Reversal of TNP-470-induced endothelial cell growth arrest

by guanine and guanine nucleosides

John Hines, Rong Ju, Ginger E. Dutschman, Yung-Chi Cheng and Craig M. Crews
Dept. of Molecular, Cellular and Developmental Biology (J.H., R.J., C.M.C); Dept. of Chemistry (C.M.C.); and Dept. of Pharmacology (G.E.D., Y-C.C., C.M.C.), Yale University, New Haven, CT, USA 06511
Running title: Guanine blocks growth arrest of endothelial cells by TNP-470

Address Correspondence to: Dr. Craig M. Crews, Department of Molecular, Cellular and Developmental Biology, Yale University, P.O.B. 208103, New Haven, CT 06520-8103.

Tel.: (203) 432-9364
Fax: (203) 432-6161
Email: craig.crews@yale.edu

text pages: 31 (incl. abstract through figure legends)

number of tables: 1
number of figures: 5
number of references: 38

Abstract words: 245
Introduction words: 682
Discussion words: 1095

Abbreviations: BAE, bovine aortic endothelial
MPE, mouse pulmonary endothelial
MPA, mycophenolic acid
MetAP-2, methionine aminopeptidase 2
IMPDH, inosine 5’-monophosphate dehydrogenase
PMSF, phenylmethylsulfonyl fluoride
pI, isoelectric point
ddATP, dideoxyadenosine triphosphate

recommended section: Cellular and Molecular
ABSTRACT

The mechanism of action of TNP-470, which potently and selectively inhibits the proliferation of endothelial cells, is incompletely understood. Previous studies have established its binding protein and the most distal effector of its growth arrest activity as methionine aminopeptidase 2 (MetAP-2) and p21^{WAF1/CIP1}, respectively. However, the mechanistic steps between these two effectors have not been identified. We have found that addition of exogenous guanine and guanine-containing nucleosides to culture medium will completely reverse the cytostatic effect of TNP-470 on both cultured bovine aortic and mouse pulmonary endothelial cells. Western blotting showed that supplementation with exogenous guanosine reverses the induction of p21^{WAF1/CIP1} by TNP-470. This “rescue” by guanine/guanosine was abolished when the guanine salvage pathway of nucleotide biosynthesis was inhibited with Immucillin H, suggesting that TNP-470 might reduce de novo guanine synthesis in endothelial cells. However, an analysis of inosine 5’-monophosphate dehydrogenase -- the rate-limiting enzyme in de novo guanine synthesis and target of the antiangiogenic drug mycophenolic acid -- showed no TNP-470-induced changes. Curiously, quantitation of cellular nucleotides confirmed that GTP levels were not reduced following TNP-470 treatment. Addition of guanosine at the start of G₁ phase causes a doubling in GTP levels that persists to the G₁/S phase transition, where commitment to TNP-470 growth arrest occurs. Thus, guanine rescue involves an augmentation of cellular GTP beyond physiological levels rather a restoration of a drug-induced GTP deficit. The mechanism whereby this causes restoration of endothelial cell proliferation is an ongoing investigation.
Angiogenesis, the formation of new blood vessels from pre-existing ones, plays an essential role in normal tissue growth and development by supplying cells with the oxygen and nutrients needed to sustain their metabolism. However, for this same reason, angiogenesis also plays a central role in tumor progression: developing tumors can secrete a number of pro-angiogenic factors to create their own internal vasculature to sustain proliferation of the cancer cells (Hahnfeldt et al., 1999). In addition to providing the cancer cells with nutrients and oxygen, the developing vasculature also facilitates metastasis by providing tumor cells with access to the general circulation. Aside from cancer, angiogenesis also contributes to the pathophysiology of rheumatoid arthritis (Szekanecz et al., 2005), macular degeneration (Nowak, 2006) and other pathological conditions (Pandya et al., 2006). Clinical researchers and basic scientists alike believe that developing therapies that prevent angiogenesis without affecting already existing vasculature (i.e. cytostatic agents rather than cytotoxic agents) will be of great value in the treatment of such conditions.

While endogenous inhibitors of angiogenesis like endostatin (Sim, 1998) and endorepellin (Bix et al., 2004) have been identified and characterized, small molecules are superior drug candidates because they are less susceptible to degradation and often have an improved volume of distribution compared to proteins. The serendipitous discovery of the small molecule fumagillin from a fungal contamination of cultured endothelial cells (Ingber et al., 1990) provided researchers with a potent and selective inhibitor of endothelial cell proliferation. Fumagillin at subnanomolar concentrations causes G_{1}/S phase growth arrest of cultured endothelial cells by activation of p53, and in turn, p21^{WAF1/CIP1} (“p21”). (Yeh et al., 2000; Zhang et al., 2000). This growth arrest is reversible and remarkably selective for endothelial cells at such low concentrations. *In vivo*, fumagillin, and its synthetic analog TNP-470, retard tumor
growth and prolong survival time in studies in mice (Takechi et al., 1994; Gervaz et al., 2000). In corneal micropocket assay, TNP-470 reduced capillary formation in response to pro-
angiogenic growth factor (Yeh et al., 2000).

Our lab and others have shown that fumagillin and TNP-470 bind to and inhibit the metalloprotease methionine aminopeptidase 2 (MetAP-2) (Griffith et al., 1997; Sin et al., 1997), and a more recent report has confirmed this enzyme as the therapeutically-relevant protein target for inhibition of angiogenesis (Yeh et al., 2006). TNP-470 inactivates MetAP-2 by forming a covalent bond with the catalytic His^{231} in the enzyme active site (Liu et al., 1998a). The specificity of TNP-470 for MetAP-2 over MetAP-1 largely depends on the amino acid located at position 362: Ala362 in MetAP-2 permits access of TNP-470 and its analogs to the ligand binding site, while the bulkier Thr residue found at the analogous position in MetAP-1 is prohibitive (Brdlik and Crews, 2004).

The complete mechanism whereby MetAP-2 inhibition should lead to endothelial cell growth arrest has been and continues to be an area of interest. Little is known concerning the intermediate signaling effectors that transduce the cytostatic effect of TNP-470 and that lie between MetAP-2 and p53/p21. We have shown that TNP-470 inhibits non-canonical wnt signaling (Zhang et al., 2006) and likely interferes with early, membrane-proximal events in that pathway, although how this causes activation of p53 is yet unknown. One possible cause of p53 activation of growth arrest is depletion of one or more of nucleotides within the cell (Taylor et al., 1999; Khan et al., 2000; Bronder and Moran, 2003). Supplying cells with exogenous nucleosides, which become incorporated into purine or pyrimidine salvage mechanisms, restores the correct nucleotide balance and can reverse the growth arrest. For example, the immunosuppressant and antiangiogenic drug mycophenolic acid growth arrests cells by
inhibition of de novo guanine synthesis, and addition of exogenous guanine to these cells restores proliferation (Chong et al., 2006). Here, we investigated whether supplementation with exogenous nucleosides could attenuate the cytostatic effect of TNP-470 on endothelial cells. We show that addition of exogenous guanine nucleosides non-competitively reverses the cytostatic effect of TNP-470 on endothelial cells by blocking p21 induction. Interestingly, despite similarities in their activities on endothelial cells, TNP-470 impacts GTP synthesis differently than mycophenolic acid.
MATERIALS AND METHODS

Reagents. Tissue culture reagents, including fetal bovine serum (FBS), were obtained from Invitrogen (Carlsbad, CA). Polyclonal antibody to IMDPH1 was obtained from Abcam (Cambridge, MA), while polyclonal antibodies to p21WAF1/CIP1 and cyclin H were obtained from Santa Cruz Biotech (Santa Cruz, CA). Polyclonal antibody to RRM1 was purchased from Cell Signaling Technologies (Danvers, MA) monoclonal antibody to α-tubulin was from Sigma-Aldrich (St. Louis, MO). [3H]-Thymidine was purchased from Perkin-Elmer (Boston, MA) and [2,8-3H]-hypoxanthine (33.4 Ci/mmol) was purchased from Moravek Radiochemicals (Brea, CA). Immucillin H was a generous gift from Dr. Vern Schramm at Albert Einstein Medical College (New York, NY). Immobilized pH gradient strips were obtained from Bio-Rad (Hercules, CA) and protein molecular weight markers for SDS-PAGE were from Amersham Biosciences (Piscataway, NJ). All other reagents were obtained from Sigma-Aldrich (St. Louis, MO) unless otherwise specified.

Cell culture. Primary bovine aortic endothelial (BAE) and murine pulmonary endothelial (MPE) cells were maintained at 37°C in a humidified atmosphere of 5% CO\textsubscript{2} and 95% O\textsubscript{2}. Bovine aortic endothelial cells were isolated and cultured as follows: under aseptic conditions, freshly procured calf aorta was cut open lengthwise with a sterile surgical scissors and the intimal surface gently scraped with sterile razors to collect the endothelial cells. The collected material was pelleted by spinning at 800 rpm for 3 minutes and then resuspended in 5 ml of 0.25% trypsin EDTA for 2 minutes at room temperature to disaggregate the sheets of endothelial cells. The cells were then plated out onto a gelatin-coated dish and grown in a specialized formulation of D-MEM containing exclusively D-valine in place of L-valine, further
supplemented with 10% FBS, 50 units/ml penicillin, 50 µg/ml streptomycin and 1% MEM non-essential amino acids. BAE cells were switched to the more customary L-valine containing medium upon the first passage. MPE cells were isolated from mouse lung tissue using immunomagnetic selection and cultured as previously described (Yeh et al., 2000).

[^3H]Thymidine incorporation. BAE or MPE cells were seeded into 96 well plates in growth medium at a density of 4000 cells/well. After several hours (overnight) to allow for cell attachment, the growth medium was removed and replaced with serum-free medium. Cells were maintained in serum-free conditions for 48 hr. to arrest growth and permit cell cycle synchronization in G₀. Cell proliferation was then reestablished with fresh medium containing serum and the compound(s) of interest at the specified concentration(s). After 12 hr, each well of cells received another 20 µl of medium containing 2 µCi of[^3H]-thymidine (70 – 90 Ci/mmol from Perkin-Elmer, Boston, MA). Following another 4 hrs, the cells were harvested from the wells and passed through glass fiber filters using a Ska-Tron cell harvestor (Molecular Devices, Sunnyvale, CA). The filters were washed and then transferred to vials, scintillant was added and the amount of radioactivity incorporated into the cells in the filters was quantified by scintillation counting. The resulting data was analyzed using PRISM software (GraphPad Software, Sand Diego, CA).

Fluorescence activated cell sorting for cell cycle analysis. BAE cells were growth arrested and synchronized by serum deprivation, and then stimulated to re-enter the cell cycle by restoration of 10% FBS to medium. At the time intervals indicated following serum restoration, cells were detached by trypsinization, rinsed in ice-cold PBS, and then resuspended in a propidium iodide-labeling buffer (PBS supplemented with 50 µg/ml propidium iodide, 0.2% Triton X-100 and 10 µg/ml RNase A) for 12 hours at 4 degrees in the dark to stain cellular DNA.
Using a FACS-Calibur flow cytometer (BD Biosciences, San Diego, CA), the DNA content per cell was recorded and the percentages of cells in G0/G1, S, and G2/M phases of the cell cycle were determined using CellQuest 2.1 acquisition software (BD Biosciences).

Western blotting. *One-dimensional blotting:* MPE cells were drug-treated as described above and then rinsed once in ice-cold PBS. For whole cell lysates, cells were homogenized in lysis buffer (25 mM Tris HCl pH 7.4, 150 mM NaCl, 1% NP-40, 0.25% deoxycholic acid, 10 mM sodium fluoride, 10 mM sodium pyrophosphate, 10 mM sodium orthovanadate, 1 mM PMSF, 10 µg/ml pepstatin A, 10 µg/ml leupeptin and 0.3 TIU/ml aprotinin) and clarified by centrifugation at 14,000 rpm at 4°C for 10 minutes. For cytoplasmic/nuclear fractions, we used the method described by Schreiber *et al.* (Schreiber *et al.*, 1989). Sample proteins were resolved by SDS gel electrophoresis and transferred to nitrocellulose. for probing with the antibody indicated.

Two-dimensional blotting: MPE cells were drug-treated, rinsed once with ice-cold 250 mM sucrose and then harvested in isoelectric focusing buffer (8 M urea, 4% CHAPS and 2 mM tributylphosphine). Samples were dounced several times and clarified by centrifugation at 14,000 rpm at 4°C for 10 minutes. Sample proteins were resolved first by isoelectric focusing on immobilized pH gradients strips for 20,000 volt hrs; followed by SDS-PAGE and transfer to nitrocellulose. Following membrane block in 5% non-fat milk, samples were probed for IMPDH1 using rabbit polyclonal antibody and developed using chemiluminescence.

Reporter assay for p53 induction. MPE cells stably expressing the p53-driven luciferase reporter construct pG13Py-luc (gift of Bert Vogelstein, Johns Hopkins University in Baltimore, MD) were plated into 12 well plates and drug treated as indicated. Luciferase activity was measured using the Luciferase Assay System from Promega Corp. (Madison, WI) according to
manufacturer’s instructions. Luciferase activity was measured on a Wallac Victor automated platereader and results were normalized to protein concentrations using the bicinchoninic acid method.

Immunofluorescence. MPE cells were grown on glass cover slips in 6-well plates for 24 hours, followed by the indicated overnight drug treatment. They were then washed with PBS and fixed in PBS supplemented with 3.7% paraformaldehyde for 10 minutes. After permeabilization with 0.25% Triton X-100 in PBS, the cells were blocked with 1% BSA for one hour. The cells were then stained with anti-IMPDH1 antibody at 1:200 for 60 minutes and then incubated with the secondary antibody (Alexa Fluor 594-conjugated goat anti-rabbit) at 1:500 for another hour. Cover slips were washed three times with PBS every time following antibody incubations. Vectashield™ mounting medium (Vector Labs, Burlingame, CA) was applied to protect fluorophore activity, after which the cells were visualized by confocal microscopy.

IMPDH activity assay. IMPDH activity in intact BAE cells was determined by measuring the amount of 3H released from the C-2 position of [2,8-3H]-inosine 5’-monophosphate that was formed in the cells during incubation with [2,8-3H]-hypoxanthine. Briefly, 10^6 BAE cells were plated into 60 mm plates and then drug-treated as indicated. The cells were then rinsed 2X in serum-free D-MEM and then incubated in serum-free D-MEM with continued drug application along with 25 µCi/dish of [2,8-3H]-hypoxanthine (33.4 Ci/mmol). At time points 0, 30, 60, 120, 150 and 180 minutes, 80 µl aliquots of medium were removed from each dish, combined with 500 µl of ice-cold activated charcoal suspension (100 mg/ml in 5% trichloroacetic acid), mixed and centrifuged for 10 minutes at 1300 x g. For each sample, 100 µl of the supernatant was analyzed for radioactivity by scintillation counting. The amount of spontaneous liberation of 3H was measured in growth medium in the absence of cells and found to be < 0.75 % of the total
amount of [2,8-3H]-hypoxanthine added; this background was subtracted from all values to arrive at the net amount of 3H released due to the activity of IMPDH.

Quantitation of cellular nucleotides by HPLC. Endothelial cells were drug-treated as described, rinsed twice in ice-cold PBS containing 20 µM dipyridamole and harvested from the dishes in ice-cold 70% methanol containing 5 mM sodium fluoride and 12.5 mM β-glycerophosphate. After incubation on ice for 15 minutes, samples were centrifuged at 14,000 rpm for 10 minutes to pellet the protein and the supernatant recovered and evaporated to dryness. Following addition of 100 µl of 15% TCA and vigorous vortexing to remove any remaining sample protein, the TCA in each sample was removed by two half-volume extractions using trioctylamine:1,1,2-trichlorotrifluoroethane (both from Aldrich Chemical, Milwaukee, WI) in a ratio of 45:55, and the resultant aqueous layer was analyzed for nucleotide content by injection of 50 µl onto the HPLC (Shimadzu, Braintree, MA). Prior to injection, each sample was spiked with a known amount of the synthetic nucleotide ddATP as an internal standard. The nucleotides were separated from each other using a Partisil SAX column (Whatman, Clifton, NJ) and a gradient of H$_2$O to 300 mM potassium phosphate buffer at a flow rate of 1.5 ml/min. The size of the peaks was determined using a diode array detector with a channel set to 270 nm, and the identities of the four NTP peaks confirmed by measurement of their respective UV absorbance spectra.
RESULTS

In the first series of experiments (Fig. 1), the ability of individual nucleosides to reverse the cytostatic effect of TNP-470 on cultured bovine aortic endothelial (BAE) cells was tested. Alone (“unsupplemented”), TNP-470 was potently cytostatic against BAE cells, exhibiting an IC$_{50}$ value of 0.37 ± 0.12 nM. Initially, all the nucleosides were tested by supplementing the culture medium at both 1 mM and 100 µM. At the higher concentration of 1 mM, all of the nucleosides inhibited BAE cell proliferation even in the absence of TNP-470 (data not presented); however, at the lower concentration of 100 µM, the nucleosides had differing effects on BAE cell growth. The pyrimidine nucleosides (cytidine, thymidine and uridine) were all still growth suppressive even at 100 µM (Fig. 1A). In contrast, adenosine at 100 µM was mitogenic, and enhanced BAE cell proliferation by approximately 50% in the absence of TNP-470. However, despite this mitogenic activity, adenosine was unable to diminish the cytostatic effect of TNP-470: BAE cells were equally inhibited by TNP-470 in the absence or presence of adenosine. However, supplementation of BAE cells with exogenous guanosine at 100 µM completely “rescued” the BAE cells from TNP-470-induced growth arrest (Fig. 1A), even at the highest concentration of TNP-470 used (100 nM). Concentrations of guanosine in the medium ≤ 20 µM provided no reversal of TNP-470, while concentrations between 20 µM and 80 µM were able to only partially reverse TNP-470 growth arrest. In the absence of TNP-470, guanosine at 100 µM was neither mitogenic nor growth suppressive on BAE cells. This stands in contrast to both adenosine as well as to all the pyrimidine nucleosides. Thus, the ability of guanosine to effectively rescue endothelial cells against TNP-470 is specific for that nucleoside.

The ability of exogenous deoxyguanosine and the purine base guanine itself to rescue BAE cells from TNP-470-induced growth arrest was subsequently tested (Fig. 1B), and they
were found to have similar rescuing activity as guanosine. Deoxyguanosine at 100 µM was nearly as effective at rescuing BAE cell proliferation as guanosine, with only a small cytostatic effect of TNP-470 observed at its highest concentration. Guanine at 100 µM was able to reverse 50% of the cytostatic TNP-470 effect without changing the IC₅₀ value of the antiangiogenic drug; however, guanine at 200 µM completely rescued BAE cells from TNP-470. Such dose-dependent reduction in TNP-470 efficacy by guanine with no change in TNP-470 potency may best be described pharmacologically as a non-competitive reversal.

It is interesting to note that addition of guanosine, etc., to BAE cells was most effective at countering the TNP-470 cytostatic effect when added to cells arrested in G₀ phase and/or re-entering the cell cycle at G₁ phase (Fig. 2A). The ability of guanosine to rescue BAE cell proliferation from TNP-470 was markedly reduced as supplementation of growth medium with the nucleoside occurred at progressively later time points in G₁ phase. Cell cycle progression was charted by both expression of the M1 subunit of ribonuclease reductase, RR-M1, which is absent in arrested cells (Mann et al., 1988) but reacquired in cycling cells (Fig. 2B) and by quantitation of cellular DNA content using propidium iodide staining and flow cytometry (Fig. 2C). RR-M1 was undetectable in endothelial cells which had been serum-starved for 48 hours, which indicated a state of quiescence had been achieved. Upon restoration of FBS to the growth medium, RR-M1 levels slowly increased and were readily detectable by 8 hours. Quantitation of cellular DNA in Figure 2C shows that 8 hours corresponds to the earliest indication of the cells entering S phase (up to 18.9% from 12.8% at 4.5 hours); and at 12 hours, the percentage of cells in S phase has further doubled to nearly 40%. Since addition of guanosine at these late time points in G₁ phase has no rescuing effect against TNP-470, it suggested that time was required for the metabolic conversion of guanosine (and deoxyguanosine and guanine) into another form.
in order to rescue endothelial cell proliferation. One possibility involves the guanine salvage pathway, which can scavenge extracellular guanine and guanine nucleosides for conversion into guanosine triphosphate (GTP) to supplement the de novo GTP synthesis pathway.

Immucillin H is a small molecule inhibitor of purine nucleoside phosphorylase (Kicska et al., 2002), a key enzyme in the guanine salvage pathway. Incubation of BAE cells with exogenous guanosine and Immucillin H completely blocked the guanosine rescue effect and restored TNP-470 growth arrest (Fig. 2D). The ability of guanosine to rescue endothelial cells from the cytostatic effect of TNP-470 via the guanine salvage pathway is not a species-specific phenomenon, since murine pulmonary endothelial (MPE) cells exhibit the same behavior (Fig. 2E). Thus, the antagonizing effect of guanine and guanine nucleosides on TNP-470 growth arrest is not restricted to endothelial cells from a particular species or specific anatomical origin (e.g. arteriolar vs. venous endothelial cells).

TNP-470-dependent endothelial cell growth arrest directly results from the induction of the cyclin inhibitor, p21WAF1/CIP1. As shown in Figure 3A, TNP-470 causes the upregulation of p21WAF1/CIP1 in both the nuclear as well as cytoplasmic compartments of the endothelial cell (p21WAF1/CIP1 appears as a doublet when detected using this antibody, as we have previously shown (Yeh et al., 2000)). It is generally believed that the nuclear-localized p21WAF1/CIP1 results in cell cycle arrest; while there have been reports of cytoplasmic-localized p21WAF1/CIP1 possessing its own biological activities, the extent to which they may be relevant to cell cycle arrest by TNP-470 is unknown. Co-treatment of endothelial cells with 100 µM guanosine in addition to TNP-470 markedly decreases the p21WAF1/CIP1 induction caused by the latter. Curiously, while exogenous guanosine completely reduces cytoplasmic levels of p21WAF1/CIP1 back to the basal levels seen in vehicle-treated cells, a small amount of elevated nuclear
p21WAF1/CIP1 remains. However, since proliferation is restored in guanosine-treated endothelial cells, this “residual” nuclear p21WAF1/CIP1 appears to be of nominal importance. The decrease in p21WAF1/CIP1 levels caused by guanosine could be due to an upstream effect (inhibition of p21 transcription) or a downstream effect (promotion of p21 degradation). It is known that p21WAF1/CIP1 upregulation is dependent on TNP-470 activation of the tumor suppressing transcription factor, p53. Therefore, to see whether guanosine is decreasing p21WAF1/CIP1 through an upstream effect, the ability of the nucleoside to reverse TNP-470-triggered p53 activation was tested. Endothelial cells stably expressing a p53-driven firefly luciferase plasmid, pG13Py-luc, were treated with TNP-470 in the absence or presence of exogenous guanosine (Fig. 3B). TNP-470 caused a 3.3-fold increase over basal levels of luciferase activity; however, when these cells were treated with both TNP-470 and 100 µM guanosine, the p53 response was significantly reduced by ~ 48%. While reversal of TNP-470-triggered p53 induction by guanosine is incomplete and may explain the residual p21 in Fig. 3A, it appears nevertheless sufficient to permit the resumption of cell cycling. Furthermore, this result shows that guanosine rescues growth by acting at or upstream of p53 – an area of the mechanism of TNP-470 that still needs elucidation.

A recent study (Huang et al., 2005) has shown that the immunosuppressant drug, mycophenolic acid (MPA), which inhibits de novo guanine synthesis and thereby depletes cellular stores of GTP (Senda et al., 1995), can also trigger endothelial cell growth arrest. As with TNP-470, the growth inhibition of endothelial cells by mycophenolic acid is cytostatic, p21-dependent and reversible by co-treatment with exogenous guanosine (Chong et al., 2006). Mycophenolic acid blocks cell proliferation by inhibiting the enzyme inosine 5’-monophosphate dehydrogenase 1 (IMPDH1) (Chong et al., 2006), which is the rate-limiting step in de novo
guanine synthesis. Curiously, reduction of IPMDH activity, like p21 induction, has been shown to be a necessary consequence of p53 activation for growth arrest (Liu et al., 1998b). Because TNP-470 shows marked similarities to MPA in terms of its cytostatic activity and could potentially affect the processing of several proteins via its inhibition of MetAP-2, the effects of TNP-470 on IMPDH1 in endothelial cells were directly tested. The abundance, post-translational modification, subcellular localization and overall catalytic activity were compared in the absence or presence of TNP-470. Western blotting of MPE cells showed that TNP-470 does not change the cellular levels of IMPDH1 (Fig 4A). Indeed, two-dimensional western blots of TNP-470-treated, MPA-treated and vehicle-treated MPE cells showed no significant changes in the isoform distribution (Fig. 4B), with multiple isoforms of IMPDH1 detected: the majority of IMPDH1 immunoreactivity ran with pI of 6.1, with significant amounts of the enzyme running at pI of 6.0 and 6.2. There was also a poorly resolved streak of immunoreactivity running from pI 5.1 to approximately 5.5. The nature of the differences between these isoforms of IMPDH1 was not determined; however, it is clear that they are unaltered by treatment with TNP-470 or MPA.

Assays of IMPDH activity revealed that, while mycophenolic acid strongly inhibited the enzyme (Fig. 4C), TNP-470 had no effect. Likewise, TNP-470 had no effect on the subcellular distribution of IMPDH1 (Fig. 4D, center panel) when compared to control cells (Fig. 4D, left panel), while MPA induced the previously reported (Ji et al., 2006) formation of large aggregates of the inactivated enzyme (Fig. 4D, right panel). Thus, in contrast to the effects of mycophenolic acid, IMPDH1 appears to be completely unaffected by TNP-470 despite the observed similarities in their activities on endothelial cells. Finally, treatment of endothelial cells with both drugs at once (Fig. 3E) revealed no changes in IC50 values for either drug in the absence or presence of a
sub-maximal concentration of the other inhibitor (100 nM for MPA and 0.5 nM for TNP-470). More specifically, TNP-470 had an IC$_{50}$ value of 0.43 ± 0.08 nM in the absence of MPA and 0.60 ± 0.21 nM in its presence; similarly, mycophenolic acid had an IC$_{50}$ value of 106 ± 17 nM in the absence of TNP-470 and 116 ± 33 nM in its presence, both values being consistent with previously published estimates of MPA potency against endothelial cells (Huang et al., 2005; Chong et al., 2006). However, in either case where both drugs were applied to cells, the maximum proliferation was decreased to approximately half that observed in the single drug dose responses. The additive cytostatic effect of these inhibitors is consistent with their each having a different mechanism of action.

While IMPDH is a key enzyme in de $novo$ guanine synthesis, there are other enzymes (e.g. GMP synthetase) which, if inhibited by the presence of TNP-470, would similarly lead to reduction of cellular GTP levels. Alternatively, TNP-470 treatment could cause the stabilization of an enzyme that accelerates GTP breakdown. Therefore, to definitively test whether TNP-470 treatment leads to decreases in cellular GTP levels in endothelial cells, extracts of drug-treated cells were subjected to HPLC analysis to quantitate nucleotide levels. While treatment with 1 µM mycophenolic acid causes the predicted selective decrease in cellular GTP (Fig.5B) compared to control cells (Fig. 5A), treatment with 10 nM TNP470 does not change GTP levels (Fig. 5C). Therefore, surprisingly, inhibition of MetAP-2 in endothelial cells by TNP-470 clearly does not lead to suppression of de $novo$ guanine synthesis.

Nevertheless, the fact that Immucillin H blocks the ability of guanosine to rescue against TNP-470 strongly implies that guanosine first must be converted to guanine nucleotide before it can restore angiogenesis. Measurements of nucleotide levels in endothelial cells after 12 hours of guanosine treatment (Table 1) confirm that GTP levels double in the presence of 100 µM
guanosine. Levels of ATP and CTP do not change, while UTP levels fall slightly, consistent with the known reciprocal regulation of UTP and GTP (Sokoloski and Sartorelli, 1985).
DISCUSSION

Adenosine and guanosine both have been reported as mitogenic to various kinds of cells (Dubey et al., 2002; Yalowitz and Jayaram, 2000), and indeed, the pharmacological growth pattern we observed in Fig. 1A supports the notion that adenosine is mitogenic to endothelial cells. However, despite its ability to enhance endothelial cell growth, adenosine was unable to overcome the cytostatic effect of the antiangiogenic drug TNP-470. Guanosine, however, showed a different pharmacological pattern when added to BAE cells in that it (1) completely reversed the growth inhibition even at maximum concentration of TNP-470, and (2) restored proliferation to the same levels as seen in untreated BAE cells. This pattern is consistent with guanosine or its metabolites acting along the same signaling pathway as TNP-470, but at a point downstream of MetAP-2 inhibition and upstream of distal effectors where commitment to cell division is determined. In fact, the point of action of guanosine “rescue” appears to occur at or upstream of p53 activation. The potentially wide-ranging effects of MetAP-2 inhibition have made elucidating the mechanism of TNP-470 in between these two effectors a challenging task.

That the ability of exogenous guanosine to rescue endothelial cells (both bovine and murine) from TNP-470 is progressively diminished when the nucleoside is added at progressively later time points into G1 phase shows that early events including some metabolic processing is necessary in order for guanine/guanine nucleotides to rescue. This metabolic processing is likely the guanine salvage pathway: in addition to being able to synthesize purines bases like guanosine de novo from building block compounds like glycine, aspartic acid bicarbonate, etc., most cells also have the ability to scavenge free purine bases and/or purine-containing ribonucleosides and deoxyribonucleosides in order to maintain critical cellular levels.
of these essential metabolites. The enzymes comprising this scavenging mechanism are collectively referred to as the “guanine salvage pathway”. Thus, conversion of exogenous guanine, guanosine and deoxyguanosine into GMP inside the endothelial cells is essential for rescue from TNP-470. In support of the notion that exogenous guanosine is acted upon by the salvage pathway in order to accomplish TNP-470 rescue, the salvage pathway inhibitor Immucillin H also blocked guanosine rescue and reinstated the cytostatic effect of TNP-470.

The observations that exogenous guanosine rescues endothelial cells from TNP-470-induced growth arrest, and that Immucillin H can counter this rescuing effect, led us to speculate that TNP-470 may be inhibiting the ability of the endothelial cells to synthesize their own endogenous guanine/guanine nucleotides. There are a number of drugs that inhibit cell growth by disrupting de novo purine or pyrimidine base synthesis. For example, the immunosuppressants leflunomide (Cherwinski et al., 1995) and mycophenolic acid (Senda et al., 1995) block immune cell proliferation by inhibiting de novo uridine and de novo guanine synthesis, respectively. The latter drug, mycophenolic acid, has more recently been shown to inhibit endothelial cell growth as well (Huang et al., 2005). It accomplishes this by inhibiting the enzyme inosine 5’-monophosphate dehydrogenase (IMPDH), which catalyzes the first committed step in de novo guanine synthesis. Chong and colleagues (Chong et al., 2006) have also shown that inhibition of the enzyme subtype IMPDH1 causes growth arrest by mycophenolic acid in endothelial cells, whereas inhibition of IMPDH2 is of nominal consequence to endothelial cells and rather more important for growth arrest of lymphocytes. Due to the similarities (cytostatic growth arrest, p53 induction and exogenous guanosine rescue of drug effect) between TNP-470 and mycophenolic acid, it was tempting to speculate that the former may also alter IMPDH1 activity in some way to disrupt de novo guanine synthesis.
However, thorough examination of endothelial cell IMPDH1 failed to show any changes in subcellular localization, enzyme abundance and isoform distribution, or overall catalytic activity following TNP-470 treatment. Meanwhile mycophenolic acid-treated endothelial cells showed the expected loss of IMPDH activity and formation of annular aggregates of the protein which have been previously reported (Ji et al., 2006). Thus, the mechanism whereby TNP-470 may disrupt *de novo* guanine synthesis in endothelial cells is different from mycophenolic acid in that the effect of the former is IMPDH1-independent. The differences in their respective mechanisms are also somewhat underscored by their different receptor proteins.

The proximal and distal mediators of the cytostatic effect of TNP-470 have been firmly established as MetAP-2 (Griffith et al., 1997; Sin et al., 1997) and p21WAF1/CIP1 (Yeh et al., 2000; Zhang et al., 2000), respectively. The task now remains to identify those signaling proteins that connect the inhibition of MetAP-2 by TNP-470 with the cessation of cell cycling triggered by p53. Our lab recently discovered that TNP-470 inhibits non-canonical wnt signaling (Zhang et al., 2006), a pathway that has since been shown to be important for angiogenesis (Cirone et al., 2008) and is affected by the behavior of G proteins. In this study, we have shown that the resultant growth inhibition from TNP-470 treatment of endothelial cells is completely reversed by addition of exogenous guanine and guanine-nucleosides acting via the guanine salvage pathway. While such guanine-reversal of growth arrest is commonly observed with known antiangiogenics that act by suppressing *de novo* guanine synthesis, TNP-470 itself causes no decreases in cellular GTP levels. Thus, despite many similarities in their activity, TNP-470 and mycophenolic acid act differently to produce endothelial cell growth arrest. It is possible that TNP-470, through inhibition of MetAP-2 may decrease a small, unique compartment of the guanine nucleotide pool instead of guanine nucleotide synthesis, leading to the eventual
induction of p21, and that the measurement of total cellular GTP may does not reflect such a localized GTP decrease. Alternatively, the boost in cellular GTP levels following guanine supplementation may affect other metabolic activities – such as mitogenic G protein signaling – which themselves could have a role in TNP-470 growth arrest. The non-competitive manner in which exogenous guanosine rescues against TNP-470 suggests that it acts downstream in the effector pathway from MetAP-2. There are reports in the literature of small G proteins being inhibited by TNP-470 (Satchi-Fainaro et al., 2005; Nahari et al., 2007). There are also numerous reports (Habas et al., 2001; Ahumada et al., 2002; Katanaev et al., 2005) describing the importance of G proteins in non-canonical wnt signaling, a signaling pathway that is important to angiogenesis and also inhibited by TNP-470. It is tempting to speculate that addition of exogenous guanosine to TNP-470-arrested endothelial cells and the resultant increase in cellular GTP levels can alter the behavior of downstream G proteins whose upstream effectors have been “silenced” by the drug, thus restoring the proliferating phenotype.
ACKNOWLEDGMENTS

The authors wish to thank Dr. Vern Schramm (Albert Einstein Medical College, New York, NY) for his generous gift of Immucillin H and Dr. Bert Vogelstein (Johns Hopkins University, Baltimore, MD) for generously providing the p53 reporter construct, pG13Py-luc. The authors would also like to gratefully acknowledge the expert assistance of Dr. Thomas Sundberg (Yale University) in the performance of the cell cycling FACS analysis. Y-C.C. is a fellow of the National Foundation for Cancer Research.
REFERENCES

binding proteins with 'mini-extracts', prepared from a small number of cells. Nucleic
Acids Research 17:6419.

Senda M, DeLustro B, Eugui E and Natsumeda Y (1995) Mycophenolic acid, an inhibitor of
IMP dehydrogenase that is also an immunosuppressive agent, suppresses the cytokine-
induced nitric oxide production in mouse and rat vascular endothelial cells.
Transplantation 60:1143-1148.

Sim BKL (1998) Angiostatin and endostatin: endothelial cell-specific endogenous inhibitors of

Sin N, Meng L, Wang MQW, Wen JJ, Bornmann WG and Crews CM (1997) The anti-
angiogenic agent fumagillin covalently binds and inhibits the methionine aminopeptidase,

Sokoloski JA and Sartorelli AC (1985) Effects of the inhibitors of IMP dehydrogenase,
tiazofurin and mycophenolic acid on glycoprotein metabolism. Mol Pharmacol 28:567-
573.

1:1739-1753.

TNP-470, a new anti-angiogenic agent, on estrogen induced rat pituitary tumors.

Taylor WR, Agarwal ML, Agarwal A, Stacey DW and Stark GR (1999) p53 inhibits entry into
mitosis when DNA synthesis is blocked. Oncogene 18:283-295.

Footnotes

This work was supported by grants from the National Institutes of Health to C.M.C. [CA083049] and Y-C. C. [CA63477]. The authors declare no competing interests.
Figure Legends

Figure 1: Effects of small molecules on TNP-470-induced growth arrest of endothelial cells. Data points represent the mean ± standard error of three to four independent experiments. A. Effects of exogenous nucleosides on TNP-470-induced growth arrest in BAE cells. B. Guanine and guanine-containing nucleosides rescue BAE cells from TNP-470-induced growth arrest.

Figure 2. Guanosine rescue of TNP-470-induced growth arrest requires A. Exogenous guanosine is less effective at rescuing against TNP-470 when added to BAE cells in late G1 phase compared to the start of G1 phase. B. Western blot following serum-restoration to cells for the proliferating cell protein marker, ribonuclease reductase M1 (RR-M1), upper panel; α-tubulin loading control (lower panel) C. Flow cytometric analysis of endothelial cell progression through G1 phase into S phase. Amount of cellular DNA was measured by propidium iodide labeling. D. Guanosine rescue of BAE cells requires the activity of the guanine salvage pathway. E: Guanosine rescue of MPE cells requires the activity of the guanine salvage pathway.

Figure 3: Guanosine reverses the effects of TNP-470 on downstream mediators of growth arrest. A. Exogenous guanosine reverses TNP-470 induced upregulation of cytoplasmic- and nuclear-localized p21WAF1/CIP1 in endothelial cells. Representative western blot results for p21WAF1/CIP1 (top panel); the nuclear marker, cyclin H (middle panel); and the cytoplasmic marker, α-tubulin (bottom panel) are shown. B. Exogenous guanosine blocks TNP-470 activation of the tumor-suppressor transcription factor, p53. Results represent the mean ± standard error of five independent experimental replications.
Figure 4: Lack of effect of TNP-470 on inosine 5’-monophosphate dehydrogenase. A. TNP-470 does not alter abundance of IMPDH1 in endothelial cells. B. TNP-470 does not alter isoelectric points of IMPDH1 isoforms in endothelial cells. (top panel, vehicle-treated cells; middle panel, 10 nM TNP-470-treated cells; bottom panel, 1 µM mycophenolic acid (MPA)-treated cells). C. TNP-470 does not alter IMPDH catalytic activity. Results presented are the mean ± standard error of three separate experiments. D. TNP-470 does not alter subcellular localization of IMPDH1. (left panel, vehicle-treated cells; center panel, 10 nM TNP-470-treated cells; right panel, 1 µM MPA-treated cells). E. MPA and TNP-470 have an additive cytostatic effect on endothelial cells. Results are the mean ± standard error of three independent experiments.

Figure 5: Quantitation of cellular nucleotides in vehicle-treated (panel A), 1 µM mycophenolic acid-treated (panel B) and 10 nM TNP-470 treated (panel C) cells. Representative chromatographs are shown. ddATP was used as an internal standard to verify proper sample injection on the HPLC.
Table 1: Cellular levels of NTPs following supplementation with exogenous guanosine for 12 hours. Values represent quantitation by area under the curve (AUC) (arbitrary units). Mean ± standard error.

<table>
<thead>
<tr>
<th></th>
<th>control</th>
<th>TNP-470</th>
<th>guanosine</th>
<th>TNP-470 and guanosine</th>
</tr>
</thead>
<tbody>
<tr>
<td>UTP</td>
<td>2883 ± 317</td>
<td>2943 ± 35</td>
<td>1772 ± 110</td>
<td>1913 ± 225</td>
</tr>
<tr>
<td>CTP</td>
<td>664 ± 93</td>
<td>693 ± 39</td>
<td>461 ± 16</td>
<td>547 ± 85</td>
</tr>
<tr>
<td>ATP</td>
<td>13,998 ± 1994</td>
<td>14,908 ± 704</td>
<td>14,110 ± 1973</td>
<td>14,450 ± 1280</td>
</tr>
<tr>
<td>GTP</td>
<td>2539 ± 508</td>
<td>2721 ± 545</td>
<td>5512 ± 567</td>
<td>5372 ± 431</td>
</tr>
</tbody>
</table>
Figure 5

A

B

C

ATP

UTP

CTP

ddATP

GTP

ATP

UTP

CTP

ddATP

GTP

ATP

UTP

CTP

ddATP

GTP

ATP

UTP

CTP

ddATP

GTP