Systemically and topically active antinociceptive neurotensin compounds

Grace C. Rossi, Joshua E. Matulonis, Elliott Richelson, Denise Barbut
and Gavril W. Pasternak

Laboratory of Molecular Neuropharmacology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 (JEM, GWP), Dept of Psychology, C.W. Post Campus of Long Island Univ, Brookville, NY 11548 (GCR), the Mayo Clinic, Jacksonville, FL 32224 (ER) and Sarentis Therapeutics Corp, New York, NY 10021 (DB)
Running title page

Running title: Neurotensin analgesics

Address correspondence:

Gavril W. Pasternak, MD PhD
Memorial Sloan-Kettering Cancer Center
Laboratory of Molecular Neuropharmacology
1275 York Ave
New York, NY 10065
Tel: 646.888.2165
Email: pasterng@mskcc.org

Text Pages: 12 pages
Tables: 2
Figures: 4
References: 29
Abstract: 171 words
Introduction: 302 words
Discussion: 755 words

Abbreviations: L-neoTrp: (2S)-2-amino-3-(1H-4-indoyl)propanoic acid; DAB: diaminobutyric acid; N-MeArg: N-methylarginine; Orn: Ornithine

Section: Neuropharmacology
ABSTRACT

Neurotensin is a neurotransmitter/modulator with a wide range of actions. Using a series of ten stable analogs, we have examined neurotensin antinociception in mice. By incorporating L-neo-Trp, a series of neurotensin analogs have been synthesized that are stable in serum and are systemically active \emph{in vivo}. When administered in mice, they all were antinociceptive in the radiant heat tailflick assay. Time-action curves revealed a peak effect at 30 min and a duration of action ranging from 2 to 4 hours. Dose-response curves revealed that two compounds were partial agonists with maximal responses below 75% while all the remaining ones displayed a full response. Overall, the compounds were quite potent, with ED$_{50}$ values similar to those of opioids. At peak effect, the ED$_{50}$ values ranged from 0.91 to 9.7 mg/kg, s.c. Two of the analogs were active topically. Together, these studies support the potential of neurotensin analogs as analgesics. They are active systemically and by using them topically, it may be possible to avoid problematic side-effects, such as hypothermia and hypotension.
Introduction

Neurotensin has long been appreciated for a wide range of actions, the most prominent of which are hypothermia, hypotension and antinociception (Tyler-McMahon, et al., 2000a; Boules, et al., 2006). These actions are mediated through neurotensin receptors (Dobner, 2006; Maeno, et al., 2004; Remaury, et al., 2002). The analgesic actions of neurotensin are readily dissociated from the opioids based upon their insensitivity to the highly opioid selective antagonist naloxone, ruling out an opioid mechanism. This lack of involvement of opioid systems would be advantageous clinically due to the potential of a reduced abuse liability and the utility of combining neurotensin receptor drugs with other classes of analgesic agents. Although there is general agreement that antinociceptive neurotensin analogs act through neurotensin receptors, it is still uncertain whether these effects are mediated through NTS1, NTS2 or a combination of both (Roussy, et al., 2008; Boules, et al., 2006; Dobner, 2006).

Targeting neurotensin receptors with drugs has been difficult due to the problems with centrally acting peptides and the general lack of availability of non-peptide neurotensin agonists. The activity of neurotensin resides in the C-terminal six peptides corresponding to NT(8-13), with NT(9-13) also showing some activity in various paradigms (Kitabgi, et al., 1977; Keegan, et al., 1994). Despite the ability to truncate the peptide and retain activity, it is still not an effective agent systemically. To overcome the challenge inherent in developing centrally active peptides that retain activity when given systemically many neurotensin analogs have been generated. One series of compounds utilizing L-neo-Trp (Fauq, et al., 1998) has proven valuable due to both pharmacokinetic stability and blood brain barrier penetration capability (Remaury, et al.,
2002; Katz, et al., 2001; Tyler-McMahon, et al., 2000b; Tyler, et al., 1999). To understand further the antinociceptive actions of these compounds, we have now examined the activity of a series of these analogs in mice both systemically and topically.
Methods

Male Crl:CD-1® (ICR) BR mice (20-25 g) were purchased from Charles River Laboratories (Kingston, NY) and were housed in a 12:12 h light/dark cycle temperature-controlled room with food and water freely available (*ad libitum*). The neurotensin peptides were synthesized using solid-phase techniques, purified by HPLC and converted to the acetate salt (Mimotopes, Clayton Victoria, Australia). Doses are given as the weight of the acetate salt. Compounds for systemic administration were dissolved in 0.9% saline and administered subcutaneously. Topical dosing utilized DMSO solutions.

Antinociception: Antinociception was determined using the radiant heat tailflick assay (Ling, et al., 1983; Ling and Pasternak, 1983). In this assay, baseline latencies were determined for each animal using a focused beam of light on the ventral part of the tail (Ugo Basile, Camerio, Italy) and typically ranged between two and three seconds. Responses can be assessed either quantally or through graded responses (D'Amour and Smith, 1941; Le Bars, et al., 2001). For the systemic studies, we utilized quantal assessments whereby antinociception was defined as a doubling or greater of baseline values for each subject. Maximum tail flick latencies of 10 sec were used to minimize any tissue damage. Results analyzed quantally were similar to those using graded responses with regards to both the ED$_{50}$ and maximal responses. All experimental protocols were approved by our Institutional Animal Care and Use Committee and all procedures were in compliance with the Care and Use of Laboratory Animals.

Topical antinociception: Topical antinociceptive assays were determined as previously described using the radiant heat tailflick assay (Kolesnikov, et al., 2000). In this paradigm, after determining the baseline latency approximately 3 cm of the mouse’s
distal tail is immersed in a solution of NT compound in DMSO for the indicated time (1-3 min), withdrawn, and analgesia tested immediately over the region of the tail exposed to the drug. A local effect of the drug was confirmed by also testing a more proximal site that was not exposed to the drug. Local effects were defined by responses limited to the distal, drug-exposed region and not seen on the non-exposed proximal region. In this paradigm, DMSO alone has no effect upon tailflick latencies.

Data analysis: When using quantal data, individual comparisons were made using the Fisher Exact test. Graded responses were compared using analysis of variance. ED$_{50}$ values were determined by nonlinear regression analysis (GraphPad Prism, Carlsbad, CA)
Results

Systemic antinociception: Neurotensin itself is not active systemically, presumably due to a combination of its rapid degradation and difficulty traversing the blood-brain barrier. Incorporation of L-neoTrp into a series of neurotensin analogs led to compounds (Table 1) that were exceedingly stable in plasma *in vitro* for hours (E. Richelson, unpublished data). Several of these agents have been examined in a variety of behavioral assays and found to be active (Boules, et al., 2006; Fantegrossi, et al., 2005; Boules, et al., 2003), but they have not been examined systematically in tests of nociception. We therefore embarked upon studies to compare the actions of a series of these stabilized neurotensin analogs in a thermal assay of nociception, the radiant heat tailflick assay.

First, using a fixed dose, we defined the peak effect through time action curves (Fig. 1). Peak effects were observed at 30 min. Since equianalgesic doses were not used, comparison of actual durations among the drugs must be done cautiously. The duration of action of the drugs was similar to that seen with traditional opioids such as morphine. Most of the NT analogs were active for two hours. Although the antinociceptive response of NT72 persisted longer, it also had a higher peak effect which might have led to its slightly longer duration of action.

Dose-response studies confirmed the activity of all the drugs in the radiant heat tailflick assay following subcutaneous administration (Fig 2). However, the drug potencies varied by 10-fold among the NT analogs (Table 2). NT69L, NT72, and NT78 were all equipotent, with ED$_{50}$ values under 1 mg/kg, s.c. NT73 was the least active, with an ED$_{50}$ value of 9.7 mg/kg. With the exception of NT69L and NT78, all other NT analogs elicited a full response, as shown by their curves and confirmed by nonlinear
regression analysis. Both NT78 and NT69L appeared to be partial agonists with their dose-response curves revealing maximal antinociceptive responses of approximately 55% for NT78 and 74% for NT69L. It is interesting to note that NT78 was among the most potent of the drug analogs despite its partial agonist activity.

Topical antinociception: Neurotensin and its analogs have a number of actions other than analgesia, including hypotension and hypothermia, which might interfere with their utility as systemic analgesics. By limiting the site of action locally in the periphery, non-therapeutic centrally mediated side-effects may be avoided, an approach previously demonstrated by the topical analgesia seen with opioids (Kolesnikov and Pasternak, 1999a; Kolesnikov, et al., 2000). We therefore examined the topical activity of several of the NT compounds in the mouse.

The 5-mer NT72 was one of the most potent analogs when given systemically. Therefore our studies focused on this compound. As previously stated, the technique involved immersion of the distal portion of the tail into a DMSO solution containing the specific compound immediately prior to testing the drug-exposed portion of the tail in the radiant heat tailflick assay. This approach has worked very well for a range of opioids. To ensure that the activity of the drug was due to a local effect, an additional control included testing a more proximal portion of the tail that had not been exposed to the drug in the same animal. If the activity were due to systemic absorption of the compound, the proximal region should show the same effects as the distal one.

Immersion of the tail into DMSO solutions of NT72 at either 2 mg/ml or 5 mg/ml elicited a reproducible antinociceptive response. The response was progressively greater with a longer duration of immersion in the drug solution, although it showed
evidence of plateauing between 2 and 3 min (Fig. 3). In this study, there was no statistical difference for NT72 between the doses, implying that we were at maximal response. In control studies, DMSO solutions alone had no effect on tailflick latencies in this assay, establishing the specificity of the response and confirming prior observations on the inactivity of the vehicle alone (Kolesnikov and Pasternak, 1999a; Kolesnikov, et al., 2000). In this model, immersion of the tail into opioid solutions for periods longer than 3 minutes led to some systemic absorption. Thus, we limited our exposures to 3 minutes to avoid this.

When we extended the study to include a number of NT analogs, we were surprised to see that only NT71 and NT72 displayed major activity topically (Fig. 4). When examined quantally, both drug elicited a response of 50% or greater. None of the other drugs achieved a doubling of the baseline value. More subtle effects can be assessed using graded responses from the same dataset. With both compounds, the latency of the distal tail exposed to both NT71 or NT71 was significantly prolonged (p<0.001) compared to baseline. The proximal region of the tail unexposed to drug did not show a significant prolongation. NT76 also revealed a statistically significant increase in latency distally compared to baseline (p<0.05), but this elevation was quite modest and of questionable relevance in a clinical situation. In contrast, neither NT67 nor NT69L displayed any topical antinociceptive activity in the distal, exposed tail when compared to baseline, although there was a small increase with NT67 when compared to the proximal tail value.
Discussion

Pain remains a major issue in a vast array of medical conditions. Although many effective drugs are available, they all have limitations. The availability of a new class of drug would have many advantages. Neurotensin has long been known to have a number of actions, including analgesia (Clineschmidt and McGuffin, 1977; Boules, et al., 2006; Nemeroff, et al., 1979; Dobner, 2006). Clearly, these early reports documented an antinociceptive response. Distinguishing between analgesic and anesthetic actions can often be difficult in animal models. However, there is evidence supporting an analgesic response. The distribution of NT receptors within the CNS includes regions known to be important in pain modulation, including the dorsal horn of the spinal cord and the periaqueductal grey, with a pathway to the nucleus raphe magnus (Dobner, 2006). Microinjection of NT into the rostroventral medulla (RVM) elicited a strong analgesic response (Fang, et al., 1987). Neurotensin also lowers body temperature, which can influence results in many of the nociceptive assays. However, there is evidence suggesting a dissociation of hypothermia and analgesia in two different rat strains, implying distinct mechanisms (Bauco and Rompre, 2003). In any event, these analogs are clearly antinociceptive.

Neurotensin itself has variable activity systemically, presumably due to its rapid degradation and its difficulty traversing the blood brain barrier. NT69L has previously been demonstrated to have analgesic actions in rodents and in primates (Fantegrossi, et al., 2005; Boules, et al., 2003). The current study extends these observations to a series of stabilized neurotensin derivatives in the radiant heat tailflick assay.

All the compounds were analgesic with similar onsets and durations of action, with the exception of NT72 analgesia that persisted slightly longer than the others. The
peak effect following subcutaneous administration was 30 min, a time point used in all the dose-response studies. Although they all were active, their potencies varied by independent factors. Evidence to date suggests that the analogs are stable in plasma, but that does not address issues with metabolism and other pharmacokinetic parameters. Many peptides have difficulty traversing the blood-brain barrier and it is not clear whether this is important in the current studies. In mice, NT78 and NT69L both appear to have ceiling effects, implying that they are partial agonists in this assay.

Neurotensin has several distinct central nervous system actions that might be undesirable in an analgesic, such as hypotension and hypothermia. Ultimately, it may be possible to avoid these actions through the design of receptor subtype-selective agents. However, at the present time these compounds are not available. Alternatively, selectivity of action can be achieved by limiting the site of action of a drug, as seen with topical approaches. Earlier studies from our laboratory have documented the ability of topical mu, delta and kappa opioids to elicit analgesia locally (King, et al., 2001; Kolesnikov, et al., 1992; Kolesnikov, et al., 1996b; Kolesnikov, et al., 1996a; Kolesnikov and Pasternak, 1999c; Kolesnikov and Pasternak, 1999a; Kolesnikov and Pasternak, 1999b). Similarly, two NT analogs, NT71 and NT72, were active topically. The activity was dependent upon the time of exposure and, under the conditions employed, there was no evidence of significant systemic absorption since the activity of the drugs was limited to the distal portion of the tail. Why this topical activity was limited to these two agents is not clear. This might reflect inherent receptor mechanistic differences among the compounds that are only evident in the peripheral nerves or they may be due to physicochemical properties of the drugs that influence their ability penetrate the skin, which is necessary to show activity in this assay.
There also was no simple correlation between systemic potency and topical activity. NT72 and NT71 showed equivalent responses topically while NT71 was significantly less active systemically. While the inactivity of topical NT69L might be due to the limited efficacy of a partial agonist, this would not explain the inactivity of NT67 and the limited actions of NT76, which were both fully efficacious and more potent systemically than was NT71. Together, these observations raise interesting questions regarding the topical responses, perhaps relating to the penetration of the peptides into the skin or other pharmacokinetic issues using topical approaches.

Neurotensin offers a new approach in the management of pain that has the potential of expanding our ability to treat many of the intractable pain problems currently seen in clinical medicine. The development of stable neurotensin analogs capable of traversing the blood-brain barrier with systemic activity may therefore prove valuable. The ability to use a topical approach to limit side-effects further enhances the potential utility of these agents, as does their ability to synergize with other agents such as morphine (J.E. Matulonis, D. Barbut and G.W. Pasternak, unpublished observations).
References

the neurotensin type 1 receptor reveals its role in body temperature control and feeding behavior but not in analgesia. *Brain Res* **953**:63-72.

Footnotes:

Supported, in part, by grants [DA07242, DA2165] and a Research Scientist Award [DA00220] from the National Institute on Drug Abuse to GWP and an unrestricted research grant from Sarentis.
Legends for Figures

Figure 1: Time course of analgesia with NT analogs

The indicated NT compounds were administered subcutaneously and analgesia assessed in the radiant heat tailflick assay as described in Methods. All analogs were administered at 5 mg/kg, with the exception of NT71 (10 mg/kg) and NT72, NT76 and NT77 (1.5 mg/kg). Results are the mean of two independent replications (n=10 for each). The peak effects of all the drugs were significantly increased (p<0.002), as determined by the Fisher Exact test.

Figure 2: Analgesic Dose-response curves for NT analogs in mice

All NT compounds were administered subcutaneously at the indicated doses. Results are the means of three independent replications (n=10 for each) and are displayed as the means ± s.e.m., with the exception of NT66, which was replicated twice. Error bars not visible for the others were smaller than the symbol. Antinociception was assessed at peak effect, 30 min.

Figure 3: Exposure time-course for topical NT72

The distal portion of the tails of mice was exposed to NT72 at either 2 or 5 mg/ml in DMSO for the indicated time. The tails were then immediately withdrawn and tested using the radiant heat tailflick assay, with the light beam focused upon the region of the tail exposed to the drug. Results are the means ± s.e.m. of replicates. Error bars not visible were smaller than the symbol. Two way ANOVA of the results were highly significant (p<0.001), with the differences restricted across time. No significant differences were seen between the two concentrations of drug.
Figure 4: Specificity of topical NT analog analgesia

Groups of mice (n=7-10) had their tails immersed in the indicated NT analog solution at 5 mg/ml in DMSO for three minutes. The tails were immediately withdrawn and tested distally in the region exposed to the drug and proximally over a region of the tail that was not exposed to the drug. Results were analyzed both A) quantally or using B) graded responses. Quantal responses were analyzed using Fisher’s exact test. Graded responses are the means ± s.e.m. and were analyzed using ANOVA. None of the values proximally on the tail in a region not exposed to drug were statistically different from baseline values. The distal values for NT 71 and NT72 were highly statistically different from baseline (p<0.001) while NT76 was also increased, although to a lesser extent (p<0.05).
Table 1: Structures of the neurotensin analogs

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT66</td>
<td>D-Lys-L-Arg-L-Pro-L-neoTrp-tertLeu-L-Leu</td>
</tr>
<tr>
<td>NT67</td>
<td>D-Lys-L-Arg-L-Pro-L-neoTrp-L-Ile-L-Leu</td>
</tr>
<tr>
<td>NT69L</td>
<td>N-MeArg-L-Lys-L-Pro-L-neoTrp-tertLeu-L-Leu</td>
</tr>
<tr>
<td>NT71</td>
<td>N-MeArg-DAB-L-Pro-L-neoTrp-tertLeu-L-Leu</td>
</tr>
<tr>
<td>NT72</td>
<td>D-Lys-L-Pro-L-neoTrp-tertLeu-L-Leu</td>
</tr>
<tr>
<td>NT73</td>
<td>D-Lys-L-Pro-L-neoTrp-L-Ile-L-Leu</td>
</tr>
<tr>
<td>NT74</td>
<td>DAB-L-Pro-L-neoTrp-tertLeu-L-Leu</td>
</tr>
<tr>
<td>NT76</td>
<td>L-Arg-D-Orn-L-neoTrp-L-Ile-L-Leu</td>
</tr>
<tr>
<td>NT77</td>
<td>L-Arg-D-Orn-L-Pro-L-neoTrp-tertLeu-L-Leu</td>
</tr>
<tr>
<td>NT78</td>
<td>N-MeArg-D-Orn-L-Pro-L-neoTrp-tertLeu-L-Leu</td>
</tr>
</tbody>
</table>

neoTrp: (2S)-2-amino-3-(1H-4-indolyl)propanoic acid
Table 2: Analgesic activity of NT analogs in mice

<table>
<thead>
<tr>
<th>NT</th>
<th>ED$_{50}$ value (mg/kg, s.c.)</th>
<th>95% confidence limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT66</td>
<td>2.5</td>
<td>1.5, 4.3</td>
</tr>
<tr>
<td>NT67</td>
<td>1.6</td>
<td>1.0, 2.5</td>
</tr>
<tr>
<td>NT69L</td>
<td>0.96</td>
<td>0.16, 5.6</td>
</tr>
<tr>
<td>NT71</td>
<td>3.5</td>
<td>2.3, 5.3</td>
</tr>
<tr>
<td>NT72</td>
<td>0.94</td>
<td>0.66, 1.4</td>
</tr>
<tr>
<td>NT73</td>
<td>9.7</td>
<td>6.4, 14.7</td>
</tr>
<tr>
<td>NT74</td>
<td>3.4</td>
<td>2.7, 4.3</td>
</tr>
<tr>
<td>NT76</td>
<td>1.9</td>
<td>1.2, 2.9</td>
</tr>
<tr>
<td>NT77</td>
<td>2.8</td>
<td>1.8, 4.2</td>
</tr>
<tr>
<td>NT78</td>
<td>0.91</td>
<td>0.56, 1.5</td>
</tr>
</tbody>
</table>

ED$_{50}$ values were determined by nonlinear regression of at least three independent replications of the dose-response curves and are presented with 95% confidence limits. Analysis yielded a maximal response of 100% with all drugs except NT69L (74%) and NT78 (55%).
Fig. 1

A

![Graph A](image1)

- **NT67**
- **NT69**
- **NT66**

B

![Graph B](image2)

- **NT71**
- **NT73**
- **NT74**
- **NT72**

C

![Graph C](image3)

- **NT78**
- **NT77**
- **NT76**
Fig 2

A

B

C

Analgesia (percent of mice) vs. Dose (mg/kg, s.c.) for different compounds:

- A: NT67, NT66, NT69
- B: NT71, NT74, NT73, NT72
- C: NT78, NT77, NT76
Fig 3