at the Photon Factory (Tsukuba, Japan), beamline NW12A at λ = 1.000 Å (Table 1). Data were processed with the program package HKL2000. The structure (Protein Data Bank code 3AM9) was solved by
molecular replacement by using the program MOLREP (Vagin and Teplyakov, 1997) with
salicylate-bound XDH (Protein Data Bank code 1FO4) as a search model. The molecular model was
built by using the program Coot (Emsley and Cowtan, 2004). Refinement was done following
standard protocols of the program CCP4 Version 6.1 (Collaborative Computational Project, Number
4., 1994). Figure 7 was generated with the program Pymol.

Animals. Male Wistar/ST strain rats (7 weeks old; purchased from Japan SLC, Inc., Shizuoka,
Japan) were kept in an air-conditioned room with a standard 12-hour light-dark cycle. They were
given standard chow and water ad libitum throughout the acclimatization and experimental periods.

Measurement of serum urate in rats treated with inhibitors. FYX-051 or allopurinol was orally
administered to rats, and blood was collected under ether anesthesia from the orbital sinus at 0.5, 1, 2,
6, and 12 hours after drug administration. In order to maintain hyperuricemia during the experimental
period, potassium oxonate (250 mg/kg, s.c.; uricase inhibitor) was repeatedly injected at 4-hour
intervals. The blood was allowed to clot for 1 hour at room temperature and then centrifuged. Serum
urate level was measured by the phosphotungstic acid method (Henry, 1957). ED$_{50}$ values of
inhibitors were calculated from the extent of decrease compared with the control by using the probit
method.

Statistical analysis. The mean and standard deviation of serum urate levels were calculated, and
the difference between the control and treated groups was analyzed by using Dunnett’s test (at
significance levels of 5% and 1%).
Results:

FYX-051 displayed time- and concentration-dependent inhibition of urate formation under air-saturated conditions (Fig. 2A). 2-Hydroxy-FYX-051, generated by primary hydroxylation of FYX-051 by XOR itself, also caused time- and concentration-dependent inhibition, although a relatively large amount of 2-hydroxy-FYX-051 was necessary to achieve potent inhibition (Fig. 2B) due to the lower affinity of 2-hydroxy-FYX-051, as determined from steady-state experiments (see below). We also estimated the stability of the XO-inhibitor complexes by determination of the recovery of enzyme activity (Fig. 3). The complexes of XO with inhibitors seem to be decomposed, likely due to hydrolysis of the intermediate by water (Okamoto et al., 2004) under air-saturated conditions at 25 °C, resulting in gradual recovery of the catalytic activity with a half-life (t_{1/2}) of 20.4 hours for the complex of FYX-051 and 19.4 hours for the complex of 2-hydroxy-FYX-051 (Fig. 3A and B).

Steady-state analysis of inhibition of XO. Lineweaver-Burk plots of the enzyme inhibition by FYX-051 and 2-hydroxy-FYX-051 are shown in Fig 4A and B. FYX-051 exhibited competitive-type inhibition with a K_i value of 5.7×10^{-9} M by steady-state kinetics analyses based on initial velocity determination. In contrast, 2-hydroxy-FYX-051 showed mixed-type inhibition, but only weakly inhibited native XO ($K_i = 1.5 \times 10^{-6}$ M, $K_i' = 9.2 \times 10^{-6}$ M).

Analysis of the metabolites of FYX-051 produced by XO. The time course of metabolite
production under air-saturated conditions at 25 °C after mixing 36 μM FYX-051 with 40 μM XO is shown in Fig. 5A-D. All of the FYX-051 (peak a) was quickly converted to 2-hydroxy-FYX-051 (peak b) on incubation with XO. Thereafter, 2-hydroxy-FYX-051 gradually decreased, and peaks of two other metabolites (peaks c and d) appeared within 8 hours. While peak c rapidly vanished, peak d was stable for at least 72 hours. LC/MS analysis (Fig. 5E-F) showed that peaks c and d had molecular weights of 280 and 296, i.e., 32 and 48 mass units larger than FYX-051, respectively. Peaks c and d were purified by solid-phase extraction using OASIS HLB cartridges and structure determination of the compound obtained from peak c was performed with NMR spectroscopy. It was found that the second and third hydroxylations occurred sequentially at the 6 position of the pyridinecarbonitrile ring (Fig. 5E) and the 6 position of the hydroxypyridine ring (Fig. 5F), respectively.

Spectral changes of XO on mixing with FYX-051 and trihydroxy-FYX-051. As described previously (Okamoto et al., 2004), immediate spectral changes were observed on mixing XOR with FYX-051 due to formation of a covalent reaction intermediate (Fig. 6A). However, on prolonged incubation (120 hours after mixing), further spectral changes were observed with the appearance of a larger positive peak at 600 nm and a negative peak at 450 nm. No further changes occurred on incubation for longer than 120 hours. When air was admitted, the negative peak at 450 nm completely disappeared, but the larger positive peak at 590 nm (Δε = 11.9 mM⁻¹ cm⁻¹) remained stable for at least 30 min. We also observed the spectral changes of dithionite-reduced XO with trihydroxy-FYX-051 (Fig. 6B) to confirm the nature of the spectral changes. An identical charge-transfer complex with a
large positive peak at 590 nm (Δε = 9.7 mM⁻¹ cm⁻¹) was obtained after reoxidation of the enzyme by exposure to air, indicating that reduced molybdenum and trihydroxy-FYX-051 form an identical complex with that shown in Fig. 6A.

Crystal structure of XDH-FYX-051-metabolite complex. XOR was incubated with FYX-051 until marked spectral perturbation was observed (120 hours), then the complex was crystallized. The crystals were collected and frozen anaerobically, and the crystal structure was determined at 2.2Å resolution. In the xanthine-binding site, the metabolite is bound in the solvent channel associated with the xanthine hydroxylation site, and is linked with molybdopterin (Fig. 7A and B). Based on our analysis of the metabolites of FYX-051 produced by XO (Fig. 5), we constructed a model with trihydroxy-FYX-051 as the ligand. Trihydroxy-FYX-051 binds with its nitrile residue close to the molybdenum. From the electron density, covalent linkage of the molybdenum and the pyridine ring via oxygen which is to be incorporated into the hydroxyl residue seems unlikely. It seems more likely that the pyridine ring is connected with molybdenum via the nitrile residue of the compound (Fig. 7A and B).

Conversion of FYX-051 and allopurinol to mono-hydroxylated metabolites by XO. Fig. 8 compares the formation of mono-hydroxylated metabolites from FYX-051 and allopurinol by XO after aerobic incubation for 5 minutes at 25 °C. When equimolar FYX-051 was mixed with 40 μM XO, most of the FYX-051 in the mixture was immediately converted to 2-hydroxy-FYX-051, and the enzyme activity was completely inhibited. Even if a 3- or 10-fold molar excess of FYX-051 was
mixed with the enzyme, the amount of 2-hydroxy-FYX-051 formed did not exceed that of the enzyme. In contrast, excess allopurinol was mostly converted to oxipurinol, regardless of the amount of the enzyme. A 30-fold molar excess of allopurinol was required for full inactivation of the enzyme.

Hypouricemic effect of FYX-051 in oxonate-induced hyperuricemic rats. Changes in serum urate levels of rats at 1 hour after oral administration of FYX-051 and allopurinol are shown in Fig. 9A. Serum urate levels in oxonate-injected rats were increased to 4 mg/dl or less, and were maintained at high levels by repeated oxonate injection throughout the experimental period. In this hyperuricemic model, FYX-051 in the dose range of 0.03 to 1 mg/kg caused a dose-dependent decrease in serum urate levels with an extremely low 50% effective dose (ED$_{50}$) of 0.15 mg/kg, evaluated at 1 hour after oral administration. Allopurinol in the dose range of 1 to 30 mg/kg also displayed dose-dependency, but had a relatively high ED$_{50}$ value of 4.7 mg/kg. Fig. 9B shows the time course of changes in the ED$_{50}$ values of FYX-051 and allopurinol in this model. FYX-051 was very effective even long after administration, and its ED$_{50}$ values at 6 and 12 hours were 0.25 and 0.70 mg/kg, respectively. On the other hand, allopurinol was less potent and the ED$_{50}$ values at 6 and 12 hours after administration were 17 and 78 mg/kg, respectively.
Discussion:

In the time course study of XOR inhibition, we found that FYX-051 displayed time-dependent inhibition to urate formation (Fig. 2). Okamoto et al. (2004) showed that such time-dependent inhibition is due to formation of a stable reaction intermediate by determination of the crystal structure of FYX-051-XDH complex. This showed that FYX-051 forms a covalent bond to molybdenum via oxygen, i.e., a Mo-O-C2-FYX-051 bond. It seems likely that 2-hydroxy-FYX-051, which also exhibits time-dependent inhibition, would interact similarly with XOR, that is, it would undergo further hydroxylation by the enzyme to form another stable reaction intermediate.

The study of complex stability (Fig. 3) by determination of the recovery of enzyme activity showed that FYX-051 XOR complex (Fig. 1B) decomposed with a half-life of 20.4 hours which was more stable than oxipurinol XOR complex (Fig. 1D) with 5 hours (Massey et al., 1970). Interestingly, the recovery of enzyme activity from the FYX-051 XOR complex gradually slowed down and the full enzyme activity was not recovered for 48 hours, and this is consistent with the indication from the time-dependent inhibition studies that 2-hydroxy-FYX-051 and/or a further hydroxylated form of 2-hydroxy-FYX-051 might also have an inhibitory effect.

Although FYX-051 showed potent, time-dependent inhibition of XOR due to the formation of stable reaction intermediates, as described above, FYX-051 and its derivative also display structure-based non-covalent inhibition, as shown by steady-state kinetic analyses based on initial velocity determination (Fig. 4). FYX-051 exhibited competitive-type inhibition with a K_i value of 5.7×10^{-9} M,
two orders of magnitude smaller than that of allopurinol found by means of steady-state analysis ($K_i = 7.0 \times 10^{-7}$ M) (Elion, 1966). Previous study of the crystal structure revealed that FYX-051 XDH complex has various interactions involving amino acid residues in the substrate channel of the enzyme, in addition to the covalent bond to molybdenum (Okamoto et al., 2004). Accordingly, the potent inhibition of the enzyme by FYX-051 in the initial phase can be ascribed to such structural interactions.

Analysis of the metabolites of FYX-051 produced by XOR showed that 2-hydroxy-FYX-051, monohydroxylated metabolite of FYX-051, was further converted to di- and trihydroxy-FYX-051 during prolonged incubation for up to 72 hours (Fig. 5). These structures are reasonable in terms of the nature of XOR, which normally hydroxylates the carbon atom adjacent to the nitrogen atom of a heterocycle (Okamoto et al., 2004). Trihydroxy-FYX-051 was stable for at least 72 hours, so that this trihydroxy compound may mainly mediate the inhibition and be responsible for the spectral perturbation of XO (Figs. 3 and 6).

On prolonged incubation of FYX-051-XOR complex, further spectral changes were observed with the appearance of a larger positive peak at 590 nm (Fig. 6), suggesting the formation of a new stable charge-transfer complex between the reduced molybdenum center and a metabolite of FYX-051. This is confirmed by the fact that the identical spectrum of charge-transfer complex was obtained from trihydroxy-FYX-051-XOR complex. The wavelength of maximum absorption ($\lambda_{\text{max}} = 590$ nm) of these charge-transfer complexes was shifted 50 nm to shorter wavelength than that in the case of
2-hydroxy-FYX-051 (λ\text{max} = 640 nm) (Okamoto et al., 2004) or the violapterin complex (Davis et al., 1982) or the complexes with oxipurinol and its derivatives (Massey et al., 1970). Thus, the complex of XDH-trihydroxy-FYX-051 is suggested to be quite different from the complexes of XDH with 2-hydroxy-FYX-051 or pyrazolo pyrimidine derivatives. Crystal structure of FYX-051-XOR complex with marked spectral perturbation reveals that the pyridine ring of trihydroxy-FYX-051 is connected with molybdenum via the nitrile residue of the compound (Fig. 7). The distance between the molybdenum and C1 carbon atom of the ring is 4.3 Å, which is clearly larger than that of the complex with FYX-051 (Okamoto et al., 2004), and fits well with a linkage via the nitrile group. This finding suggests that trihydroxy-FYX-051 forms a covalently bound complex with the molybdenum that is quite different from the reaction intermediate structure (Okamoto et al., 2004). The 2,6-dihydroxypyridine ring binds at the outermost region of the channel and is not clearly defined. The crystal structure of the trihydroxy-FYX-051 bound form is basically different from that of the FYX-051 bound form, indicating that a major reason for the spectral change is a direct influence of the different covalent linkages between the inhibitor and the molybdenum cofactor. We suggest that the nitrile group would markedly perturb the electronic environment of the Mo-pterin cofactor.

In previous \textit{in vivo} study, allopurinol is immediately converted to oxipurinol, which is detected in human plasma and urine at relatively high concentration (Hosoya et al., 1991), whereas only a little 2-hydroxy-FYX-051 is detected in human urine after administration of FYX-051 (Nakazawa et al., 2006). In the present study, we investigated \textit{in vitro} hydroxylation by XO in order to clarify the
difference in metabolic behavior between two inhibitors in vivo. These results imply that 2-hydroxy-FYX-051 enzyme complex is so stable (Fig. 3, $t_{1/2} =$ about 20 hours) that only a little 2-hydroxy-FYX-051 can be dissociated from the complex (Fig. 8). Furthermore, 2-hydroxy-FYX-051 was slightly increased when incubation was continued, and no formation of metabolites with two or three hydroxyl groups was observed until nonreacted FYX-051 was completely consumed (data not shown). It is likely that this reflects the difference in binding affinity between FYX-051 and 2-hydroxy-FYX-051 for the enzyme. It is likely that the conversion of allopurinol to oxipurinol continues until oxipurinol-enzyme complex is fully formed, because allopurinol is a good substrate for XOR. This oxipurinol, which is deposited in the kidney during renal excretion, sometimes causes severe adverse effects in patients with renal insufficiency (Hande et al., 1984). In the case of FYX-051, such an adverse effect would not be expected, since 2-hydroxy-FYX-051 does not easily accumulate, and is not renally excreted.

A previous study showed that repeated allopurinol dosing (30 mg/kg p.o. once daily for 28 days) in normal rats caused severe nephrotoxicity (Horiuchi et al., 1999). On the other hand, we previously demonstrated that nephropathy in rats occurring after FYX-051 dosing (1 mg/kg p.o. once daily for 28 days) was a secondary change caused by xanthine crystals being deposited in the kidney due to the potent inhibition of XOR (Shimo et al., 2005). Accordingly, it is likely that the potent and long-lasting hypouricemic effects of FYX-051 (Fig. 9) arise from its high affinity for and stable binding to the enzyme.
In conclusion, we have studied in detail how FYX-051 interacts with bovine milk XOR. It was found that 2-hydroxy-FYX-051 XOR complex formed is more stable than oxipurinol XOR complex, although FYX-051 as well as allopurinol forms a covalent linkage to molybdenum (Okamoto et al., 2004) and exhibits time-dependent inhibition of the enzyme. FYX-051 also displayed a potent, non-covalent inhibition of XOR with a lower K_i value of 5.7×10^{-9} M than allopurinol. Moreover, we found that XOR hydroxylates three carbons of FYX-051 and finally generates a trihydroxylated derivative, which forms a covalent linkage to molybdenum via the nitrile group and brings a distinct spectral change of the enzyme. However, only a little 2-hydroxy-FYX-051 was detected, and no other hydroxylation metabolites were observed in an in vivo study (Nakazawa et al., 2006). Di- and trihydroxylated forms of FYX-051 appeared only when the enzyme-inhibitor complex was incubated under artificial conditions, that is, under the condition of excess enzyme. Therefore, the pharmacological effects of the di- and trihydroxylated metabolites should have no impact in the clinical context. Moreover, we have demonstrated that FYX-051 exerts a potent and long-lasting hypouricemic effect in vivo. These effects of FYX-051 may arise from its high affinity for and stable binding to XOR in vitro. Therefore, FYX-051 appears to be a promising candidate drug for the treatment of gout and hyperuricemia.
Acknowledgements:

We thank Drs. Tomohiro Matsumura and Teruo Kusano (Nippon Medical School, Tokyo, Japan) for data collection of crystallographic data. We also thank Mr. Koichi Omura and Dr. Takahiro Sato (Fuji Yakuhin, Saitama, Japan) for LC/MS and NMR analyses. We thank Photon Factory (Tsukuba, Japan) for beam time and the beam line staff of NW12A for support.
Authorship Contributions:

Participated in research design: Matsumoto, Okamoto, Ashizawa and Nishino.

Conducted experiments: Matsumoto, Okamoto and Ashizawa.

Contributed new reagents or analytic tools: Matsumoto and Ashizawa.

Performed data analysis: Matsumoto, Okamoto and Nishino.

Wrote or contributed to the writing of the manuscript: Matsumoto, Okamoto and Nishino.

Other: Nishino acquired funding for the research.
References:

Footnotes:

This work was supported by Grant-in-Aid for Scientific Research [16205021] and [20590317] for Science Research from the Ministry of Education, Science, Sport and Culture of Japan.

Reprint requests to: Takeshi Nishino,

Department of Biochemistry and Molecular Biology

Nippon Medical School, Department of Biochemistry and Molecular Biology

1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan

nishino@nms.ac.jp
Legends for figures:

Fig. 1. Chemical structures of FYX-051, allopurinol, and their hydroxylated forms.

Fig. 2. Time-dependent inhibition of XO by FYX-051 and 2-hydroxy-FYX-051. Reactions were started by adding 1 nM XO (AFR = 182) to a solution of each inhibitor and 0.15 mM xanthine in 0.1 M pyrophosphate buffer (pH 8.5) containing 0.2 mM EDTA. The time course of xanthine-O$_2$ reactivity, expressed as urate formation, was observed photometrically by following the absorbance change at 295 nm, 25 °C. A; FYX-051: closed diamonds, no inhibitor, 0 nM; open circles, 3 nM; closed triangles, 10 nM; closed circles, 30 nM. B; 2-hydroxy-FYX-051: closed diamonds, no inhibitor, 0 μM; open circles, 1 μM; closed triangles, 3 μM; closed circles, 10 μM.

Fig. 3. Recovery of urate formation activity of XO-inhibitor complexes. A; FYX-051 (5.1 μM) was first mixed anaerobically with 6.4 μM XO (AFR = 189) and then the mixture was exposed to air. Aliquots were withdrawn for determination of urate formation at various incubation times at 25 °C under aerobic conditions (open circles). Excess 2-hydroxy-FYX-051 (32 μM) was also pre-mixed with hypoxanthine-reduced enzyme (16 μM) under anaerobic conditions and incubation was started at 25 °C after rapid removal of excess inhibitor and hypoxanthine by gel filtration at 4 °C under aerobic conditions (closed circles). B; Semilogarithmic plots of A for determination of recovery half-lives. Open circles, FYX-051; closed circles, 2-hydroxy-FYX-051.
Fig. 4. Lineweaver-Burk plots of inhibition of XO by FYX-051 and 2-hydroxy-FYX-051. Reactions were started by adding 5 or 10 nM XO (AFR = 186) with various concentrations of inhibitor and xanthine in 0.1 M pyrophosphate buffer (pH 8.5) contained 0.2 mM EDTA. Activity was observed photometrically by following the absorbance change at 295 nm, 25 °C. Initial velocities were used. Values are the means ± S.D. of three experiments. A; FYX-051: *closed squares*, no inhibitor, 0 nM; *open squares*, 10 nM; *closed triangles*, 20 nM; *open triangles*, 30 nM; *closed circles*, 40 nM. B; 2-Hydroxy-FYX-051: *closed squares*, no inhibitor, 0 μM; *open squares*, 1 μM; *closed triangles*, 2 μM; *open triangles*, 4 μM; *closed circles*, 8 μM. Inset, Secondary plots of the Lineweaver-Burk plots. The K_i and K_i' values were obtained from the slopes (*closed diamonds*) and $1/V_{max}$ (*open diamonds*), respectively.

Fig. 5. Analysis of metabolites of FYX-051 produced by XO. Thirty-two μM FYX-051 was mixed aerobically with 40 μM XO (AFR = 189) and the mixture was incubated at 25 °C. Metabolites of FYX-051 were evaluated by means of HPLC and LC/MS. A; Authentic standards of FYX-051 and 2-hydroxy-FYX-051. B; immediately after mixing. C; 8 hours after mixing. D; 72 hours after mixing. E; MS profile of peak c. F; MS profile of peak d.

Fig. 6. A; The absorption spectra of XO after mixing with FYX-051 under anaerobic conditions. The
spectrum of the enzyme before mixing with FYX-051 (bold solid line), immediately after (solid line), 120 hours after (dotted line), and 30 min after exposure to air (dashed line). Inset: Difference spectra between enzyme before and after mixing with FYX-051. B; The absorption spectra of XO after mixing with trihydroxy-FYX-051 under anaerobic conditions. The spectrum of the enzyme before mixing with trihydroxy-FYX-051 (bold solid line), immediately after (solid line), 10 min after dithionite reduction (dotted line), and 10 min after exposure to air (dashed line). Inset; Difference spectra between enzyme before and after mixing with trihydroxy-FYX-051.

Fig. 7. Crystal structure of XOR after 5 days incubation with FYX-051. A and B; Fo–Fc electron density corresponding to molybdopterin-hydroxylated derivative of FYX-051, contoured at a 3.0 σ cutoff. The Fo–Fc density was calculated before introducing the molybdopterin and hydroxylated FYX-051 into the crystallographic model to avoid model bias. Carbon atoms of molybdopterin-hydroxylated FYX-051 are illustrated in green. Some amino acid residues important for catalysis and substrate binding are labeled in the figure.

Fig. 8. Conversion of FYX-051 (A) and allopurinol (B) to monohydroxylated metabolites by XO. Various concentrations of FYX-051 and allopurinol were mixed aerobically with 40 μM XO. Unchanged forms and monohydroxylated metabolites (2-hydroxy-FYX-051 and oxipurinol) in the mixtures were quantified by HPLC after 5 min incubation at 25 °C. Values are the means ± S.D. of
three experiments.

Fig. 9. Hypouricemic effects of FYX-051 and allopurinol in oxonate-induced hyperuricemic rats. A; Changes in serum urate levels of hyperuricemic rats at one hour after oral administration of FYX-051 or allopurinol. B; Time course of changes in the ED₅₀ values of FYX-051 and allopurinol in this model. Values are the means ± S.D. (n = 5). **, p<0.01 versus control group (Dunnett’s multiple range test).
Tables:

Table 1. Data Collection and Refinement Statistics

<table>
<thead>
<tr>
<th></th>
<th>C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>C2</td>
</tr>
<tr>
<td>Unit cell axes (Å) , Unit cell angle (degree)</td>
<td>a = 168.9 b = 124.7 c = 146.2, beta = 91.04</td>
</tr>
<tr>
<td>Resolution range (Å)</td>
<td>33.5-2.2</td>
</tr>
<tr>
<td>Number of unique reflections (used for R-free calculation)</td>
<td>144234 (7582)</td>
</tr>
<tr>
<td>Rsym (%)</td>
<td>7.9</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>95.2</td>
</tr>
<tr>
<td>Rcryst *(%)</td>
<td>21.7</td>
</tr>
<tr>
<td>(Rfree)</td>
<td>(28.0)</td>
</tr>
<tr>
<td>Rmsd bond length (Å)</td>
<td>0.011</td>
</tr>
<tr>
<td>Rmsd bond angles (degree)</td>
<td>1.4</td>
</tr>
<tr>
<td>Number of nonhydrogen atoms</td>
<td>22167</td>
</tr>
<tr>
<td>Ramachandran plot (%)</td>
<td>90.4, 8.5, 0.5, 0.6</td>
</tr>
</tbody>
</table>

*Rsym = Σhkl |Ii - <I>|/Σhkl |<I>| where Ii is the ith measurement and <I> is the weighted mean of all measurements of I.

*Rcryst = Σhkl | |Fo| - |Fc| |Fo|, where Fo and Fc are the observed and calculated structure factors, respectively, and the summation is over the reflections used for model refinement. Rfree was the same as Rcryst for 5% of the data randomly omitted from the total data.

Ramachandran statistics indicate the fraction of residues in the most favored, additionally allowed, generously allowed, and disallowed regions of the Ramachandran diagram, as defined by the program CCP4 (Collaborative Computational Project, Number 4, 1994).
Figure 1 Matsumoto et al.
Figure 2 Matsumoto et al.
Figure 3 Matsumoto et al.
Figure 4 Matsumoto et al.
Figure 5 Matsumoto et al.
Figure 6 Matsumoto et al.
Figure 7 Matsumoto et al.
Figure 8 Matsumoto et al.
Figure 9 Matsumoto et al.