ANTITUMORIGENIC EFFECTS OF CANNABINOIDS BEYOND APOPTOSIS

Nadine Freimuth, Robert Ramer and Burkhard Hinz

Institute of Toxicology and Pharmacology, University of Rostock,
Schillingallee 70, D-18057 Rostock, Germany
(N.F., R.R., B.H.)

Running title: Cannabinoids and Cancer

Corresponding author:

Burkhard Hinz, Ph.D.

Institute of Toxicology and Pharmacology

University of Rostock

Schillingallee 70

18057 Rostock

Germany

Phone +49-381-4945770

Fax +49-381-4945772

e-mail: burkhard.hinz@med.uni-rostock.de

Pages: 34

Tables: 3

Figures: 1

References: 74

Abstract word count: 125

Text word count (without references): 4454

Abbreviations: Akt, protein kinase B; AEA, anandamide; Ang-1/2, angiopoietin 1/2; 2-AG, 2-arachidonylglycerol; CBD, cannabidiol; CB₁, cannabinoid receptor 1; CB₂, cannabinoid receptor 2; CTGF, connective tissue growth factor; ECM, extracellular matrix; EGF, growth factor; EGFR, epidermal growth factor docosatetraenylethanolamide; ERK 1/2, extracellular-signal regulated kinase 1/2; FAK, focal adhesion kinase; FRNK, FAK-related non-kinase; HIF-1α, hypoxia-inducible factor 1α; HUVEC, human umbilical vascular endothelial cells; ICAM-1, intercellular cell adhesion molecule 1; Id-1/3, inhibitor of differentiation 1/3; IgSF CAMs, cell adhesion molecules of the immunoglobuline superfamily; IL-1, interleukin-1; MMP, matrix metalloproteinase; MMP-2/9, matrix metalloproteinase 2/9; MA, methanandamide; Met-F-AEA, met-fluoroanandamide; NF-κB, nuclear factor κB; NSCLC, non-small cell lung cancer; PIGF, placental growth factor; RHOA, Ras homolog gene family member A; RHOA-ROCK, RhoA/Rhoassociated coiled coil-containing kinase; ROS, reactive oxygen species; Src, proto-oncogenic tyrosine kinase; THC, Δ^9 -tetrahydrocannabinol; Tie-1, tyrosine kinase with immunoglobulinlike and EGF-like domains 1; TIMP-1, tissue inhibitor of metalloproteinases 1; TRPV1, transient receptor potential vanilloid 1; TSP-1/2, thrombospondin 1/2; VCAM-1, vascular cell adhesion molecule 1; VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor

JPET Fast Forward. Published on November 4, 2009 as DOI: $10.1124/\mathrm{jpet.109.157735}$ This article has not been copyedited and formatted. The final version may differ from this version.

4

JPET #157735 PiP

Abstract

According to the World Health Organization the cases of death caused by cancer will have been doubled until the year 2030. By 2010 cancer is expected to be the cause of death number one. It is therefore necessary to explore novel approaches for the treatment of cancer. During past years the antitumorigenic effects of cannabinoids have emerged as an exciting field in cancer research. Apart from their proapoptotic and antiproliferative action, recent research has shown that cannabinoids may likewise affect tumor cell angiogenesis, migration, invasion, adhesion and metastasation. This review will summarize the data concerning the influence of cannabinoids on these locomotive processes beyond modulation of cancer cell apoptosis and proliferation. The findings discussed here provide a new perspective on the antitumorigenic potential of cannabinoids.

Introduction

Cannabinoids are currently used in cancer patients to palliate wasting, emesis and pain. In addition, evidence has been accumulated over the last decade to suggest that these compounds could also be useful for the inhibition of tumor cell growth by modulating several survival pathways. Although anticancer effects of cannabinoids were shown as early as 1975 in Lewis lung carcinoma (Munson et al., 1975), interest in anticarcinogenic properties of these compounds was even renewed after the discovery of the cannabinoid system and the cloning of specific $G_{i/o}$ —coupled cannabinoid receptors, referred to as CB_1 and CB_2 (De Petrocellis et al., 1998; for review, see also Howlett et al., 2002; Abood et al., 2005). While the majority of effects of cannabinoids are mediated via CB_1 and CB_2 , the transient receptor potential vanilloid type 1 (TRPV1) has been described as an additional receptor target for several cannabinoids (Zygmunt et al., 1999; Costa et al., 2004; Ligresti et al., 2006). Finally, there are also various cannabinoid effects which have been associated with molecular events independent of either CB_1/CB_2 or TRPV1 activation (Ruiz et al., 1999; Hinz et al., 2004; Vaccani et al., 2005; Fogli et al., 2006).

The first comprehensive approach to clarify the involvement of cannabinoid receptors in the antitumorigenic properties of cannabinoids was achieved by Galve-Roperh et al. (2000) using a xenograft rodent model. Meanwhile, cannabinoid administration to animals has been shown to induce the regression of a broad array of cancer types such as gliomas (Galve-Roperh et al., 2000; Sánchez et al., 2001), thyroid epitheliomas (Bifulco et al., 2001), lymphomas (McKallip et al., 2002) and skin carcinomas (Casanova et al., 2003). Moreover, several studies confirmed proapoptotic and antiproliferative effects of cannabinoids in different cancer cells by mechanisms involving for instance de novo synthesis of ceramide (Galve-Roperh et al., 2000; Hinz et al., 2004) or activation of mitogen-activated protein kinases

(Galve-Roperh et al., 2000; Herrera et al., 2005). Furthermore, recent data support the hypothesis that cannabinoid receptors together with endogenously produced agonists contribute to an endogenous defence mechanism against tumorigenesis (Bifulco et al., 2002; Ligresti et al., 2003; Di Marzo et al., 2004; Kishimoto et al., 2005; Wang et al., 2008).

Apart from regulating tumor cell growth and apoptosis (for review, see Guzman et al., 2002; Bifulco and Di Marzo, 2002), other antitumorigenic mechanisms of cannabinoids are currently emerging as a focus of research work. The present review therefore focuses on the impact of cannabinoids on tumor neovascularisation, tumor cell migration, adhesion, invasion and metastasation (for illustration, see Figure 1). Table 1 provides an overview of the cannabinoids mentioned in this review.

Impact of cannabinoids on tumor neovascularisation

In the early 1970s, Judah Folkman was the first to propose that angiogenesis is a crucial event for solid tumors to grow beyond 1-2 mm³ or to become metastatic (Folkman, 1971, 1972). In this context cannabinoids were demonstrated to cause a lower vascular density of experimental tumors as assessed by the lower distribution of CD31 positive cells in experimental tumor xenografts from glioma, melanoma- and non-melanoma skin cancer and lung tumor cells (Blázquez et al., 2003, 2006; Casanova et al., 2003; Preet et al., 2008). Metfluoro-anandamide (Met-F-AEA), a metabolically stable analogue of the endocannabinoid anandamide (AEA), has been demonstrated to confer a reduction of sprout number as well as sprout length of endothelial cell spheroids, an inhibition of capillary-like tube formation in vitro and a suppression of angiogenesis in an in vivo chick chorioallantoic membrane assay (Pisanti et al., 2007). Furthermore, experimental tumors from animals treated with cannabinoids were shown to exert a vascular network that is small, undifferentiated and

impermeable (Blázquez et al., 2003) and make tumors appear paler when compared to the respective controls (Portella et al., 2003). In fact, numerous cannabinoids that bind to CB_1 and/or CB_2 receptors, including WIN-55,212-2, HU-210, JWH-133, and Δ^9 -tetrahydrocannabinol (THC) inhibit vascular endothelial cell survival and migration as part of their anti-angiogenic action (Blázquez et al., 2003).

As first suggested by Blazquez et al. (2003) from the group of Manuel Guzman, besides this direct inhibition of vascular endothelial cell migration and survival, the decrease of the expression of proangiogenic factors in the tumors may be likewise substantially involved in the antiangiogenic action of cannabinoids. Accordingly, several studies indicate an impact of cannabinoids on the expression of vascular endothelial growth factor (VEGF) which is one of the major cancer cell-released chemoattractants in tumor neovascularisation (for review, see Saia et al., 2007). Met-F-AEA was demonstrated to decrease levels of VEGF and VEGFR-1 in K-ras-transformed thyroid cells and in experimental tumors of nude mice xenografted with these cells (Portella et al., 2003). In line with these findings analyses in skin carcinoma nude mouse models (Casanova et al., 2003) confirmed an inhibitory action of JWH-133 and WIN-55,212-2 on vascular hyperplasia which was associated with a reduced mRNA expression of VEGF. Analysi of antimetastatic and antiangiogenic effects of THC on non-small cell lung cancer (NSCLC) cells also revealed a suppression of VEGF release (Preet et al., 2008). Using cDNA arrays, Blázquez et al. (2004) further provided evidence for a JWH-133-mediated decreased expression of proangiogenic key factors related to VEGF signalling in mouse gliomas such as VEGF-A, VEGF-B and hypoxia-inducible factor 1α (HIF-1α), the major transcription factor responsible for VEGF expression. In the same study, connective tissue growth factor (CTGF) and heme oxygenase-1 (HO-1), both genes known to be regulated by VEGF (Suzuma et al., 2000, Busolatti et al., 2004), as well as the VEGF-related factors inhibitor of differentiation-3 (Id-3), midkine and the angiopoietin receptor tyrosine kinase

with immunoglobulin-like and EGF-like domains 1 (Tie-1) could be demonstrated to be downregulated by JWH-133. On the other hand, JWH-133 had an inductive effect on the expression of type I procollagen 1α chain (Blázquez et al., 2004), a matrix metalloproteinase (MMP) substrate related to matrix remodeling during angiogenesis (Seandel et al., 2001).

In vivo experiments furthermore demonstrated that JWH-133 and WIN-55,212-2 decrease mRNA levels and autophosphorylation activity of epidermal growth factor receptor (EGFR) in skin tumors (Casanova et al., 2003). In the same study, cannabinoids diminished the expression of angiopoietin-2 (Ang-2) and placental growth factor (PIGF) along with the appearance of narrow capillaries and a decrease of blood vessel size. Ang-2, which supports the formation of mature blood vessels, was furthermore proved to be downregulated by JWH-133 in gliomas and astrocytomas (Blázquez et al., 2003; 2004).

Among proteolytic enzymes involved in angiogenesis, the proangiogenic factor matrix metalloproteinase-2 (MMP-2) was demonstrated to be downregulated by THC in human tumor samples from recurrent glioblastoma multiforme as well as in nude mice xenografted with the subclone from rat glioma C6 cells, C6.9 (Blázquez et al., 2008b). By contrast, THC left MMP-2 expression in the non-responder subclone C6.4 virtually unaltered (Blázquez et al., 2008b). MMP-2 expression is also diminished in vitro in cervical cancer cells by THC and methanandamide (MA) (Ramer and Hinz, 2008) and in vivo in glioma xenografts treated with JWH-133 (Blázquez et al., 2003) accompanied by reduced invasiveness of cancer cells and impaired tumor vasculature, respectively. Finally, Pisanti et al. (2007) were able to demonstrate an inhibition of MMP-2 activity in endothelial cells incubated with Met-F-AEA. There are also studies addressing the impact of cannabinoids on antiangiogenic factors. According to investigations by Casanova et al. (2003) the expression of thrombospondin-1 and -2 (TSP-1, TSP-2), both multi-domain matrix glycoproteins with inhibitory action on

neovascularisation, was not influenced upon treatment with WIN-55,212-2 and JWH-133 in nude mice xenografted with melanoma carcinoma cells.

The expression pattern of the tissue inhibitor of metalloproteinases-1 (TIMP-1), which acts as an inhibitor of angiogenesis (Seandel et al., 2001), has been controversial in experiments assessing the influence of cannabinoids on this mediator. On the one hand, cannabinoids upregulate TIMP-1 expression in human cervical and lung cancer cells as part of a mechanism contributing to its anti-invasive action (Ramer and Hinz, 2008). On the other hand, the same inhibitor was downregulated upon treatment with THC in different glioma cell lines as well as in human tumor samples from recurrent glioblastoma multiforme patients (Blázquez et al., 2008a). In the latter study, a TIMP-1-lowering effect was likewise elicited by the selective CB₂ agonist JWH-133 in nude mice xenografted with C6.9 glioma cells.

Interestingly, HU-331, a cannabinoid quinone derived from the poor agonist for cannabinoid receptors, cannabidiol (CBD), seems to exert its antiangiogenic action via mechanisms that profoundly differ from those demonstrated for several other cannabinoids. According to Kogan et al. (2006) HU-331 inhibits angiogenesis by directly inducing apoptosis of vascular endothelial cells without changing the expression of pro- and antiangiogenic factors and their receptors. In a subsequent study, HU-331 has been reported to mediate its antitumorigenic action mainly via inhibition of topoisomerase II (Kogan et al., 2007).

Collectively, cannabinoids may act antiangiogenic by disposing tumor cells to decrease the production of proangiogenic factors and/or by direct modulation of endothelial cells. Therefore, cannabinoid receptor agonists as well as cannabinoid quinones with topoisomerase II inhibitory activity may provide a promising tool for antiangiogenic strategies in cancer treatment. An overview concerning the findings published in this field is given in Table 2.

Effects of cannabinoids on tumor cell migration

Besides the involvement in physiological processes such as embryogenesis, wound healing and immune responses, cellular migration represents an important step in tumor spreading (for review, see Lauffenberger and Horwitz, 1996). Particularly, cell migration is crucial for cancer spreading once a tumor reaches a specific size and becomes metastatic. To spread into tissues of distant organs, the primary tumor has to enter lymphatic or blood vessels.

Migration of cancer cells is initiated by paracrine or endocrine chemoattractants. Among the chemoattractants that trigger migration, cell growth, proliferation and differentiation, the epidermal growth factor (EGF) and its cognate receptor, EGFR, are considered to play a pivotal role. According to Preet et al. (2008) THC elicits a decrease of EGF-induced migration of NSCLC cells as assessed by scratch wound and transwell migration experiments, but leaves basal migration virtually unaltered. In this study intracellular signalling events downstream to EGFR such as inhibition of mitogen-activated protein kinases and protein kinase B (Akt) activity were detected as targets of cannabinoid action rather than a direct inhibition of EGFR activation (Preet et al., 2008). Conflicting data have been published regarding cannabinoids' impact on EGFR activation. In one study cannabinoid receptor agonists have been shown to induce glioma and lung carcinoma cell proliferation via cannabinoid-induced EGFR signal transactivation (Hart et al., 2004). In contrast to these findings, other studies revealed inhibitory actions of WIN55,212-2 and JWH-133 on EGFR activation in skin tumors in vivo (Casanova et al., 2003) and of AEA on EGFR expression and EGFR-induced proliferation of prostate cancer cells with the latter effect occurring in a CB₁-dependent manner (Mimeault et al., 2003). Finally, one investigation reported no alteration of EGFR tyrosine phosphorylation by cannabinoids in human astrocytoma cells (Galve-Roperh et al., 2002).

Other studies ascribe neurotransmitters a role in regulating cell migration (Entschladen et al., 1997). In this context Joseph et al. (2004) demonstrated an inhibitory action of different cannabinoids on norepinephrine-induced cancer cell migration. Whereas AEA, the synthetic cannabinoid HU-210 and the AEA analogue docosatetraenylethanolamide (DEA) blocked migration of colon carcinoma cells with low CB₂ receptor expression, JWH-133 had no influence in this respect. These findings suggest a pivotal role of the CB₁ receptor in the antimigratory action given that AEA and HU-210 activate both cannabinoid receptors, DEA acts as a CB₁ receptor agonist, and JWH-133 triggers an intrinsic activity on CB₂ receptors only (Joseph et al., 2004). Noteworthy, the concept of an antimigrative effect on tumor cells that involves CB₁ rather than CB₂ receptor signalling thereby sparing unwanted side effects of cannabinoids on the recruitement of immune cells as suggested by the authors contradicts to findings which even favour a CB₂-mediated antitumorigenic action that spares psychoactive side effects (Blazquez et al., 2003).

In a more re cent study, Grimaldi et al. (2006) reported a CB₁ receptor-dependent antimigrative effect for Met-F-AEA on breast cancer cells. Laezza et al. (2008) who confirmed this finding demonstrated an involvement of the RhoA/Rho-associated coiled coil-containing kinase (RHOA-ROCK) system in the antimigratory action of this cannabinoid. Accordingly, Met-F-AEA inhibits the activity of the GTPase RHOA and causes a RHOA delocalization from the cell membrane to the cytosol which in turn results in alterations in the actin cytoskeleton (Laezza et al., 2008).

Numerous findings support a relationship between mast cell activation, enhanced tumor growth and tumor progression (for review, see Cheng et al., 2006). Accordingly, mast cells were recently demonstrated as a source of promigrative chemoattractants acting as possible targets of cannabinoids (Rudolph et al., 2008). In the latter study cancer cell migration

initiated by mast cells was downregulated by the endocannabinoid 2-arachidonylglycerol (2-AG) as well as by the synthetic cannabinoid WIN55,212-2 in the scratch would healing assay. In both cases this downregulation was CB₁ receptor-dependent.

Furthermore, a receptor-independent inhibition of human glioma cell migration was demonstrated for the weak psychoactive cannabinoid CBD (Vaccani et al., 2005). In this study, neither cannabinoid receptor antagonists, nor pertussis toxin were able to reverse the antimigratory action of CBD, excluding the involvement of G_{i/o} protein-coupled receptor signalling in general. Finally, in our hands MA and THC left the basal migration of human cervical and lung cancer cells virtually unaltered (Ramer and Hinz, 2008), implying a cell type-specific and/or chemoattractant-dependent regulation of migration by cannabinoids.

In summary, the currently available data (for summary, see Table 3) suggest an antimigratory potency of cannabinoids with the underlying signal pathways still requiring further investigation.

Influence of cannabinoids on the adhesion of cancer cells

Adhesive interaction of tumor cells with the surrounding microenviroment (e.g., tumor-stroma interaction, attachment of endothelial cells to tumor tissue) represents a crucial parameter within growth, migration and metastasation of cancer cells. Adhesion to extracellular matrix (ECM) is conferred by matrix proteins such as integrins, cadherins, selectins and cell adhesion molecules of the immunoglobuline superfamily (IgSF CAMs).

Findings concerning the influence of cannabinoids on the adhesion of cancer cells are still rare. In this context Grimaldi et al. (2006) have shown that the AEA analogue Met-F-AEA selectively reduced the adhesion of human breast cancer cells to the ECM component collagen type IV in vitro, whereas having no effect on the adhesion to fibronectin and

laminin. As the underlying mechanism, a CB₁ receptor-dependent signal transduction pathway was identified. Noteworthy, Met-F-AEA did not affect integrins at the level of expression, but decreased their affinity to collagen by suppressing phosphorylation of the focal adhesion kinase (FAK) and the proto-oncogenic tyrosine kinase Src. Controversial findings were obtained by Preet et al. (2008) using human NSCLC cells. In these cells THC was shown to enhance the phosphorylation of FAK in vitro, but to decrease its phosphorylation in vivo. In both experiments the expression of total FAK protein was unaffected (Preet et al., 2008). Finally, in experiments published by Zhou et al. (2002), the synthetic cannabinoid HU-210 was devoid of a direct influence on FAK phosphorylation in murine neuroblastoma cells (Zhou et al., 2002). In these cells another factor, the FAK-related non-kinase (FRNK), that is supposed to regulate the activity of FAK as an inhibitor (Richardson et al., 1996; Gervais et al., 1998; Sieg et al., 1999), was phosphorylated in a CB₁ receptor-dependent manner (Zhou et al., 2002).

In another study, Curran et al. (2005) observed that the intercellular cell adhesion molecule 1 (ICAM-1) and the vascular cell adhesion molecule 1 (VCAM-1), which belong to the IgSF CAMs, are also influenced by cannabinoids. In their hands the synthetic cannabinoid WIN55,212-2 blocked the interleukin 1 (IL-1)-induced upregulation of ICAM-1 and VCAM-1 in human glioblastoma and lymphoma cells in a cannabinoid receptor-independent manner. As the underlying mechanism WIN55,212-2 was shown to inhibit IL-1-induced activation of the transcription factor nuclear factor kappa B (NF-κB), a key regulator in the expression of cell adhesion molecules (Curran et al., 2005).

In conclusion, first but limited data (for summary, see Table 3) imply that cannabinoids may decrease the adhesion of cancer cells to the adjacent microenvironment thereby exerting a beneficial impact on tumor development.

Effects of cannabinoids on tumor cell invasion

Cancer cell invasion is one of the crucial events in local spreading, growth and metastasis of tumors. First evidence suggesting an anti-invasive action was published by Nithipatikom et al. (2004) who showed that 2-AG inhibits invasion of androgen-independent prostate cancer cells by a mechanism involving CB₁ receptor activation. However, the precise mechanism leading to decreased invasiveness by cannabinoids remained elusive. Recently, several investigations have provided new insight into how cannabinoids could achieve their anti-invasive action.

In this context several studies suggest a modulation of the MMP system by cannabinoids as part of their anti-invasive action. MMPs belong to a group of enzymes exerting an important function during tumor invasion, metastasis and angiogenesis through degradation of ECM components (Curran et al., 2000; Stamenkovic, 2000). Of all MMPs, particularly MMP-2 and -9 are known to facilitate tumor invasion by proteolytic degradation of major basement membrane components such as type IV collagen, laminin and nidogen (for review, see Curran et al., 2000). The activity of MMPs is attenuated by specific tissue inhibitors of MMPs (TIMPs) that bind non-covalently in a 1:1 stochiometric fashion to the active forms of MMPs thereby inhibiting the proteolytic activity of these enzymes. Consequently, an imbalance between MMPs and TIMPs toward increased proteolytic activities is associated with higher ECM degradation necessary for tumor cell invasion and metastasis.

First evidence for a direct effect of cannabinoids on the MMP system was published by Blázquez et al. (2003) who observed a JHW-133-mediated decreased expression and activity of MMP-2 in mice xenografted with a rat glioma cell line and human grade IV astrocytoma cells obtained from tumor biopsies. More recently, Pisanti et al. (2007) demonstrated inhibition of MMP-2 activity by Met-F-AEA that confers an antiangiogenic action. Using

cultured glioma cells, Blázquez et al. (2008b) reported inhibition of MMP-2 expression and cell invasion by THC. In the latter study modulation of MMP-2 expression by RNA interference and cDNA overexpression experiments proved that down-regulation of this MMP plays a critical role in THC-mediated inhibition of cell invasion. Moreover, cannabinoid-induced inhibition of MMP-2 expression and cell invasion was prevented by blocking ceramide biosynthesis and by knocking-down the expression of the stress protein p8 (Blázquez et al., 2008b). Using cervical carcinoma cells, we observed a concentration-dependent inhibition of MMP-2 expression by MA and THC that was, however, independent of cannabinoid receptor and TRPV1 activation (Ramer and Hinz, 2008). In the cell line tested (HeLa) the cannabinoid-mediated decrease of MMP-2 expression was not considered to be of significance in the anti-invasive action of cannabinoids given that the basal invasion of HeLa depends on MMP-9 rather than on MMP-2 as assessed by siRNA approaches (Ramer and Hinz, 2008).

Other findings imply an involvement of TIMP-1 in the anti-invasive effects of cannabinoids. Among the four distinct members of the TIMP family, the 28.5 kDa glycoprotein TIMP-1 has emerged as a potent MMP inhibitor that suppresses vascular tumor growth, angiogenesis and cancer-induced osteolysis in tumor-bearing animals (Zacchigna et al., 2004; Deng et al., 2008). In addition, several studies demonstrated a correlation between high cancer invasiveness and decreased TIMP-1 expression (Khokha et al., 1989; Chan et al., 2005). Likewise, the anti-invasive action of several anticarcinogenic drugs has been associated with elevated TIMP-1 levels (Khokha et al., 1992; Cattaneo et al., 2005; Park et al., 2005a,b; Ramer et al., 2007). On the other hand TIMP-1 upregulation has also been reported to be associated with poor patient prognosis (Hornebeck et al., 2005). It has been demonstrated in this context that TIMP-1 may also possess MMP-independent antiapoptotic properties (Hornebeck et al., 2005), suggesting a distinct influence of this molecule in tumor progression

depending on cancer cell type. In line with the potential anti-invasive action of TIMP-1, we have recently shown that the anti-invasive action of MA and THC strongly depends on the induction of TIMP-1 expression in cervical carcinoma and lung cancer cells (Ramer and Hinz, 2008). In our hands, the decrease of invasiveness by THC was even significant at concentrations as low as 0.01 µM (68% inhibition). With reference to the fact that in humans average peak plasma concentrations of 0.03 µM and 0.045 µM can be obtained after oral doses of 15 and 20 mg THC (Wall et al., 1983), the effects of THC on cell invasion were observed at therapeutically relevant concentrations. The expression of TIMP-1 was shown to be stimulated by CB₁/CB₂ receptor activation and, in the case of MA, by additional activation of TRPV1. Further experiments addressing the signalling events underlying increased TIMP-1 expression revealed a contribution of the p38 mitogen-activated protein kinase and the extracellular regulating kinases 1 and 2 (ERK 1/2) to this process. In contrast to these findings, Blázquez et al. (2008a) reported a cannabinoid-induced inhibition of TIMP-1 expression in various glioma cell lines as well as in primary tumor cells obtained from glioblastoma multiforme tissues. As previously reported for cannabinoid-induced apoptosis, this effect was dependent on de novo synthesis of ceramide. Thus, cannabinoid action on TIMP-1 expression and the subsequent impact on tumorigenessis of the latter may depend on tumor type.

Interestingly, the inhibition EGF-induced matrigel invasion by THC in NSCLC cells (Preet et al., 2008) seems to involve a mechanism that differs from the pathways of fetal calf serum-induced invasion described above (Ramer and Hinz, 2008). Accordingly, Preet et al. (2008) demonstrated an anti-invasive effect of THC on EGF-induced invasion that was accompanied by reduced transwell migration and migration monitored by scratch wound healing. In our hands, serum-induced matrigel invasion assessed with the same cell line (A549) revealed a selective inhibition of matrigel invasion by THC without altering the migration through

uncoated transwell inserts, suggesting modulation of the proteolytic impact on surrounding matrix components as a crucial parameter of THC-mediated inhibition of cancer cell invasion (Ramer and Hinz, 2008). Due to the fact that in both studies toxic effect of THC on tumor cells were excluded, it is tempting to speculate that the mechanisms of cannabinoid action on tumor cell invasion is furthermore dependent on the respective chemoattractant.

Concerning the poor cannabinoid receptor agonist CBD McAllister et al. (2007) reported that this non-psychoactive compound may downregulate the expression of the DNA-binding protein inhibitor 1 (Id-1) in aggressive human breast cancer cells. Id-1 is an inhibitor of basic helix-loop-helix transcription factors that represents a key regulator of the metastatic potential of breast and additional cancers (Fong et al., 2003). Evidence for a role of Id-1 in the anti-invasive action of CBD was provided by experiments demonstrating that ectopic expression of Id-1 in breast cancer cells abolished the effects of CBD on cell invasion (McAllister et al., 2007).

Collectively, the contemporary available data (for summary, see Table 3) suggest an antiinvasive effect of cannabinoids mediated by downregulation and/or inhibition of matrix degrading enzymes. Due to the complex tumor-stroma interaction, more research is needed to further define cannabinoids´ influence on other matrix interactions that modulate tumor invasion.

Effects of cannabinoids on tumor cell metastasation

Metastasation represents the transfer of a malignant tumor from one area to a distant organ. Although only 1% of micrometastases expand into macrometastases, metastasation is the most frequent reason for death of cancer patients. In the previous chapters cannabinoids were reported to reduce adhesion, angiogenesis, migration and invasion by several ways. As these

processes are parts of the progression of metastases, cannabinoids are expected to influence the development of metastases in a similar way.

Accordingly, experiments using breast cancer cell lines obtained a reduction of lung metastatic nodes by Met-F-AEA via a CB₁ receptor-dependent pathway (Grimaldi et al., 2006). In line with these observations, Portella et al. (2003) demonstrated a CB₁ receptor-dependent reduction of murine Lewis lung carcinoma metastasation. In their experiments Met-F-AEA dramatically inhibited metastasation and the few metastases, that were found, were smaller in size. In the same study the authors additionally reported an impaired proliferation of metastasis-derived rat thyroid and lung cancer cell lines by Met-F-AEA.

In contrast, McKallip et al. (2005) demonstrated a THC-elicited increased number of lung metastases after injection of murine mammary cell carcinoma cells to mice with the dimension of lung nodules enlarging proportionally to the administered dose of THC. Noteworthy, these experiments were carried out with murine cells expressing low levels of CB₁/CB₂ receptors, giving one possible explanation for the apparent difference to findings obtained with human cells. Another potential reason discussed by the authors involves the suppression of the antitumor immune response by THC. However, further experiments in mice injected with lung cancer cells showed a reduction of surface lung metastases through THC (Preet et al., 2008).

The signal transduction pathway involved in the antimetastatic cannabinoid action is not fully clarified but it is obvious that FAK, ERK 1/2 and Akt are involved in this process. Accordingly, Preet et al. (2008) detected a dephosphorylation of ERK 1/2, Akt and an increased phosphorylation of FAK following treatment of lung cancer cells with THC. In line with these findings, Blazquez et al. (2006) suggested an involvement of Akt dephosphorylation in the antimetastatic action of WIN-55,212–2 on melanoma cells in vivo.

In breast cancer cells, Id-1, mentioned in context with invasion earlier in this review, was shown to be downregulated by CBD (McAllister et al., 2007). As animal experiments revealed that a reduction of Id-1 is associated with decreased breast cancer metastases (Fong et al., 2003; Minn et al., 2005), CBD is expected to exert antimetastatic properties. In fact, Ligresti et al. (2006) from the group of Vincenzo Di Marzo were able to demonstrate an inhibitory action of a CBD-rich extract and CBD on the metastatic potential of breast cancer cells in vivo resulting in a decrease of metastatic lung nodules far under half of those counted in control animals.

Collectively, cannabinoids seem to reduce the expansion of tumor cells by several signal transduction pathways. An overview on the effects of different cannabinoids on metastasation is given in Table 3.

Conclusion

Recent investigations have shown that besides its well-known antiapoptotic and antiproliferative action, cannabinoids may also confer antiangiogenic, antimigrative, antiadhesive, anti-invasive and antimetastatic properties by pathways including activation of both cannabinoid receptors as well as TRPV1. Although a limited number of studies has been published addressing the underlying mechanisms, the currently available results indicate that the modulation of several components of signal transduction pathways including Src, NF-κB, ERK 1/2, HIF-1α, Akt, and of the expression as well as of the enzymatic action of proteins of the MMP family, EGF, VEGF, IgSF CAMs, and FAK by cannabinoids might support beneficial effects on tumor cell locomotion and spreading. On the basis of these facts evidence is emerging to suggest that cannabinoids are potent inhibitors of both cancer growth and spreading. As cannabinoids are usually well tolerated and do not develop the toxic effects

of conventional chemotherapeutics, more preclinical studies are warranted to investigate a potential utility of these substances as anticancer therapeutics.

References

Abood ME (2005) Molecular biology of cannabinoid receptors. *Handb Exp Pharmacol* **168**: 81-115.

Bifulco M, Laezza C, Portella G, Vitale M, Orlando P, De Petrocellis L, Di Marzo V (2001) Control by the endogenous cannabinoid system of ras oncogene-dependent tumor growth. *FASEB J* **15**: 2745-2747.

Bifulco M, Laezza C, Valenti M, Ligresti A, Portella G, DI Marzo V (2004) A new strategy to block tumor growth by inhibiting endocannabinoid inactivation. *FASEB J* **18**: 1606-1608.

Blázquez C, Casanova ML, Planas A, Gómez Del Pulgar T, Villanueva C, Fernández-Aceñero MJ, Aragonés J, Huffman JW, Jorcano JL, Guzmán M (2003) Inhibition of tumor angiogenesis by cannabinoids. *FASEB J* 17: 529-531.

Blázquez C, González-Feria L, Alvarez L, Haro A, Casanova ML, Guzmán M (2004) Cannabinoids inhibit the vascular endothelial growth factor pathway in gliomas. *Cancer Res* **64**: 5617-5623.

Blázquez C, Carracedo A, Barrado L, Real PJ, Fernández-Luna JL, Velasco G, Malumbres M, Guzmán M (2006) Cannabinoid receptors as novel targets for the treatment of melanoma. *FASEB J* **20**: 2633-2635.

Blázquez C, Carracedo A, Salazar M, Lorente M, Egia A, González-Feria L, Haro A, Velasco G, Guzmán M (2008a) Down-regulation of tissue inhibitor of metalloproteinases-1 in gliomas: a new marker of cannabinoid antitumoral activity? *Neuropharmacology* **54**: 235-243.

Blázquez C, Salazar M, Carracedo A, Lorente M, Egia A, González-Feria L, Haro A, Velasco G, Guzmán M (2008b) Cannabinoids inhibit glioma cell invasion by down-regulating matrix metalloproteinase-2 expression. *Cancer Res* **68**: 1945-1952

Bussolati B, Ahmed A, Pemberton H, Landis RC, Di Carlo F, Haskard DO, Mason JC (2004) Bifunctional role for VEGF-induced heme oxygenase-1 in vivo: induction of angiogenesis and inhibition of leukocyte infiltration. *Blood* **103**: 761–766

Casanova ML, Blázquez C, Martínez-Palacio J, Villanueva C, Fernández-Aceñero MJ, Huffman JW, Jorcano JL, Guzmán M (2003) Inhibition of skin tumor growth and angiogenesis in vivo by activation of cannabinoid receptors. *J Clin Invest* **111**: 43-50.

Cattaneo M, Fontanella E, Canton C, Delia D, Biunno I (2005) SEL1L affects human pancreatic cancer cell cycle and invasiveness through modulation of PTEN and genes related to cell-matrix interactions. *Neoplasia* 7: 1030-1038.

Chan VY, Chan MW, Leung WK, Leung PS, Sung JJ, Chan FK (2005) Intestinal trefoil factor promotes invasion in non-tumorigenic Rat-2 fibroblast cell. *Regul Pept* **127**: 87-94.

Chang S, Wallis RA, Yuan L, Davis PF, Tan ST (2006) Mast cells and cutaneous malignancies. *Mod Pathol* **19**: 149-159.

Costa B, Giagnoni G, Franke C, Trovato AE, Colleoni M (2004) Vanilloid TRPV1 receptor mediates the antihyperalgesic effect of the nonpsychoactive cannabinoid, cannabidiol, in a rat model of acute inflammation. *Br J Pharmacol* **143**: 247-250.

Curran S, Murray GI (2000) Matrix metalloproteinases: molecular aspects of their roles in tumour invasion and metastasis. *Eur J Cancer* **36**: 1621-1630.

Curran NM, Griffin BD, O'Toole D, Brady KJ, Fitzgerald SN, Moynagh PN (2005) The synthetic cannabinoid R(+)WIN 55,212-2 inhibits the interleukin-1 signaling pathway in human astrocytes in a cannabinoid receptor-independent manner. *J Biol Chem* **280**: 35797-35806.

De Petrocellis L, Melck D, Palmisano A, Bisogno T, Laezza C, Bifulco M, Di Marzo V (1998) The endogenous cannabinoid anandamide inhibits human breast cancer cell proliferation. *Proc Natl Acad Sci U S A* **95**: 8375-8380.

Deng X, He G, Levine A, Cao Y, Mullins C (2008) Adenovirus-mediated expression of TIMP-1 and TIMP-2 in bone inhibits osteolytic degradation by human prostate cancer. *Int J Cancer* **122**: 209-218.

Bifulco M, Di Marzo V (2002) Targeting the endocannabinoid system in cancer therapy: a call for further research. *Nat Med* **8**: 547-550.

Di Marzo V, Bifulco M, De Petrocellis L. (2004) The endocannabinoid system and its therapeutic exploitation. *Nat Rev Drug Discov* **3**: 771-784.

Entschladen F, Niggemann B, Zänker KS, Friedl P (1997) Differential requirement of protein tyrosine kinases and protein kinase C in the regulation of T cell locomotion in three-dimensional collagen matrices. *J Immunol* **159**: 3203-3210.

Fogli S, Nieri P, Chicca A, Adinolfi B, Mariotti V, Iacopetti P, Breschi MC, Pellegrini S (2006) Cannabinoid derivatives induce cell death in pancreatic MIA PaCa-2 cells via a receptor-independent mechanism. *FEBS Lett* **580**: 1733-1739.

Folkman J (1971) Tumor angiogenesis: therapeutic implications. *N Engl J Med* **285**: 1182-1186.

Folkman J (1972) Anti-angiogenesis: new concept for therapy of solid tumors. *Ann Surg* **175**: 409-416.

Fong S, Itahana Y, Sumida T, Singh J, Coppe JP, Liu Y, Richards PC, Bennington JL, Lee NM, Debs RJ, Desprez PY (2003) Id-1 as a molecular target in therapy for breast cancer cell invasion and metastasis. *Proc Natl Acad Sci USA* **100**: 13543-13548.

Galve-Roperh I, Sánchez C, Cortés ML, Gómez del Pulgar T, Izquierdo M, Guzmán M (2000) Anti-tumoral action of cannabinoids: involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation. *Nat Med* **6**: 313-319.

Galve-Roperh I, Rueda D, Gómez del Pulgar T, Velasco G, Guzmán M (2002) Mechanism of extracellular signal-regulated kinase activation by the CB₁ cannabinoid receptor. *Mol Pharmacol* **62**: 1385-1392.

Gervais FG, Thornberry NA, Ruffolo SC, Nicholson DW, Roy S (1998) Caspases cleave focal adhesion kinase during apoptosis to generate a FRNK-like polypeptide. *J Biol Chem* **273**: 17102-17108.

Grimaldi C, Pisanti S, Laezza C, Malfitano AM, Santoro A, Vitale M, Caruso MG, Notarnicola M, Iacuzzo I, Portella G, Di Marzo V, Bifulco M (2006) Anandamide inhibits adhesion and migration of breast cancer cells. *Exp Cell Res* **312**: 363-373.

Guzmán M, Sánchez C, Galve-Roperh I (2002) Cannabinoids and cell fate. *Pharmacol Ther* **95**: 175-184.

Hart S, Fischer OM, Ullrich A (2004) Cannabinoids induce cancer cell proliferation via tumor necrosis factor alpha-converting enzyme (TACE/ADAM17)-mediated transactivation of the epidermal growth factor receptor. *Cancer Res* **64**: 1943-1950.

Herrera B, Carracedo A, Diez-Zaera M, Guzmán M, Velasco G (2005) p38 MAPK is involved in CB₂ receptor-induced apoptosis of human leukaemia cells. *FEBS Lett* **579**: 5084-5088.

Hinz B, Ramer R, Eichele K, Weinzierl U, Brune K (2004) Up-regulation of cyclooxygenase-2 expression is involved in R(+)-methanandamide-induced apoptotic death of human neuroglioma cells. *Mol Pharmacol* **66**: 1643-1651.

Hornebeck W, Lambert E, Petitfrère E, Bernard P (2005) Beneficial and detrimental influences of tissue inhibitor of metalloproteinase-1 (TIMP-1) in tumor progression. *Biochimie* **87**: 377-383.

Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, Felder CC, Herkenham M, Mackie K, Martin BR, Mechoulam R, Pertwee RG (2002) International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. *Pharmacol Rev* **54**: 161-202.

Joseph J, Niggemann B, Zaenker KS, Entschladen F (2004) Anandamide is an endogenous inhibitor for the migration of tumor cells and T lymphocytes. *Cancer Immunol Immunother* **53**: 723-728.

Khokha R, Waterhouse P, Yagel S, Lala PK, Overall CM, Norton G, Denhardt DT (1989) Antisense RNA-induced reduction in murine TIMP levels confers oncogenicity on Swiss 3T3 cells. *Science* **243**: 947-950.

Khokha R, Zimmer MJ, Graham CH, Lala PK, Waterhouse P (1992) Suppression of invasion by inducible expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) in B16-F10 melanoma cells. *J Natl Cancer Inst* **84**: 1017-1022.

Kishimoto S, Muramatsu M, Gokoh M, Oka S, Waku K, Sugiura T (2005) Endogenous cannabinoid receptor ligand induces the migration of human natural killer cells. *J Biochem* **137**: 217-223.

Kogan NM, Blázquez C, Alvarez L, Gallily R, Schlesinger M, Guzmán M, Mechoulam R (2006) A cannabinoid quinone inhibits angiogenesis by targeting vascular endothelial cells. *Mol Pharmacol* **70**: 51-59.

Kogan NM, Schlesinger M, Priel E, Rabinowitz R, Berenshtein E, Chevion M, Mechoulam R (2007) HU-331, a novel cannabinoid-based anticancer topoisomerase II inhibitor. *Mol Cancer Ther* **6**: 173-183

Laezza C, Pisanti S, Malfitano AM, Bifulco M (2008) The anandamide analog, Met-F-AEA, controls human breast cancer cell migration via the RHOA/RHO kinase signaling pathway. Endocr Relat Cancer 15: 965-974.

Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. *Cell* **84**: 359-369.

Ligresti A, Bisogno T, Matias I, De Petrocellis L, Cascio MG, Cosenza V, D'argenio G, Scaglione G, Bifulco M, Sorrentini I, Di Marzo V (2003) Possible endocannabinoid control of colorectal cancer growth. *Gastroenterology* **125**: 677-687.

Ligresti A, Moriello AS, Starowicz K, Matias I, Pisanti S, De Petrocellis L, Laezza C, Portella G, Bifulco M, Di Marzo V (2006) Antitumor activity of plant cannabinoids with emphasis on the effect of cannabidiol on human breast carcinoma. *J Pharmacol Exp Ther* **318**: 1375-1387.

McAllister SD, Christian RT, Horowitz MP, Garcia A, Desprez PY (2007) Cannabidiol as a novel inhibitor of Id-1 gene expression in aggressive breast cancer cells. *Mol Cancer Ther* **6**: 2921-2927.

McKallip RJ, Lombard C, Fisher M, Martin BR, Ryu S, Grant S, Nagarkatti PS, Nagarkatti M (2002) Targeting CB2 cannabinoid receptors as a novel therapy to treat malignant lymphoblastic disease. *Blood* **100**: 627-634.

McKallip RJ, Nagarkatti M, Nagarkatti PS (2005) Delta-9-tetrahydrocannabinol enhances breast cancer growth and metastasis by suppression of the antitumor immune response. *J Immunol* **174**: 3281-3289.

Mimeault M, Pommery N, Wattez N, Bailly C, Hénichart JP (2003) Anti-proliferative and apoptotic effects of anandamide in human prostatic cancer cell lines: implication of epidermal growth factor receptor down-regulation and ceramide production. *Prostate* **56**: 1-12.

Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, Viale A, Olshen AB, Gerald WL, Massagué J (2005) Genes that mediate breast cancer metastasis to lung. *Nature* **436**: 518-524.

Munson AE, Harris LS, Friedman MA, Dewey WL, Carchman RA (1975) Antineoplastic activity of cannabinoids. *J Natl Cancer Inst* **55**: 597-602.

Nithipatikom K, Endsley MP, Isbell MA, Falck JR, Iwamoto Y, Hillard CJ, Campbell WB (2004) 2-arachidonoylglycerol: a novel inhibitor of androgen-independent prostate cancer cell invasion. *Cancer Res* **64**: 8826-8830.

Park MJ, Lee JY, Kwak HJ, Park CM, Lee HC, Woo SH, Jin HO, Han CJ, An S, Lee SH, Chung HY, Park IC, Hong SI, Rhee CH (2005a) Arsenic trioxide (As₂O₃) inhibits invasion of HT1080 human fibrosarcoma cells: role of nuclear factor-kappaB and reactive oxygen species. *J Cell Biochem* **95**: 955-969.

Park HJ, Lee HJ, Min HY, Chung HJ, Suh ME, Park-Choo HY, Kim C, Kim HJ, Seo EK, Lee SK (2005b) Inhibitory effects of a benz(f)indole-4,9-dione analog on cancer cell metastasis mediated by the down-regulation of matrix metalloproteinase expression in human HT1080 fibrosarcoma cells. *Eur J Pharmacol* **527**: 31-36.

Pisanti S, Borselli C, Oliviero O, Laezza C, Gazzerro P, Bifulco M (2007) Antiangiogenic activity of the endocannabinoid anandamide: correlation to its tumor-suppressor efficacy. *J Cell Physiol* **211**: 495-503.

Portella G, Laezza C, Laccetti P, De Petrocellis L, Di Marzo V, Bifulco M (2003) Inhibitory effects of cannabinoid CB₁ receptor stimulation on tumor growth and metastatic spreading: actions on signals involved in angiogenesis and metastasis. *FASEB J* 17: 1771-1773.

Preet A, Ganju RK, Groopman JE (2008) Delta9-Tetrahydrocannabinol inhibits epithelial growth factor-induced lung cancer cell migration in vitro as well as its growth and metastasis in vivo. *Oncogene* **27**: 339-346.

Ramer R, Eichele K, Hinz B (2007) Upregulation of tissue inhibitor of matrix metalloproteinases-1 confers the anti-invasive action of cisplatin on human cancer cells. *Oncogene* **26**: 5822-5827.

Ramer R, Hinz B (2008) Inhibition of cancer cell invasion by cannabinoids via increased expression of tissue inhibitor of matrix metalloproteinases-1. *J Natl Cancer Inst* **100**: 59-69.

Richardson A, Parsons T (1996) A mechanism for regulation of the adhesion-associated proteintyrosine kinase pp125FAK. *Nature* **380**: 538-540.

Rudolph MI, Boza Y, Yefi R, Luza S, Andrews E, Penissi A, Garrido P, Rojas IG (2008) The influence of mast cell mediators on migration of SW756 cervical carcinoma cells. *J Pharmacol Sci* **106**: 208-218.

Ruiz L, Miguel A, Díaz-Laviada I (1999) Delta9-tetrahydrocannabinol induces apoptosis in human prostate PC-3 cells via a receptor-independent mechanism. *FEBS Lett* **458**: 400-404.

Saia G, Zhang M, Depalo V, Lautenschläger T, Chakravarti A (2007) Molecular and genetic profiling of prostate cancer: implications for future therapy. *Curr Cancer Ther Rev* **3**: 25-36.

Sánchez C, de Ceballos ML, Gomez del Pulgar T, Rueda D, Corbacho C, Velasco G, Galve-Roperh I, Huffman JW, Ramón y Cajal S, Guzmán M (2001) Inhibition of glioma growth in vivo by selective activation of the CB₂ cannabinoid receptor. *Cancer Res* **61**: 5784-5789.

Seandel M, Noack-Kunnmann K, Zhu D, Aimes RT, Quigley JP (2001) Growth factor-induced angiogenesis in vivo requires specific cleavage of fibrillar type I collagen. *Blood* **97**: 2323-2332.

Sieg DJ, Hauck CR, Schlaepfer DD (1999) Required role of focal adhesion kinase (FAK) for integrin-stimulated cell migration. *J Cell Sci* **112**: 2677-2691.

Stamenkovic I (2000) Matrix metalloproteinases in tumor invasion and metastasis. *Semin Cancer Biol* **10**: 415-433.

Suzuma K, Naruse K, Suzuma I, Takahara N, Ueki K, Aiello LP, King GL (2000) Vascular endothelial growth factor induces expression of connective tissue growth factor via KDR, Flt1, and phosphatidylinositol 3-kinase-akt-dependent pathways in retinal vascular cells. *J Biol Chem* **275**: 40725-40731.

Vaccani A, Massi P, Colombo A, Rubino T, Parolaro D (2005) Cannabidiol inhibits human glioma cell migration through a cannabinoid receptor-independent mechanism. *Br J Pharmacol* **144**: 1032-1036.

Wall ME, Sadler BM, Brine D, Taylor H, Perez-Reyes M (1983) Metabolism, disposition, and kinetics of delta-9-tetrahydrocannabinol in men and women. *Clin Pharmacol Ther* **34**: 352-363.

Wang D, Wang H, Ning W, Backlund MG, Dey SK, DuBois RN (2008) Loss of cannabinoid receptor 1 accelerates intestinal tumor growth. *Cancer Res* **68**: 6468-6476.

Zacchigna S, Zentilin L, Morini M, Dell'Eva R, Noonan DM, Albini A, Giacca M (2004) AAV-mediated gene transfer of tissue inhibitor of metalloproteinases-1 inhibits vascular tumor growth and angiogenesis in vivo. *Cancer Gene Ther* **11**: 73-80.

Zhou D, Song ZH (2002) CB₁ cannabinoid receptor-mediated tyrosine phosphorylation of focal adhesion kinase-related non-kinase. *FEBS Lett* **525**: 164-168.

Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sørgård M, Di Marzo V, Julius D, Högestätt ED (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. *Nature* **400**: 452-457.

Legends for Figures

Figure 1

Model of tumorigenesis. The figure illustrates the formation of an invasive tumor and its metastasation to a distant organ via a blood vessel.

Table 1 Overview on different cannabinoids and their receptor targets.

Cannabinoid	Abbreviation	Chemical name	Target(s)	
Endocannabinoids				
Anandamide	AEA	N-(2-Hydroxyethyl)-5Z,8Z,11Z,14Z-eicosatetraenamide	Nonselective agonist (CB ₁ »CB ₂)	
2-Arachidonylglycerol	2-AG	(5Z,8Z,11Z,14Z)-5,8,11,14-Eicosatetraenoic acid	Nonselective agonist (CB ₁ , CB ₂)	
Docosatetraenylethanolamide	DEA	N-(2-Hydroxyethyl)-7Z,10Z,13Z,16Z-docosatetraenamide	Selective CB ₁ receptor agonist	
Phytocannabinoids				
Cannabidiol	CBD	2-[(1R,6R)-3-Methyl-6-(1-methylethenyl)-2-cyclohexen-1-yl]-5-pentyl-1,3-benzenediol	Not fully clarified	
Cannabinol	CBN	6,6,9-Trimethyl-3-pentyl-6H-dibenzo[b,d]pyran-1-ol	Nonselective agonist (CB ₁ , CB ₂)	
$\Delta^9\text{-}Tetrahydrocannabinol$	THC	(6aR,10aR)-6a,7,8,10a-Tetrahydro-6,6,9-trimethyl-3-pentyl-6H-dibenzo[b,d]pyran-1-ol	Nonselective agonist (CB ₁ >CB ₂)	
Synthetic cannabinoids				
CP 55,940	CP 55,940	(-)-cis-3-[2-Hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol	Nonselective agonist (CB ₁ =CB ₂)	
HU-210	HU-210	(6aR)-trans-3-(1,1-Dimethylheptyl)-6a,7,10,10a-tetrahydro-1-hydroxy-6,6-dimethyl-6H-dibenzo[b,d]pyran-9-methanol	Nonselective agonist (CB ₁ >CB ₂)	
HU-331	HU-331	3-Hydroxy-2-[(1R,6R)-3-methyl-6-(1-methylethenyl)-2-cyclohexen-1-yl]-5-pentyl-2,5-cyclohexadiene-1,4-dione	Inhibition of topoisomerase II	
JWH-133	JWH-133	(6aR,10aR)-3-(1,1-Dimethylbutyl)-6a,7,10,10a-tetrahydro -6,6,9-trimethyl-6H-dibenzo[b,d]pyran	Selective CB ₂ receptor agonist	
Met-fluoro-anandamide	Met-F-AEA	2-Methyl-arachidonyl-2'-fluoro-ethylamide	Nonselective agonist (CB ₁ »CB ₂)	
Methanandamide	MA	(R)-N-(2-Hydroxy-1-methylethyl)-5Z,8Z,11Z,14Z-eicosatetraenamide	Nonselective agonist (CB ₁ »CB ₂)	
WIN-55,212-2	WIN-55,212-2	$\label{eq:continuous} (R)\mbox{-}(+)\mbox{-}[2,3\mbox{-}Dihydro\mbox{-}5\mbox{-}methyl\mbox{-}3\mbox{-}(4\mbox{-}morpholinylmethyl)pyrrolo[1,2,3\mbox{-}de]\mbox{-}1,4\mbox{-}benzoxazin\mbox{-}6\mbox{-}yl]\mbox{-}1\mbox{-}naphthalenylmethanone}$	Nonselective agonist (CB ₁ =CB ₂)	

Table 2 Overview on proangiogenic factors investigated for modulation by cannabinoids.

Angiogenic factor	Cannabinoid	Tumor type	Regulation		References	
ggjuoto		JF .	in vitro	in vivo	.	
Ang-2	JWH-133	Glioma, Skin, Astrocytoma	-	\downarrow	Blázquez et al., 2003; Blázquez et al.,	
					2004; Casanova et al., 2003	
	WIN-55,212-2	Skin	-	\downarrow	Casanova et al., 2003	
EGFR	JWH-133	Skin	\downarrow	\downarrow	Casanova et al., 2003	
	WIN-55,212-2	Skin	\downarrow	\downarrow	Casanova et al., 2003	
	HU-210	Glioblastoma	\leftrightarrow	-	Galve-Roperh et al., 2002	
	WIN-55,212-2 THC, HU-210, AEA	Squamous cell carcinoma, Lung, Bladder	1	-	Hart et al., 2004	
	THC, AEA	Astrocytoma, kidney cancer	1	_	Hart et al., 2004	
	THC	Glioma	·	_	Hart et al., 2004	
	THC	Lung	↔	_	Preet et al., 2008	
Heme oxygenase-1	JWH-133	Glioma	_	\downarrow	Blázquez et al., 2004	
HIF-1α	JWH-133	Glioma	_	Ĭ	Blázquez et al., 2004	
Id3	JWH-133	Glioma	_	į	Blázquez et al., 2004	
midkine	JWH-133	Glioma	_	Ĭ	Blázquez et al., 2004	
MMP-2	JWH-133	Glioma, Astrocytoma	_	Ĭ	Blázquez et al., 2003	
	JWH-133	Glioma	_	Ĭ	Blázquez et al., 2008b	
	THC	Glioma	1	į	Blázquez et al., 2008b	
		Cervical	į	-	Ramer and Hinz, 2008	
	MA	Cervical	į	_	Ramer and Hinz, 2008	
MMP-3	THC, JWH-133	Glioma	-	\leftrightarrow	Blázquez et al., 2008b	
MMP-9	THC, JWH-133	Glioma	_	\leftrightarrow	Blázquez et al., 2008b	
	THC, MA	Cervical	\leftrightarrow	_	Ramer and Hinz, 2008	
MT1-MMP	THC, JWH-133	Glioma	-	\leftrightarrow	Blázquez et al., 2008b	
PIGF	JWH-133	Skin	_	Ţ	Casanova et al., 2003	
	WIN-55,212-2	Skin	-	į	Casanova et al., 2003	
Γie-1	JWH-133	Glioma	-	į	Blázquez et al., 2004	
VEGF	JWH-133	Glioma, Skin	-	ļ	Blázquez et al., 2003; Casanova et al., 2003	
	JWH-133	Glioma	\downarrow	\downarrow	Blázquez et al., 2004	
	WIN-55,212-2	Skin	-	\downarrow	Casanova et al., 2003	
	WIN-55,212-2	Glioma, Skin, Astrocytoma, Bladder	↓	-	Blázquez et al., 2004	
	AEA	Glioma	\downarrow	-	Blázquez et al., 2004	
	Met-F-AEA	Thyroid	↓	\downarrow	Portella et al., 2003	
	THC	Lung	↓	-	Preet et al., 2008	
VEGFR1	Met-F-AEA	Thyroid	↓	\downarrow	Portella et al., 2003	
VEGFR2	JWH-133	Glioma	\leftrightarrow	\leftrightarrow	Blázquez et al., 2004	
	WIN-55,212-2	Glioma	\leftrightarrow	-	Blázquez et al., 2004	
	THC	Glioma	-	\downarrow	Blázquez et al., 2004	
VEGFR2 (activation)	JWH-133	Glioma	\downarrow	\downarrow	Blázquez et al., 2004	
	WIN-55,212-2	Glioma	\downarrow	-	Blázquez et al., 2004	
	THC	Glioma	-	\downarrow	Blázquez et al., 2004	

 $[\]uparrow, upregulated/activated; \downarrow, downregulated/deactivated; \leftrightarrow, not influenced; \text{--}, not determined}$

Table 3 Overview on the functional effects of cannabinoids on tumor cell migration, adhesion, invasion and metastasation.

Cannabinoid	Tumor type	Regulation of functional effect	Signal transduction	References
Migration				
AEA	Colon	↓	CB ₁ receptor	Joseph et al., 2004
ALA	Breast	¥ 	CB ₁ receptor	Joseph et al., 2004 Joseph et al., 2004
2-AG	Cervical	¥ 1	CB ₁ receptor	Rudolph et al., 2002
	Glioma	+		
CBD		+	Independent of G _{i/o} -protein-coupled receptors	Vaccani et al., 2005
DEA	Colon	+	CB ₁ receptor	Joseph et al., 2004
HU-210	Colon	↓	CB ₁ receptor	Joseph et al., 2004
JWH-133	Colon	\leftrightarrow	-	Joseph et al., 2004
JWH-133	Colon	\leftrightarrow	-	Joseph et al., 2004
MA	Cervical, Lung	\leftrightarrow	-	Ramer and Hinz, 200
Met-F-AEA	Breast	\downarrow	CB ₁ receptor	Grimaldi et al., 2006
		\downarrow	RHOA-ROCK-dependent	Laezza et al., 2008
THC	Lung	\downarrow	Inhibition of EGF-induced ERK1/2,	Preet et al., 2008
			JNK, AKT; increased phosphorylation of FAK	
	Glioma,	\downarrow	-	Blázquez et al., 2008
	Astrocytoma			
	Cervical, Lung	\leftrightarrow	-	Ramer and Hinz, 200
WIN-55,212-2	Cervical	↓	CB ₁ receptor	Rudolph et al., 2002
Adhesion/Adhesive proteins				
HU-210	Neuroblastoma	-	CB ₁ receptor; upregulation of FRNK phosphorylation	Zhou et al., 2002
Met-F-AEA	Breast	\downarrow	CB ₁ receptor; inhibition of FAK-, and Src-	Grimaldi et al., 2006
WIN-55,212-2	Glioma	-	phosphorylation on collagen type IV Blockade of IL-1-induced upregulation of cell adhesion molecules	Curran et al., 2005
	Astrocytoma	-	Cannabinoid receptor-independent blockade of IL-1-induced upregulation of cell adhesion molecules	Curran et al., 2005
Invasion				
2-AG	Prostate	\downarrow	CB_1	Nithipatakom et al., 2004
CBD	Breast	\downarrow	Id-1 downregulation	McAllister et al., 200
MA	Cervical	ļ	CB ₁ , CB ₂ receptors, TRPV1; TIMP-1 upregulation	Ramer and Hinz, 200
	Lung	↓	CB ₁ , CB ₂ receptors, TRPV1; TIMP-1 upregulation	Ramer and Hinz, 200
THC	Cervical	i	CB ₁ , CB ₂ receptors; TIMP-1 upregulation	Ramer and Hinz, 200
	Lung	Ĭ	CB ₁ , CB ₂ receptors; TIMP-1 upregulation	Ramer and Hinz, 200
	Lung	Ĭ	Inhibition of EGF-induced ERK1/2,	Preet et al., 2008
	Lung	*	JNK, AKT; increased phosphorylation of FAK	1 1cct ct al., 2006
	Glioma	↓	MMP-2 downreguation	Blazquez et al., 2008
		•		
Metastasation				
CBD-rich extract	Breast	↓	Ca ²⁺ , ROS	Ligresti et al., 2006
CBD	Breast	į.	Ca ²⁺ , ROS	Ligresti et al., 2006
Met-F-AEA	Breast	i	CB ₁ receptor	Grimaldi et al., 2006
	Lung	Ĭ	CB ₁ receptor	Portella et al., 2003
		¥ I	Inhibition of FAK-, ERK1/2- and Akt-	Preet et al., 2008
THC	Lung	↓	minorition of 17th-, ERR1/2- and 7th-	11000 00 01., 2000
THC	Lung	↓	phosphorylation,	11cct ct al., 2000
THC	Breast	↓		McKallip et al., 2005

 $[\]uparrow$, upregulated; \downarrow , downregulated; \leftrightarrow , not influenced; -, not determined

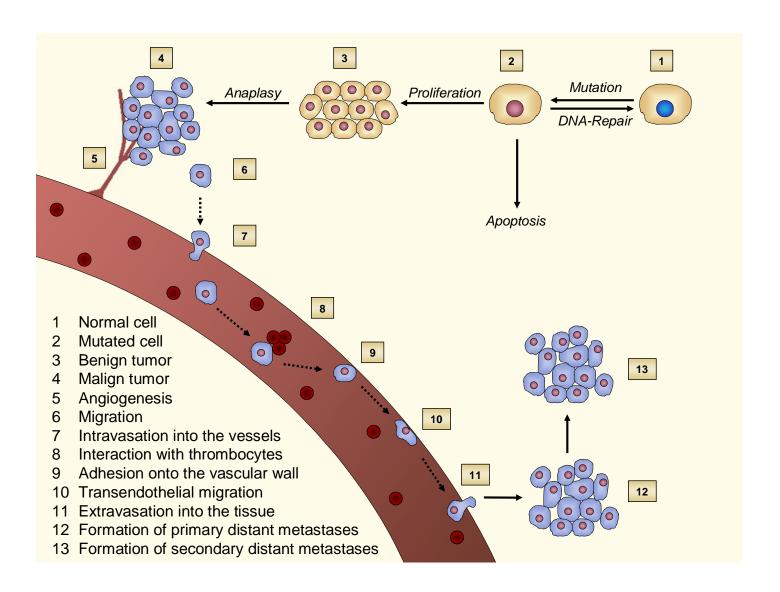


Figure 1