Coupling of β2-adrenoceptors to XLαs and Gαs: A new insight into ligand-induced G protein activation

A.I. Kaya, Ö. Uğur, Ş.S. Öner¹, M. Bastepe, H.O. Onaran

Ankara University Biotechnology Institute, Tandogan, Ankara, Turkey (AIK). Ankara University Faculty of Medicine Dept. Pharmacology and Clinical Pharmacology and (AIK, ÖU, ŞSÖ, HOO) Molecular Biology and Technology Development Unit, Sıhhiye, Ankara, Turkey (HOO). Endocrine Unit, Dept. Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA (MB)
Running Title: β2-adrenoceptor-XLαs coupling

Address correspondence to H. Ongun Onaran, Ankara Üniversitesi Tıp Fakültesi, Farmakoloji ve Klinik Farmakoloji Ab.D. Sihhiye 06100 Ankara, Turkey. Phone: +90 312 311 8829, Fax: +90 312 310 6268, e-mail: onaran@medicine.ankara.edu.tr

Number of Text Pages: 33
Number of Tables: ... 1
Number of Figures: 6
Number of References: 32
Number of Words in Abstract: 227
Number of Words in Introduction: 743
Number of Words in Discussion: 1500

Abbreviations:
βAR: β2-adrenoceptor; XLαs: Extra Large Gαs.

Recommended Section: Cellular and Molecular
ABSTRACT

Gαs and XLαs (Extra-Large Gαs) can both transduce receptor activation into intracellular cAMP generation. It is unknown, however, whether these two GNAS-locus products display distinct properties with respect to receptor coupling. Here we show that XLαs couples to the β2-adrenoceptor more efficiently than Gαs. In transfected HEK293 cells and mouse embryonic fibroblasts null for both Gαs and XLαs (2B2 cells), basal cAMP accumulation mediated by XLαs was higher than that mediated by Gαs. Inverse agonist treatment reduced Gαs-mediated basal activity, whereas its effect was markedly blunted on XLαs-mediated basal activity. Rank order of ligand efficacies regarding cAMP accumulation was the same when the receptor was coupled to XLαs or Gαs. However, ligand-induced and XLαs-mediated cAMP generation was higher than that mediated by Gαs. The relatively high efficiency of XLαs-mediated cAMP generation was conditional, disappearing with increased level of receptor expression or increased efficacy of ligand. Full agonist responses in XLαs and Gαs expressing cells were comparable even at low receptor levels, whereas partial agonist responses became comparable only when the receptor expression was increased (>3 pmol/mg). Radioligand binding studies showed that the high affinity component in agonist binding to β2-adrenoceptor was more pronounced in cells expressing XLαs than those expressing Gαs. We discuss these findings in the framework of current receptor-G protein activation models and offer an extended ternary complex model that can fully explain our observations.
INTRODUCTION

Heterotrimeric G proteins, consisting of α, β and γ subunits, constitute a large family of signaling proteins that transmit receptor signals to intracellular effectors. Upon interaction with an active receptor, G proteins undergo a conformational change that results in guanine-nucleotide exchange on the α subunit and dissociation of α and βγ subunits. Dissociated subunits interact with intracellular effectors to modulate their activity. Among others, Gs protein has specifically evolved to transmit receptor signals to the stimulation of adenylyl cyclase that leads to intracellular generation of the second messenger cAMP (see Gilman, 1987; Hamm, 1998 for review).

Alpha subunits of Gs are encoded by the complex GNAS locus on the chromosome 20q13 (Kozasa et al., 1988). This locus generates multiple products through the splicing of different alternative first exons onto a common downstream exon (exon 2). Additionally, alternative splicing of exon 3 of Gαs gene results in long and short forms of Gαs protein (Bray et al., 1986). A recently identified product of the GNAS locus is the Extra Large αs (XLαs) protein, in which the first exon of Gαs is replaced by the XL-exon that encodes, in rat, 347 instead of 47 amino acids in the amino terminus of Gαs (Kehlenbach et al., 1994). In contrast to Gαs, which is expressed ubiquitously, XLαs is expressed particularly in neuroendocrine tissues (Pasolli et al., 2000) and derived from the paternal allele (Hayward et al., 1998). Polymorphisms affecting the XL-exon have been shown to be associated with prolonged trauma-induced bleeding in humans (Freson et al., 2001). Additionally, XLαs knockout mice have shown poor postnatal growth and survival, suggesting an important role for XLαs in postnatal development and adaptation (Plagge et al., 2004). Perinatal defects similar to those in XLαs knockout mice have also been identified in two unrelated children who carried large deletions that comprised the paternal GNAS allele (Geneviève et al., 2005).
XLαs has been shown to interact with Gβγ dimers to form a stable heterotrimeric complex, and to undergo cholera toxin-induced ADP-ribosylation. It is activated by GTPγS, and upon binding of GTPγS, undergoes a conformational change similar to Gαs (Klemke et al., 2000). It has also been shown that XLαs couples agonist stimulation of different types of Gαs-coupled receptors to the activation of adenylyl cyclase in transfected cells (Bastepe et al., 2002; Linglart et al. 2006). Finally, the point mutation Q548L in XLαs (equivalent to Q227L in Gαs) results in constitutive adenylyl cyclase stimulation (Klemke et al., 2000). Thus, consistent with the fact that XLαs and Gαs share identical functional domains (except their N-terminus), XLαs demonstrates Gαs-like properties. Although there have been conflicting reports about its intracellular distribution, the fact that it couples membrane receptors to adenylyl cyclase strongly suggests that XLαs, like Gαs, is also expressed in the plasma membrane (Kehlenbach et al., 1994; Pasolli et al., 2000; Uğur and Jones, 2000; Linglart et al. 2006). However, little is known about the signaling properties of XLαs compared to Gαs. Despite the functional similarities between XLαs and Gαs, their coupling properties to the membrane receptors may diverge due to the difference in their N-termini, which has been implicated to be involved in receptor interaction and activation (Fanelli et al., 1999). Apparently, this difference does not result in receptor selectivity, as all the Gs-coupled receptors investigated to date have also been found to be able to couple to XLαs (Bastepe et al., 2002; Linglart et al. 2006). However, the difference between the two proteins may be particularly important in terms of agonist-directed signal trafficking, where different ligands can couple the same receptor to different G proteins with diverging efficacies. In other words, a set of ligands may exhibit different order of efficacy depending on whether a particular receptor is coupled to Gαs or XLαs, which may have a potential pharmacological importance.
In the present study, we therefore investigated signaling properties of XLαs in comparison with GαsL (Gαs long form), by measuring its ability to mediate receptor and ligand dependent or independent activation of adenylyl cyclase. We used human β2-adrenoceptor (βAR) as a prototypical Gs-coupled experimental model. The purpose of the present study was two-fold: First, to compare the coupling properties of XLαs and Gαs to βAR, and second, to gain further insights into the mechanism of G protein-mediated signaling by using a system in which the same receptor is coupled to two different G proteins as a tool. The latter point is discussed in the framework of the current interpretation of the ternary complex models.
METHODS

Cell Culture:

HEK293 cells were grown in DMEM supplemented with penicillin (100u/ml), streptomycin
(100μg/ml) and 10% fetal bovine serum (FBS) in a humidified atmosphere of 5% CO₂ at 37
° C. In the case of 2B2 Gnas^{E2/E2-} fibroblasts, where 2^{nd} exon of Gαs or XLαs was disrupted
out, DMEM-F12 medium supplemented with 5% FBS was used and cells were grown at 33
° C.

Plasmid constructs and transfections:

The point mutation (L519P) present in the original cDNA of XLαs was corrected by replacing
the P codon with the L codon at the relevant position by standard site directed mutagenesis
techniques on the pcDNA3.1(+) vector (Kehlenbach et al., 1995). cDNAs encoding rat XLαs
or rat GαsL were cleaved from the original vectors and re-inserted into pcDNA3.1-
hygromycin plasmids. cDNA encoding human βAR was inserted into the pcDNA3.1-zeocin
plasmid. HEK293 cells and 2B2 cells were transfected with calcium-phosphate precipitation
(Kingston et al., 1996) and DEAE-Dextran methods (Gulick, 1997), respectively. Stable
mono-clones were selected using appropriate antibiotics. Protein expression levels of the
selected clones or transiently transfected cells were determined by radioligand binding or
western blot analysis. HEK293 clones that overexpress βAR at a level of 30 pmol/mg
membrane protein were a kind gift of Dr. Tommaso Costa (Istituto Superiore di Sanità, Rome,
Italy). Original cDNAs for human-β₂AR, rat-GαsL and rat-XLαs were kind gifts of T. Costa
(Rome, Italy), TLZ Jones (Washington DC, USA) and WB Huttner (Heidelberg & Dresden,
Germany), respectively.
Immunoblots and SDS-PAGE:

Proteins were separated by SDS-PAGE and transferred to PVDF membrane (Biorad, Hercules, CA) by using standard procedures. Proteins were detected by custom-designed polyclonal antibody (produced by Pacific Immunology Corp, CA) raised against the C-terminal decapeptide (NH$_2$-(Cys)-Arg-Met-His-Leu-Arg-Gln-Tyr-Glu-Leu-Leu) of Gαs (and XLαs), and ECL as described by the manufacturer (Santa Cruz Biotechnology, CA). Densitometric analysis of blots was carried out by using an image analysis system (Raytest, Diana v1.6, Aida v2.43, Straubenhardt, Germany).

Membrane preparations and Receptor binding assays:

Cells were pelleted at 200 g for 5 min at room temperature, resuspended in homogenization buffer (5 mM Tris-HCl pH 7.4, protease inhibitor mixture (Roche Diagnostics, Mannheim, Germany)), and homogenized by passing the suspension (10-15 times) through a 26G syringe tip on ice. The homogenate was centrifuged at 450 x g for 10 min at 4°C, and the resulting supernatant at 100,000 x g for 30 min at 4°C (Beckman Coulter Optima LE-80K Ultracentrifuge, CA). The pellet was resuspended in a buffer containing 50 mM Tris-HCl (pH 7.4), DTT 0.3 mg/ml, 5 mM MgCl$_2$, protease inhibitor mixture, and re-pelleted by centrifugation at 100,000 x g for 30 min at 4°C. The final pellet was suspended in 50 mM Tris-HCl (pH 7.4), 10 mM MgCl$_2$, protease inhibitor mixture, and 25% sucrose at a protein concentration of approximately 2 mg/ml, and stored at -80°C.

In saturation binding assays, 0.5-1 μg membrane protein was incubated with [125I]-iodocyanoindolol (100000 dpm/well) in a total volume of 100 μl buffer (100mM KCl, 10 mM MgCl$_2$, 50 mM Tris-HCl pH 7.4) for 2 hour at 37°C in 96-well plates. The reaction was stopped by rapid filtration through a Whatman GFB glass fiber filter by using a cell harvester.
Radioactivity on the filters was counted by using a scintillation counter (Wallac MicroBeta 1450 Trilux, Turku, Finland). Nonspecific binding was determined in the presence of 1 μM cyanopindolol. Competition binding assays were conducted similarly except that varying concentrations of indicated competitor ligands and 20000 cpm/well of [125I]-iodocyanopindolol were used in the presence or absence of GTPγS (1μM) or GPD (100μM) + AlF (20μM NaCl / NaF 10mM) at a final buffer volume of 200 μl. Nucleotide-induced shift in agonist binding curves was found to be more complete with GDP+AlF than with GTPγS. Therefore, we presented the results of the experiments where GDP+AlF were used. Binding curves were analyzed by nonlinear regression of a 4-parameter logistic equation or numerical solution of multisite binding equation in the presence of multiple ligands by means of an in-house MSExcel routine. Binding curves obtained in parallel experiments in the presence or absence of guanine nucleotide were analyzed by sharing receptor concentration and affinity values among binding curves. The effect of parameter sharing was tested by using F statistics.

Determination cAMP accumulation:

Cells were seeded in 96-well plates at a density of 5-10 x 10³ cells/well 24 hours before the experiment. Two hours before the assay, cells were washed once with serum-free DMEM. Assays were conducted in a total volume of 100 μl at 37 °C for 5 min. After incubating the cells with the receptor ligands for 5 min at room temperature, cAMP assay was initiated by adding 1 mM isobutylmethylxanthine and terminated by adding 100 μl 0.2 N HCl. cAMP accumulation was determined by a radioimmunoassay as described before (Uğur and Onaran, 1997).
Immunocytochemistry and Confocal microscopy:

Cells, grown on glass cover slips, were washed 3 times with phosphate buffered saline (PBS) and fixed with 2% paraformaldehyde (wt/vol) in PBS for 20 min. After permeabilization with 0.1% Triton X-100 in PBS (vol/vol) for 15 min and blocking for 15 min with 1% bovine serum albumin in PBS (wt/vol), cells were incubated with an antibody raised against carboxyl terminus decapeptide of Gαs (see immunoblotting section above for the specification of the antibody) at a dilution of 1:500 for 1 hour, washed with PBS and then incubated with Cy3 conjugated anti-rabbit antibody (1:1000) (Zymax, CA) for 1 hour at room temperature. Cells were then washed 3 times with PBS and once with distilled water, mounted with Immu-Mount reagent (Shandon, Pittsburgh, PA) and visualized by the use of a confocal microscope (Leica LSM5, Germany).

Modeling and numerical simulations

In order to explain the experimental observations on a quantitative basis we used a modified ternary complex model as schematized in figure 1. In the classical ternary complex models the G protein activation has been considered implicitly as equivalent to the amount of receptor-G protein complex formed, regardless of whether the receptor activation is considered explicitly or not. In the present case however, the G protein activation is considered explicitly as a binary process. Thus, the model given in figure 1 is a new interpretation of the well-known ternary complex model which has been widely used to explain ligand behavior in different contexts. The reason for such a modification is discussed in the discussion section.

In the present scheme, three unconditional affinity constants K, M and L govern ligand-receptor binding, receptor-G protein binding and state transition of the G protein, respectively. Three allosteric constants, α, β and γ, depict the coupling between the following processes: 1)
ligand binding to the receptor and receptor binding to the G protein (α), 2) receptor binding to G protein and G protein activation (β), and 3) ligand binding to receptor-G protein complex and G protein activation (γ). See the left panel of figure 1 for a schematic presentation of the affinity and allosteric constants. All these constants can be defined as follows:

\[
K = \frac{[HR]}{[R][H]} \quad M = \frac{[RG]}{[R][G]} \quad L = \frac{G^*}{G}
\]

\[
\alpha K = \frac{[HRG]}{[RG][H]} \quad \beta M = \frac{[RG^*]}{[R][G^*]} \quad \gamma \beta L = \frac{[HRG^*]}{[HRG]}
\]

Combining the definitions of the above mentioned reaction constants with the conservation equations for the three components H, R and G yields the following equations for the corresponding free species:

\[
[R] = \frac{Rt}{1 + K[H] + M[G](1 + \beta L + \alpha K[H](1 + \beta \gamma L))} \quad \text{eq 1}
\]

\[
[G] = \frac{Gt}{1 + L + M[R](1 + \beta L + \alpha K[H](1 + \beta \gamma L))} \quad \text{eq 2}
\]

\[
[H] = \frac{Ht}{1 + K[R] + \alpha KM[G][R](1 + \beta \gamma L)} \quad \text{eq 3}
\]

Rt, Ht, and Gt in eqs 1-3 signify the total concentrations of the corresponding components. Given the reaction constants and total concentrations of the three components, we calculated free concentrations of the three components by solving eqs 1-3 numerically using an algorithm that has been described previously (Costa et al., 1992, Onaran et al., 1993). This algorithm has been proved to converge to a unique solution vector for the free species (Pradines et al., 2001). Once the concentrations of the free species are thus obtained, the concentrations of all the other species can be readily calculated by using the definitions of the reaction constants given above. See the results section for the choice of parameter values.
Other Procedures:

The number of living cells was determined by MTT (Methylthiazolyldiphenyl-tetrazolium bromide) assay as described by the manufacturer (Sigma-Aldrich, Taufkirchen, Germany). Protein concentration in the membrane preparations was determined by Bradford assay using bovine serum albumin as standard (Bradford, 1976).

All standard reagents (buffers, salts, detergents, etc.) were from Sigma-Aldrich, Taufkirchen, Germany or Fisher Scientific, NJ, USA at appropriate purity. βAR ligands were from Tocris Cookson, Bristol, UK. Guanine nucleotides were from Roche Diagnostics, Mannheim, Germany. [125I]-iodocyanopindolol and [125I]-NaI were purchased from Amersham Biosciences, Buckinghamshire, UK. β-adrenoceptor ligands were obtained from the following suppliers: Tocris Cookson (Bristol, UK) for clenbuterol, cimaterol, procatrol hydrochloride, dobutamine hydrochloride, pronethalol hydrochloride, (S)-(−)-propranolol hydrochloride, sotalol hydrochloride, ICI-188,551 hydrochloride, cyanopindolol hemifumarate, (S)-(−)-pindolol, ICI-89,406; Sigma-Aldrich (Taufkirchen, Germany) for (−)-Isoproterenol hydrochloride, (−)-adrenalin, (−)-alprenolol hydrochloride, timolol maleate, terbutaline hemisulphate.
RESULTS

Expression and cellular localization of \(\text{G} \alpha \text{s} \) and \(\text{XL} \alpha \text{s} \) proteins

Transfection of HEK293 or 2B2 cells with \(\text{G} \alpha \text{sL} \) or \(\text{XL} \alpha \text{s} \) resulted in considerable overexpression of the proteins in the membrane fractions (figure 2A). Note that HEK293 cells endogenously express the long (52 kDa) and the short (45 kDa) forms of \(\text{G} \alpha \text{s} \) but not \(\text{XL} \alpha \text{s} \) (94 kDa), whereas the untransfected 2B2 mouse embryonic fibroblasts express neither \(\text{G} \alpha \text{s} \) nor \(\text{XL} \alpha \text{s} \) due to homozygous ablation of \(\text{GNAS} \) exon 2. Expression levels of \(\text{G} \alpha \text{sL} \) or \(\text{XL} \alpha \text{s} \) were similar in the 2B2 clones selected for further experiments (see figure 2B). As the similarity of the expression levels has a critical importance for the interpretation of data presented in the following sections, we gave the details of the measurement procedure in supplementary figure 1. cAMP response to agonist stimulation in these clones was restored by \(\text{G} \alpha \text{sL} \) or \(\text{XL} \alpha \text{s} \) expression (figure 2C).

We used confocal microscopy and transiently transfected HEK293 cells to determine subcellular localization of \(\text{XL} \alpha \text{s} \) or \(\text{G} \alpha \text{sL} \). Endogenous \(\text{G} \alpha \text{s} \) in HEK293 cells did not produce a detectable fluorescence signal in untransfected cells, allowing us to distinguish \(\text{XL} \alpha \text{s} \) (or additional \(\text{G} \alpha \text{sL} \)) signal in the transfected HEK293 cells by using an antibody against the common carboxyl terminus of \(\text{G} \alpha \text{s} \) and \(\text{XL} \alpha \text{s} \). Localization pattern of the proteins differed considerably among cells for both \(\text{XL} \alpha \text{s} \) and \(\text{G} \alpha \text{sL} \) (figure 2D): Cell membrane, diffuse cytoplasmic, and perinuclear staining were all evident in both cases. Thus, in HEK293 cells we were unable to diagnose any obvious difference between the distribution patterns of \(\text{G} \alpha \text{sL} \) and \(\text{XL} \alpha \text{s} \) as opposed to what has been reported previously (Kehlenbach et al., 1994; Uğur and Jones 2000; Linglart et al. 2006). Despite the diffuse cytoplasmic staining in some cells we found no \(\text{XL} \alpha \text{s} \) in soluble fractions of the cell homogenates, which indicated that \(\text{XL} \alpha \text{s} \)
was mostly associated with membranes. Unlike XLαs, a small fraction of Gαs could be found in the soluble fractions (data not shown).

Despite the obvious expression of GαsL or XLαs (figure 2A-C) in stably transfected 2B2 clones, we failed to obtain a good quality immunostaining for GαsL or XLαs in these cells due to a high background signal that resulted apparently from the nonspecific interactions of the fluorescent antibodies with some constituents of the 2B2 cells.

Stimulation of adenylyl cyclase activity

We measured cAMP production in the presence or absence of βAR ligands in intact HEK293 cells co-transfected with βAR and XLαs or GαsL. As shown in figure 3A, cells transfected with XLαs showed higher basal and agonist-stimulated cAMP accumulation than those transfected with Gαs, although the expression levels of each G protein α-subunit and the βAR were comparable. In GαsL-transfected cells, inverse agonists timolol and ICI118,551 reduced the basal cAMP levels. On the other hand, the basal cAMP level in XLαs-transfected cells was not responsive to these inverse agonists (figure 3A). Thus, we asked whether the elevated basal XLαs activity was independent of receptor coupling. Increasing the level of βAR expression resulted in an increase of basal cAMP accumulation in both GαsL- and XLαs-transfected cells, demonstrating that the high basal activity of XLαs is associated, at least partly, with the receptor. At the high receptor expression levels, the basal cAMP level in XLαs-transfected cells remained insensitive to inverse agonists (figure 3A, right panel).

One interpretation for this result might be that XLαs was partially or completely unable to distinguish between the inverse agonist-bound and the empty receptor conformations. However, a more comprehensive scenario can also explain this observation, along with the observations presented below, by a different mechanism (see discussion).
In order to observe pure XLαs response to βAR and to avoid possible interference of endogenous Gαs, we used the Gαs-deficient 2B2 cells. As expected, cAMP production of these cells was insensitive to β-adrenergic stimulation. Transfection of these cells with XLαs or GαsL restored the cAMP response, as a small amount of βAR (~100 fmol/mg) is expressed endogenously (figure 2C). We nevertheless stably overexpressed βAR along with XLαs or Gαs for examining basal receptor activity, which was otherwise undetectable. Selected clonal cells expressed comparable levels of GαsL and XLαs (figure 2B). At ~1 pmol/mg of βAR, the basal cAMP level in XLαs-transfected cells was unaltered in response to inverse agonists (figure 3B, left panel). When the receptor expression level was increased to ~5 pmol/mg, an inverse agonist effect of ICI118,551 emerged in XLαs transfected cells as well (figure 3B, right panel), but the magnitude of this effect was small compared to that observed in GαsL-transfected cells; ICI118,551-induced inhibition of basal activity was 65% in GαsL, but was 30% in XLαs-transfected cells. These results confirmed the above observation that XLαs-transfected cells were more resistant to inverse agonist effects than Gαs-transfected cells.

The observation that inverse agonist-induced responses of GαsL and XLαs were different from one another suggested that variation in receptor state which can be induced by different ligands, is also perceived differently by these two proteins. We thus systematically screened a set of βAR ligands with a broad spectrum of efficacy for their ability to stimulate cAMP accumulation in GαsL- or XLαs-transfected cells. Figure 4A-B shows cAMP responses of GαsL- or XLαs-transfected 2B2 cells that overexpress βAR at a level of ~1 or ~5 pmol/mg. Overall, relative intrinsic activity of each ligand observed in XLαs-transfected cells was comparable to that in GαsL-expressing cells. While the basal cAMP accumulation was relatively high in XLαs-transfected cells (consistent with results presented above), the difference between XLαs and GαsL was less evident upon agonist stimulation. At ~1
pmol/mg receptor expression, maximal cAMP accumulation was similar in XLαs- and GαsL-
transfected cells for strong, but not for partial, agonists (figure 4A). When the receptor
expression was increased to ~5 pmol/mg, the similarity between XLαs and Gαs transfected
cells in terms of maximal cAMP accumulation was also observed for the partial agonist
dobutamine (figure 4B). We were unable to further increase the receptor expression in 2B2
cells. Thus, to address the question as to whether higher receptor expression levels would
result in similar levels of XLαs- and Gαs- mediated maximal cAMP accumulation even in
response to agonists with lower efficacy than dobutamine, we used HEK293 cell clones that
express βAR at a level of 30 pmol/mg. At this receptor expression level the difference
between XLαs- and GαsL-mediated cAMP accumulation responses to agonists was no longer
detectable: Even those agents with very low intrinsic activity, starting from propranolol which
displayed a weak agonistic effect at this level of receptor expression, were able to stimulate
XLαs and GαsL equally well (Figure 4C). This phenomenon is best seen when the responses
are shown on normalized scales (Figure 4D). In figure 4D three categories of ligands are
identifiable: 1) ICI118,551, timolol, sotalol, for which XLαs is more efficient than GαsL in
mediating cAMP production, 2) from propranolol to pindolol, for which XLαs and GαsL are
equally efficient, and 3) from partial agonist dobutamine to full agonist clenbuterol, for which
overexpression of XLαs or Gαs did not increase the response any more than that obtained in
HEK293 cells that overexpress βAR only. Together, these results suggested that XLαs is
intrinsically more efficient than GαsL in mediating receptor-induced cAMP accumulation, but
this phenomenon is observed when the ligand’s efficacy and/or the receptor expression level
are relatively low.

A more detailed analysis of the response pattern of weak and inverse agonists is given in
figure 4E for intermediate level of receptor expression, where the discrepancy between GαsL
and XLαs was best seen. In figure 4E, maximal cAMP accumulations in the presence of indicated ligands in GαsL-transfected 2B2 cells are plotted against those that were obtained in XLαs-transfected cells, where it is evident that XLαs mediates (partial) agonist responses better than GαsL but is relatively insensitive to inverse agonist-induced inhibition of basal activity as assessed by the slopes of the lines in figure 4E.

Ligand Binding

The above observation that XLαs mediates βAR signaling more efficiently than GαsL (at least conditionally) suggests that XLαs couples better to βAR and/or stimulates adenylyl cyclase more efficiently than does GαsL. Although the findings presented above (figure 4) are consistent with the former possibility, more direct evidence for this possibility could be obtained by using a ligand binding strategy; the efficiency of receptor-G protein coupling should affect agonist binding pattern, whereas that of G protein-effector coupling is not expected to have a consequence on ligand binding. Therefore, we analyzed agonist binding affinity of βAR in 2B2 cells expressing XLαs or GαsL in the presence or absence of guanine nucleotides. This setting can be considered as an experimental paradigm in the framework of ternary complex-like models to reveal the efficiency of receptor-G protein coupling. As shown in figure 5 and table 1, in the presence of GDP+AlF, isoproterenol bound to βAR with low affinity both in XLαs and GαsL expressing cell membranes. In the absence of the guanine nucleotide, the binding isotherm fit to a double-site binding model in both cases. In fact, the low affinity values estimated from the double-site fit in the absence of the guanine nucleotide were consistent with those estimated in the presence of the guanine nucleotide. Increasing the receptor expression reduced the proportion of high affinity binding sites and nucleotide-induced shift without affecting the binding affinities (table 1), which is consistent with the predictions of the ternary complex model. The proportion of high affinity binding sites was
higher in XL\(\alpha\)s expressing cells than in G\(\alpha\)sL expressing cells, and the nucleotide-induced shifts in isoproterenol binding were more pronounced in membrane preparations from XL\(\alpha\)s expressing cells. Finally, binding affinity for high-affinity binding sites was higher in XL\(\alpha\)s expressing than in G\(\alpha\)sL expressing cells. We obtained similar results in HEK293 cells that overexpress \(\beta\)AR and XL\(\alpha\)s or G\(\alpha\)sL (see supplementary figure 2). Combined, these results show that \(\beta\)AR-G protein coupling is more efficient in the case of XL\(\alpha\)s than G\(\alpha\)sL.

Numerical Simulations

Numerical simulations that are made by using the scheme in figure 1 are shown in Figure 6. G\(\alpha\)s and XL\(\alpha\)s are simulated as possessing different affinities for the receptor (\(M=5\times10^9\) M\(^{-1}\) for G\(\alpha\)s, and \(M=3\times10^{11}\) M\(^{-1}\) for XL\(\alpha\)s). Ligands were simulated as follows: Inverse agonist (\(\alpha<1, \gamma=1\)), neutral ligand (\(\alpha=1, \gamma=1\)), agonist (\(\alpha>1, \gamma>1\)). In the case of agonism, values of \(\alpha\) and \(\gamma\) were chosen equal for simplicity and changed together to simulate partial and full agonists. The value of \(\gamma\) for inverse agonists was set to 1 (see below). For a particular ligand type, values of \(\alpha\) and \(\gamma\) were set constant when simulating different types of G proteins. Following parameters were constant for different G protein and ligand types: \(\beta=20, \ K=10^7\) M\(^{-1}\), \([G_{total}]=10^{-10}\) M, and \(L=[G^*]/[G]=0.01\) yielding a very low spontaneous G protein activity in the absence of receptor intervention. The first row of figure 6A shows the predicted G protein activation depending on receptor density in the absence or saturating presence of three kinds of ligands; an inverse agonist, a partial or a full agonist. Note that the activation induced by the partial agonist differs for the two G proteins only at low receptor concentrations (\([R_t]\cong10^{-10}\) M). This difference disappears at high receptor concentrations (\([R_t]\cong10^{-9}\) M), and the activation of the two G proteins by the partial agonist becomes equal at a level below the maximal response of the system (compare the saturation levels obtained in the case of partial and full agonist in the first row of figure 6A). This prediction is
consistent with the experimental observations presented in figure 4A-C. The second row of figure 6A shows the formation of RG complex, which can be considered as what the traditional interpretation of the ternary complex would predict for activation in corresponding situations. In the latter case, as opposed to the former, the system is predicted to be maximally active when the difference between the two G proteins disappears (compare the saturation levels obtained in the case of partial and full agonist in the second row of figure 6A), which was not the case experimentally. The assumption that inverse agonists, as opposed to agonists, do not affect G protein activation directly (γ=1) leads to the discontinuity observed in the experiments (compare figures 6B and 4E). Interestingly, the present model also predicts that the inverse agonist effect should have a maximum (more pronounced for Gαs than XLαs) depending on receptor expression, and this was observed experimentally (see figures 6C and 6D). Although not demonstrated numerically in the present report the entire scenario is compatible with the binding patterns observed in figure 5.
DISCUSSION

We investigated receptor coupling properties of $G_\alpha s$ and its variant $XL_\alpha s$, revealing that $XL_\alpha s$ couples βAR signaling to adenylyl cyclase more efficiently than $G_\alpha sL$. The difference between $XL_\alpha s$ and $G_\alpha sL$ was apparently due to the difference between coupling abilities of these G proteins to the receptor.

$G_\alpha s$ is required for numerous agonist responses. Unlike $G_\alpha s$, which is ubiquitous, $XL_\alpha s$ seems to be more abundant in neuroendocrine tissues and brain (Kehlenbach et al., 1994; Passolli et al., 2000), although $XL_\alpha s$ transcript has been detected in many different tissues (Hayward et al., 1998; Plagge et al., 2004). The phenotypes observed from mice in which either $XL_\alpha s$ or $G_\alpha s$ is knocked out alone suggest that these two proteins have markedly different physiological roles (Plagge et al., 2004; Chen et al., 2005; Germain-Lee et al., 2005). While the unique cellular roles of $XL_\alpha s$ remain to be defined, it has been clearly shown that $XL_\alpha s$ can mediate cyclase stimulation in response to receptor activation (Klemke et al., 2000; Bastepe et al., 2002; Linglart et al., 2006). Our results now verify these findings and suggest furthermore that $XL_\alpha s$ may be an important contributor of cAMP signaling, even in tissues where $XL_\alpha s$ levels are markedly lower than $G_\alpha s$ levels. Consistent with this prediction, $XL_\alpha s$ mRNA is markedly lower than $G_\alpha s$ mRNA in growth plate chondrocytes, but $XL_\alpha s$ ablation together with the ablation of one $G_\alpha s$ copy (paternal Gnas exon 2 disruption) results in a more severe phenotype, i.e. premature chondrocyte hyper trophy, than the ablation of one $G_\alpha s$ copy alone (maternal Gnas exon 2 disruption) (Bastepe et al., 2004). cAMP signaling is involved in a vast majority of cellular responses, and the superiority of $XL_\alpha s$ over $G_\alpha s$ in terms of receptor coupling and cAMP generation may thus have important implications in physiology and diseases. Naturally occurring $GNAS$ mutations, with the exception of those located in exon 1, are predicted to affect not only $G_\alpha s$ but also $XL_\alpha s$. The changes in $XL_\alpha s$ activity can
be involved in the pathogenesis of diseases caused by these mutations, such as various endocrine and non-endocrine tumors (activating) or Albright’s hereditary osteodystrophy (inactivating).

In a series of studies, divergent signaling abilities of G\(_{\alpha_sL}\) and G\(_{\alpha_sS}\) (splice variants of G\(_{\alpha_s}\)) have been reported, where the difference was attributed to a higher rate of dissociation of GDP from G\(_{\alpha_sL}\) than G\(_{\alpha_sS}\) (Seifert et al., 1998; Wenzel-Seifert et al., 2001, 2002). In these studies, receptor-G protein fusions were used in order to obtain 1:1 stochiometry of receptor:G protein, which provided a good model for investigating the coupling efficiency between receptor and G protein. In the present work, however, βAR-XL\(_{\alpha_s}\) fusion protein did not function in 2B2 cells, while mediating agonist-induced cyclase activation in HEK293 cells (see supplementary figure 3 and 4). Interactions of receptor or G protein in the fusion protein with their non-fused partners in the cell membrane have been reported (Burt et al., 1998; Molinari et al., 2003). Hence, the observed discrepancy between HEK293 and 2B2 cells that express βAR-XL\(_{\alpha_s}\) fusion protein can be interpreted as follows: The receptor in the fusion construct interacts fruitfully with endogenously expressed G\(_{\alpha_s}\) proteins, which is present in HEK293 but not in 2B2 cells. Hence, no response is observed in 2B2 cells as no intra- or inter-fusion interaction can actually occur between receptor and XL\(_{\alpha_s}\) (see supplementary figure 3 for a schematic representation of the idea). Therefore, we were unable to compare XL\(_{\alpha_s}\) and G\(_{\alpha_sL}\) in the fusion model. Thus, receptor:G protein stochiometry was variable (but controlled) in our experiments; this variability, on the other hand, eventually proved to be an advantage for the present case (see below).

Strikingly, the observed difference between XL\(_{\alpha_s}\)- and G\(_{\alpha_sL}\) was conditional. It disappeared with increasing ligand efficacy, threshold of which was dependent on the expression level of the receptor (figure 4). At first sight, this observation implies a saturation effect in the
receptor-G protein coupling. However, cyclase activities mediated by XLαs or GαsL became comparable at a level far below the full agonist-induced maximal cyclase activity observable in the cells (figure 4 B and C). Hence, this pattern requires further considerations in the framework of the interpretation of ternary complex models that have been used successfully to explain ligand behavior. What is not compatible with this framework is the following: In a system where a receptor couples with different efficiencies to two different G proteins, which in turn, transmit the receptor signal to a unique effector with the same efficiency, the models predict that the ligand-induced effector activations that are mediated by these two G proteins cannot be equal when the stimulated response is below the maximal response of the system. Hence, the models, in their currently interpreted forms, cannot predict the observed equalization of Gαs- and XLαs-mediated responses below the maximum level of adenylyl cyclase activation that is achievable in the presence of full βAR agonists. This “defect”, which is not an intrinsic property of the ternary complex models, stems from the assumption that receptor-bound G protein is fully active, and can easily be eliminated by assuming that formation of receptor-G protein complex is not necessarily equivalent to full activation of G protein, and that agonist binding to receptor can have further “activating” effects on the G protein via conformational changes when receptor and G proteins are bound to each other. Such a scenario has already been suggested for rhodopsin-Gt interaction (Fanelli and Dell’Orco, 2005). Consequences of this assumption become obvious when we introduce G protein activation into the ternary complex model as a simple two-state process (G-active or G-inactive; shown in figure 1). Inclusion of a G protein activation step in the ternary interaction scheme inevitably divides the ligand efficacy into two parts: Ability of ligand to modify R-G binding (governed by the allosteric constant α in figure 1), and to modify G protein activation (i.e. G-G* transition) in the RG complex (governed by the allosteric constant γ in figure 1). On the basis of these fundamentals the observed behavior of XLαs and
Gαs in mediating βAR signal can be explained almost entirely by making the following additional assumptions (see figure 6): XLαs and GαsL differ only in their unconditional tendency to bind receptor (M_{XLαs} > M_{GαsL}); efficacy of ligands on βAR does not depend on the identity of G protein to which the receptor is coupled (at least in the case of XLαs and GαsL); spontaneous tendency of RG complex to get activated is relatively low (L<<1 and 1<γ); efficacy of neutral or agonist ligands are evenly distributed over α and γ (for the sake of simplicity); and finally, inverse agonists have no direct effect on G protein activation (i.e. γ=1) but reduces RG binding (i.e. α<1). The last assumption is rather speculative, but required to explain the inverse agonist effect on βAR-XLαs coupling compared to GαsL. In this framework, the basic mechanism and the scenario that explains the advantage of XLαs over GαsL depending on ligand efficacy and receptor expression can be stated as follows: The origin of difference between the two G proteins is their diverging affinities for the receptor, which is operative (and observable) only when RG interaction is not saturated. The saturation depends on the combined effect of receptor expression and ligand efficacy. Once RG saturation occurs, the difference between XLαs and GαsL disappears, since ligands are assumed to have γ values that do not depend on the kind of G protein. However, even at this saturation point weak agonists do not necessarily induce maximal response of the system (i.e. G-G* conversion in RG complex may not be complete upon agonist binding depending on the γ value of the agonist) (see figure 6). This scenario also supports a long debated idea that inactive receptor and G protein tend to form an RG complex that does not necessarily lead to G protein activation, which actually occurs upon activation of receptor in the complex. Accordingly, agonist-induced (or spontaneous) receptor activation directly transmits an activating conformational signal to a precoupled G protein without necessarily affecting the stability of the RG complex. Several lines of indirect evidence support this statement (see for example Fanelli and Dell’Orco, 2005).
In summary, the present study showed that βAR can couple to XLαs better than Gαs, and that the rank order of ligand efficacies does not change when it is coupled to XLαs. Thus, despite the differences observed between Gαs and XLαs signaling, no ligand-dependent divergence is predicted to occur between XLαs and Gαs in transmitting βAR signal to adenylyl cyclase. Nevertheless, βAR signaling becomes relatively resistant to inverse agonists when the receptor is coupled to XLαs, which may have pharmacological implications depending on the distribution of βAR-XLαs coupling in the body. This may justify further studies on βAR-XLαs coupling (or receptor-XLαs coupling in general) in physiological integrity. Finally, the experimental system where the two kinds of G proteins are coupled to the same receptor with different efficiencies enabled us to re-evaluate the interpretation of the ternary complex model, especially when it is used to explain or understand G protein activation.
REFERENCES

FOOTNOTES

This work was supported, in part, by research grants from Turkish Scientific and Technical Research Council [104s472], Ankara University Research Fund [BAP 2002 0809 088], Ankara University Biotechnology institute [103], and The National Institute of Diabetes and Digestive and Kidney Diseases to MB [R01DK073911] (the content is solely the responsibility of the authors and does not necessarily represent the official view of the National Institute of Diabetes and Digestive and Kidney Diseases or the National Institutes of Health).

Send reprint requests to: H. Ongun Onaran, Ankara Üniversitesi Tıp Fakültesi, Farmakoloji ve Klinik Farmakoloji Ab.D. Sihhiye 06100 Ankara, Turkey. Phone: +90 312 311 8829, Fax: +90 312 310 6268, e-mail: onaran@medicine.ankara.edu.tr

1. Present address: Dept. Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC, USA.
LEGENDS FOR FIGURES

Figure 1

Description of the equilibrium model where the ternary complex model was extended to include G protein activation (G-G* transition) explicitly. **Left panel:** meanings of the parameters are given schematically: Three binding partners are designated as H, R, G for ligand, receptor and G proteins respectively. Binding sites on the proteins are shown as black circles. Activation of G protein is symbolized as a grey area in the G protein, in which the activation reaction (*quipment) takes place. Three reaction constants (K, M, and L) for relevant binding (or isomerization) reactions, and three allosteric couplings (α, β, and γ) that links these reactions are indicated on the picture. Among the allosteric factors, γ is a second order effect that is transmitted between ligand binding and G protein activation reactions once the RG complex is formed. Note that ligand efficacy in the model comprises of the mixed effects of α and γ. **Right panel:** Equilibrium reactions and corresponding equilibrium constants are shown. Elementary reactions are indicated with thick lines.

Figure 2

Expression of GαsL or XLαs in HEK293 or 2B2 cells. (A) Representative Western blots of membrane preparations from transiently transfected HEK293 or permanently cloned 2B2 cells as indicated in the picture; φ, G and X signify no transfection, transfection with GαsL or XLαs respectively. (B) Densitometric analysis of 2B2 cell clones which were used throughout the present experiments. Mean values (bars) were calculated from four independent membrane preparations (for each clone) by using three serial dilutions (5, 2.5, 1.25 μg/ per lane) for each preparation. Lines on the bars represent S.E.M. No significant difference were found between GαsL and XLαs signals in these clones (p>0.05, as assessed by Student’s t test). (C)
Intracellular cAMP accumulation in untransfected cells, or in G\(\alpha_{SL}\) or XL\(\alpha\) expressing 2B2 cell clones measured in the presence of 0.1 mM isoproterenol. cAMP response were normalized to the number of living cells in the wells as assed by parallel MTT assays. The numerical value of the MTT signal was \~0.3 on average. Response in transfected cells is presented as average response as we observed no significant difference between G\(\alpha_{SL}\) or XL\(\alpha\) expressing clones. (D) Cellular distribution of G\(\alpha_{SL}\) or XL\(\alpha\) in HEK293 cells that overexpress \(\beta\)AR. Cells were transfected with the cDNA of G\(\alpha_{SL}\) or XL\(\alpha\) (as indicated in the picture) and confocal images were obtained after immunostaining by using an antibody against the carboxyl terminus of G\(\alpha\) (the same antibody was used in the immunoblotting experiments). Each picture consist of a collage of cell images chosen intentionally to show that the distribution pattern of both G\(\alpha_{SL}\) and XL\(\alpha\) exhibits a cell-to-cell variation. Scaling bars on the pictures are 10 \(\mu\)m.

Figure 3

Cyclic AMP responses in HEK293 (A) or 2B2 (B) cells in the absence or presence of saturating concentrations of indicated ligands. The level of \(\beta\)AR expression in each cell type is indicated in the picture. G\(\alpha_{SL}\) and XL\(\alpha\) expression levels were comparable in these cells as explained in figure 2B. cAMP response were normalized to the number of living cells in the wells as assed by parallel MTT assays. The numerical value of the MTT signal was \~0.3 on average. Results are mean (+ S.E.M.) values of 10 (A) or 8 (B) independent quadruplicate experiments.

Figure 4

Cyclic AMP responses in the absence or presence of saturating concentrations of indicated ligands in the cells that express comparable amount of G\(\alpha_{SL}\) or XL\(\alpha\), but varying level of
βAR: (A) 2B2 cells expressing 1 pmol/mg of βAR, (B) 2B2 cells expressing 5 pmol/mg of βAR, (C) HEK293 cells expressing 30 pmol/mg of βAR. Ligand concentrations were 10^{-6} or 10^{-4} M depending on ligand’s affinity to βAR. Results are mean (+ S.E.M.) values of 3 to 4 independent quadruplicate experiment. cAMP response were normalized to the number of living cells in the wells as assessed by parallel MTT assays. Significant differences in panels A-C are shown with the symbol (*), as assessed by Student’s test. Two cases were considered as noise: marginal difference (p=0.06) in sotalol in panel C, and significant difference in clenbuterol in panel A (p<0.05). (D) Increase in cAMP response upon transfection of HEK293 cells (that express 30 pmol/mg of βAR) with GαsL or XLαs was given as fold increase in cAMP response relative to vector transfected cells that express the same amount of βAR in the absence or presence of indicated ligands. The plot is constructed by dividing the data given in panel C by the response observed in vector transfected cells. Three groups of ligands are indicated in the picture (see text). (E) cAMP responses in 2B2 cells that express GαsL were plotted against cAMP responses in 2B2 cells that express XLαs in the absence or presence of following ligands that include inverse agonists and very weak partial agonists: 1:ICI118,551, 2:Timolol, 3:Sotalol, 4:Propranolol, 5:ICI 89,406, 6:no ligand, 7:Pronethalol, 8:Cyanopindolol, 9:Pindolol, 10:Alprenolol (data are from panel B). Data are fitted with two straight lines having different slopes. Slopes of the lines differ by a factor of 3.

Figure 5

Competition binding curves ([125I]-Iodocyanopindolol vs. isoproterenol) obtained in the membranes from 2B2 cell clones that express comparable amount of GαsL or XLαs and indicated amounts of βAR. Binding curves were obtained in the absence or presence of GDP (10 μM) +AlCl₃ (20 μM) + NaF (10 mM) as indicated in the picture. Binding of hot ligand is given as a fraction of total receptor (Rt) in each case. Solid curves are nonlinear regressions of
numerically solved competition-binding equations for two binding sites. Areas between
binding curves obtained in the absence or presence of nucleotide (ΔAUC) are given in the
pictures as a measure of nucleotide-induced shift in binding. See table 1 for estimated
parameters. Data are mean (± S.E.M.) values of three independent quadruplicate experiments.

Figure 6

Numerical simulations by using the model given in figure 1. (A) G protein activation (i.e. G*
formation) in the presence or absence of saturating concentrations of indicated type of ligands
is given in the first row as a fraction of total G (i.e. [G*+RG*+HRG*]/[total G]) depending on
receptor concentration. Fractional formation of RG complex in corresponding situations is
given in the second row as indicated in the picture (see text for parameter values). (B) G
protein activity in the presence (or absence) of inverse agonists and weak partial agonists
were simulated for XLαs or Gαs according to the model described in figure 1 at a constant
receptor concentration (R_{total}=2\times10^{-10}\text{ M}). Activity (i.e. total G*/total G) calculated for Gαs
was plotted against the one that was calculated for XLαs in the presence of different ligands
(represented by each dot in the picture). XLαs and Gαs were simulated as in panel A (i.e.
with different M values for R). Ligands were simulated as follows: Inverse agonists (α=0.125,
0.25, 0.5; γ=1), neutral antagonist (α=1;γ=1); partial agonists (α = γ = 1.15, 1.32, 1.52, 1.75,
2.01, 2.31). Values of all other parameters are the same as in panel A. The position of neutral
ligand is indicated with two dotted lines in the picture. Simulated results were in good
agreement with the experimental data given in figure 4E. (C) Relative response of an inverse
agonist (i.e. activity in the presence of ligand/basal activity) was simulated for XLαs or Gαs
at varying receptor concentrations as indicated in the picture. XLαs and Gαs were simulated
as in panel A and B. Inverse agonist was simulated with the parameters α=0.1;γ=1. (D)
Experimentally observed relative response to inverse agonist ICI 118,551 (i.e. cyclase activity
in the presence of ICI118,551/basal cyclase activity) at three different receptor concentrations in XLαs or GαsL expressing cells as indicated in the picture. Data in the picture were calculated from the data given figure 4A-C for ICI118,551. The simulation in panel C is in good agreement with the experimental data.
Table 1. Estimated parameters of isoproterenol binding curves in 2B2 cells that express βAR receptors at two different levels, and XLαs or GαsL at similar levels.

<table>
<thead>
<tr>
<th></th>
<th>Low βAR</th>
<th>High βAR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GαsL</td>
<td>XLαs</td>
</tr>
<tr>
<td>log(K_L)</td>
<td>6.3 ± 0.06</td>
<td>6.5 ± 0.06</td>
</tr>
<tr>
<td>log(K_H)</td>
<td>8.1 ± 0.12</td>
<td>8.9 ± 0.05</td>
</tr>
<tr>
<td>GDP+AlF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_L (%)</td>
<td>97 ± 0.2</td>
<td>91 ± 3</td>
</tr>
<tr>
<td>R_H (%)</td>
<td>3 ± 0.2</td>
<td>9 ± 3</td>
</tr>
<tr>
<td>No nucleotide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_L (%)</td>
<td>59 ± 5</td>
<td>49 ± 5</td>
</tr>
<tr>
<td>R_H (%)</td>
<td>41 ± 5</td>
<td>51 ± 5</td>
</tr>
<tr>
<td>βAR pmol/mg</td>
<td>0.4 ± 0.02</td>
<td>1.0 ± 0.04</td>
</tr>
</tbody>
</table>

Parameters are estimated by the regression of numerical solution of competition binding equations assuming a single dissociation constant of 40 pM for [125I]-iodocyanopindolol. Affinities for isoproterenol were estimated simultaneously by sharing the parameters between two curves obtained in the presence or absence of GDP+AlF (100 μM;10 mM). This procedure did not cause a significant worsening of residual variance compared to independent estimation of the parameters (p > 0.05 as assessed by F statistics). Percent contributions of high and low affinity components are indicated as R_H and R_L and corresponding affinities as K_H and K_L (see figure 5 for the binding curves).
Figure 1
Figure 4

(a) Graph showing cAMP (pmol/min/MMT) for various conditions with markers for $G_{\alpha}L$ and $XL\alpha$.

(b) Graph with similar data to (a) but with different conditions.

(c) Graph with data similar to (a) and (b).

(d) Graph showing relative cAMP response with markers for $G_{\alpha}L$ and $XL\alpha$.

(e) Scatter plot comparing cAMP response in $XL\alpha$ to $G_{\alpha}L$. Points are labeled 1 through 10, with a note indicating no ligand.