INHIBITION OF POLY(ADP-RIbose) POLYMERASE PREVENTS ALLERGEN-INDUCED ASTHMA-LIKE REACTION IN SENSITISED GUINEA PIGS.

Ylenia Suzuki, Emanuela Masini, Cosimo Mazzocca, Salvatore Cuzzocrea, Anna Ciampa, Hisanori Suzuki, Daniele Bani

Departments of: Pediatrics (YS); Neuroscience and Vision (AC, HS), University of Verona, Italy. Departments of: Preclinical and Clinical Pharmacology (EM, CM); Anatomy, Histology and Forensic Medicine (DB), University of Firenze, Italy. Institute of Pharmacology (SC), University of Messina, Italy.
Running title: PARP inhibitors in asthma-like reaction.

Address for correspondence and reprint requests:
Prof. Daniele Bani
Department of Anatomy, Histology & Forensic Medicine. Sect. Histology
University of Florence
Viale G.Pieraccini, 6
I-50139 Florence, Italy
Phone: (+39) 055 4271390; Fax: (+39) 055 4271385 ; daniele.bani@unifi.it

Text pages: 29
Figures: 6
References: 40
Abstract: 195 words
Introduction: 663 words
Discussion: 1049 words

Nonstandard abbreviations:

NO nitric oxide
NOS nitric oxide synthase
PARP poly(ADP-ribose) polymerase

Section: Inflammation & Immunopharmacology
ABSTRACT

Poly(ADP-ribose) polymerase (PARP) plays an important role in tissue injury in conditions associated with oxidative stress and inflammation. Asthma being a chronic inflammatory disorder of the airways, we designed the present experimental study to evaluate the effects of PARP inhibition on allergen-induced asthma-like reaction in ovalbumin-sensitised guinea pigs.

Cough and dyspnea in response to ovalbumin aerosol were absent in naïve guinea pigs, while they became severe in the sensitised animals. In the latter ones, ovalbumin aerosol also induced a rapid increase in PARP activity, bronchiolar constriction, pulmonary air space inflation, mast cell degranulation, poly(ADP-ribose) and nitrotyrosine immunostaining, myeloperoxidase activity and malondialdehyde in lung tissue, as well as a rise in the amounts of nitrites and TNF-α in bronchoalveolar lavage fluid. Pretreatment with the PARP inhibitors 3-aminobenzamide (10 mg/kg b.w.) or 5-aminoisoquinolinone (0.5 mg/kg b.w.) given i.p. 3 hours before ovalbumin challenge significantly reduced the severity of cough and the occurrence of dyspnea and delayed the onset of respiratory abnormalities. Both PARP inhibitors were also able to prevent the above morphological and biochemical changes of lung tissue or bronchoalveolar lavage fluid induced by ovalbumin challenge. Conversely, p-aminobenzoic acid, the inactive analogue of 3-aminobenzamide, had no effects.
Poly(ADP-ribose) polymerase (PARP, E.C.2.4.2.30) identifies a family of ubiquitous nuclear enzymes involved in many physiological and pathophysiological events, whose best-studied member is PARP-1 (m.w. 113 kDa)(Smith et al., 1998; Amè et al., 1999; Johansson, 1999; Kickhoefer et al., 1999; Sallmann et al., 2000; Shieh et al., 1998). PARP-1, using NAD+ as a substrate, attaches polymers of ADP-ribose to acceptor proteins including histones, transcription factors and PARP-1 itself. In spite of its abundant presence in the chromatin fractions, PARP-1 is normally inactive. Only when DNA damage occur, under any circumstance, this enzyme is rapidly activated (De Murcia and Shall, 2000; Burkle, 2001 a) as it requires nicked DNA to exert the catalytic activity (Benjamin and Gill, 1980). The physiological roles of PARP-1, which are strictly related to this enzymatic characteristics, include DNA repair and genotoxic stress resistance, signalling of DNA damage, regulation of genomic stability in cells under genotoxic stress, transcriptional regulation, stimulation of nuclear proteosomal function, ageing and longevity (Burkle, 2001 b). However, PARP-1 activation is a double-edged sword, as it burns out massive amounts of NAD+ and ATP, thereby causing rapid depletion of metabolic substrates and energy failure of the cells (Amè et al., 1999; De Murcia and Shall, 2000; Burkle, 2001 b). fact, several studies have offered evidence for an involvement of PARP-1 in the pathophysiology of diabetes mellitus, ischemia-reperfusion-induced damage in the brain, heart, kidney and bowel, septic and haemorragic shock, acute and chronic inflammatory disorders, and induction of cell apoptosis (Szabò and Dawson, 1998).

Regarding the role of PARP-1 in inflammation, it has been recently pointed out that PARP-1 may cooperate with nitric oxide synthase (NOS) in causing the inflammatory tissue damage (Szabò and Dawson, 1998). In fact, massive amounts of NO, produced by inducible NOS (iNOS) under pro-inflammatory conditions by various cells (such as macrophages, epithelial cells, etc.), can react with superoxide to yield highly toxic
peroxynitrite (Szabò, 2003) which, in turn, induces DNA strand break and rapid PARP-1 activation, with consequent energy crisis and cell death (Szabò and Dawson, 1998; Szabò, 2003).

On these grounds, an increasing body of literature indicates the therapeutic potential of PARP inhibitors as anti-inflammatory agents, as observed, for instance, in the inflammatory response to ischemia/reperfusion-induced injury that triggers the production of cytokines and free radicals (Thiemermann et al., 1997; Zingarelli et al., 1997; Szabò and Dawson, 1998; Cuzzocrea et al., 2002; Virag and Szabò, 2002). One of the most widely used PARP inhibitors, 3-aminobenzamide, reduced the infarct size of heart or skeletal muscle after ischemia/reperfusion insult (Thiemermann et al., 1997; Zingarelli et al., 1997). A novel water-soluble PARP-1 inhibitor, 5-aminoisoquinolinonone, reduced the degree of lung injury and attenuated the expression of P-selectin and ICAM-1 as well as the recruitment of neutrophils into the injured lung (Cuzzocrea et al., 2002). This is in keeping with the recent report on the critical role played by activation of PARP-1 in lipopolysaccharide-induced acute lung inflammation (Albertini et al., 2000).

The increased expression of adhesion molecules, such as P-selectin, VCAM-1 and ICAM-1, and the enhanced recruitment of leukocytes are some of the pathophysiological hallmarks of asthma, a chronic inflammatory disorder of the airways whose prevalence is increasing everywhere, especially among children. Asthma is also characterised by bronchial hyperresponsiveness, airway constriction associated with bronchial oedema, mucosal inflammation and increased production of mucus, all events leading to airflow limitation and mild to severe respiratory symptoms, including dyspnea and cough.

The aim of the present study was to provide insight into the possible role of PARP-1 activation in the pathophysiology of asthma by investigating the effects of substances able to inhibit PARP-1 in an experimental model of asthma-like reaction induced by airborne allergen in sensitised guinea pigs. Our findings show that systemic administration of
PARP-1 inhibitors such as 3-aminobenzamide and 5- aminoisouquinolinone to the sensitised animals prevents efficiently allergen-elicited respiratory abnormalities as well as histological and biochemical changes of the lungs. Therefore, pharmacological inactivation of PARP-1 might be a therapeutic strategy to limit lung injury in allergic airway chronic inflammation.

MATERIALS AND METHODS

Animals - Male Hartley albino guinea pigs were used. They were purchased from a commercial dealer (Rodentia, Bergamo, Italy) and quarantined for 7 days at 22-24 °C with a 12-h light, 12-h dark cycle before use. Standard laboratory chow (Rodentia), fresh vegetables, and water were available ad libitum. The experimental protocol was designed in compliance with the recommendations of the European Economic Community (86/609/CEE) for the care and use of laboratory animals and in agreement with the Good Laboratory Practice. It was approved by the animal care committee of the University of Florence (Florence, Italy). At the end of the treatment, the animals weighed 350-400 g.

Animal sensitization and treatments – The guinea pigs were divided into 6 experimental groups, as detailed below.

Group 1 (n=8). These guinea pigs were injected with phosphate-buffered saline (PBS; 5 ml/kg i.p., plus 5 ml/kg s.c.) 21 days before entering the further experiments. They are referred to as naïve animals and were the negative controls.
The remaining guinea pigs were sensitised with 100 mg/kg i.p. plus 100 mg/kg, s.c. ovalbumin, suspended in PBS (20 mg/ml). After 21 days, they were divided in 5 further groups and treated as indicated below:

Group 2 (n=8). No further treatment. These animals are referred to as sensitised not challenged and were used as controls for the following experimental groups in the biochemical and morphological studies on lung tissue samples.

Group 3 (n=8). PBS (1 ml), the drug vehicle, given by subcutaneous injection.

Group 4 (n=8). The PARP-inhibitor 3-aminobenzamide (Sigma, St Louis, MO; 10 mg/kg), in 1 ml PBS, subcutaneously. This dose was chosen as it has been previously found to exert a clear-cut PARP inhibition (Thiemermann et al., 1997).

Group 5 (n=8). The PARP-inhibitor 5-aminoisoquinolinone (5-aminoisoquinolin-1(2 H)-one; Alexis, Läufelingen, Switzerland; 1 mg/kg), in 1 ml PBS, subcutaneously. This dose was also chosen as being able to effectively inhibit PARP (Cuzzocrea et al., 2002).

Group 6 (n=8). The inactive compound p-aminobenzoic acid (Sigma, St Louis, MO; 3 mg/kg), in 1 ml PBS, subcutaneously. This is chemically similar to 3-aminobenzamide but lacks PARP inhibitory activity.

Three hours after injections, the animals of all groups, except group 2, underwent challenge with the inhaled antigen, as described below.

Challenge with inhaled ovalbumin and evaluation of respiratory activity - The guinea pigs were individually placed in an airtight transparent whole-body chamber, as previously described (Bani et al., 1997). The changes in inner pressure in the respiratory chamber induced by breathing were monitored with a high sensitivity pressure transducer (Battaglia-Rangoni, Bologna, Italy) connected to a PC2400A channel polygraph (Battaglia-Rangoni). Upon breath stabilization, usually occurring within 30-60 seconds,
guinea pigs were challenged with an aerosol of ovalbumin (Fluka, Buchs, Switzerland), 5 mg/ml in saline, for 10 seconds. The naïve guinea pigs (group 1) were included in the antigen challenge to reveal possible breath alterations due to nonspecific stimulation of the airways by the aerosol droplets. The respiratory activity of the animals subjected to the different treatments was registered for 10 min after the onset of aerosol administration and classified according to the criteria reported previously (Bani et al., 1997; Xiang et al., 1998; Liu et al., 2001). Namely, cough was detected as a transient change in the pressure (a rapid inspiration followed by a rapid expiration), whereas dyspnea was detected as a series of irregular breaths of abnormal frequency and amplitude or as repeated gasping. During the experiments, the guinea pigs were visually monitored by two trained observers, who were blinded to group assignment of the animals. In this way, any motion- and sneezing-related changes in the inner pressure of the body chamber could also be disregarded. The following parameters were evaluated (Bani et al., 1997; Xiang et al., 1998; Liu et al., 2001): i) latency time (sec.) for the first cough stroke or dyspnea episode; ii) cough severity, the product of cough frequency (cough strokes/min) and mean cough amplitude (excess pressure over the normal breath, in mmHg); iii) overall duration of dyspnea (sec.). At the end of the experiments, the animals of all groups were killed by decapitation and, upon thoracotomy, the gross appearance of the lungs was examined. In 5 animals from each group, lung tissue samples from the middle and the lower lobes were taken for biochemical and morphological analyses. Before opening the thorax, 3 animals from each group were subjected to bronchoalveolar lavage. Briefly, the trachea was cannulated and bronchoalveolar lavage was performed by the intratracheal installation of 3 ml of PBS, pH 7.4, into the exposed lungs, maintained within the thoracic cavity. Bronchi were washed 3 times before final collection of bronchoalveolar lavage fluid, which was then centrifuged at 1100 g for 30 min. The cell-free supernatant was collected, its volume measured and frozen at −70°C until needed.
Assay of PARP activity - This was measured using methods described by Berton et al. (1991). Tissues from control (groups 1 and 2) and sensitised, ovalbumin-challenged guinea pigs (group 3) were homogenised in 50mM Tris HCl, pH 8, 4°C, containing 0.1% NP-40, 200 mM KCl, 2 mM MgCl₂, 50 μM ZnCl₂, 2 mM DTT and protease inhibitors (1 mM PMSF, 5 μl/ml leupeptin and antipain). Samples were then centrifuged and 10 μl of each supernatant were incubated for 5 min at 25°C with 2 μl of [³H]NAD⁺ (specific activity 25 Ci/nmol) in 50 mM Tris HCl, pH 8, containing 20 mM MgCl₂, 1 mM DTT and 20 μM NAD⁺, in the absence or presence of activated calf thymus DNA, in a final volume of 100μl. The reaction was stopped by the addition of 5% trichloroacetic acid. Samples were filtered and radioactivity in the acid-insoluble fraction was counted by a Beckman LS1801 liquid scintillation spectrometer. PARP activity estimated without activated DNA in the mixture was referred to as endogenous activity. Activity estimated in the presence of activated DNA in the assay mixture was referred to as total activity of PARP. Ratio between endogenous and total activities was considered as the measure of PARP activity in the tissues.

Histological and morphometrical analyses - Small tissue samples, 2 from each animal, were fixed by immersion in Mota fluid (50% ethanol, 50% H₂O, 0.5% acetic acid, 1% basic lead acetate), dehydrated in graded ethanol and embedded in paraffin. This fixative medium allows a rapid infiltration of the tissue and provides artifact-free tissue morphology and optimal mast cell preservation. Sections 5 μm thick were cut and stained with hematoxylin and eosin for conventional histology and morphometry of lung alveoli and small-sized bronchi, or with Astra blue (Fluka, Buchs, Switzerland) to reveal mast cell granules.

A first series of determinations was carried out on hematoxylin and eosin-stained sections to evaluate the surface area of alveolar aerial spaces. In each guinea pig,
determinations were performed on tissue sections cut from the 2 different lung samples, examined with a x10 objective. Four randomly-chosen microscopical fields per animal (2 fields per section) were analysed. At the chosen magnification, each field corresponds to a tissue area of 570,224 µm² that includes an average of 300 alveolar profiles. The same tissue sections were used to evaluate the surface area of bronchial lumina, selected by: i) histological appearance of small-sized, muscular bronchi; ii) transverse or slightly oblique cross-section. In each guinea pig, measurements were carried out on 4-6 randomly chosen bronchi from the tissue sections cut from the 2 different lung samples, examined with a x20 objective. For both alveolar and bronchial lumenal areas, the microscopical fields to be analysed were registered by a video camera (S 75D1, World Precision Instruments, Sarasota, FL) applied to a Reichert-Jung Microstar IV light microscope (Cambridge Instruments, Buffalo, NY) and interfaced with a personal computer through a Matrox Marvel G400-TV digitising card (Matrox Graphics, Dorval, Canada). On the digitised images, surface area measurements were carried out using the Scion Image Beta 4.0.2 image analysis program (Scion Corp., Frederick, MD) upon appropriate thresholding to include only blank, tissue-free aerial spaces. The mean values (± s.e.m.) of alveolar and bronchial lumenal areas were then calculated for each experimental group.

A second series of determinations was carried out on Astra blue-stained sections to evaluate the optical density of lung mast cells, which is related to the content of secretory granules. In each guinea pig, determinations were performed on tissue sections cut from the 2 different lung samples, according to the method described previously for similar purposes (Bani et al., 1997). Mast cells were viewed by the same image analysis device described above, using a x100 oil immersion objective. In particular, the digitising card allows to measure the light transmitted across the microscopic slide within a range of 256 grey levels (0 = black; 255 = white) and to reproduce a digitised image based on the measured values. Determinations of optical density were carried out on selected mast cell
profiles using the Scion Image Beta 4.0.2 image analysis program. In each animal, 30
different mast cells, 15 from each lung sample, were analysed and the mean optical density
(± s.e.m.) was then calculated for the entire experimental group.

Immunohistochemistry for poly(ADP-ribose) and nitrotyrosine - This was carried out on
histological sections, 5 µm thick, of Mota-fixed, paraffin-embedded lung tissue fragments.
Sections were treated with 0.3% (v/v) H₂O₂ in 60% (v/v) methanol to quench endogenous
peroxidase, permeabilised with 0.1 % (w/v) Triton X 100 in PBS for 20 min. and incubated
overnight with goat polyclonal anti-poly(ADP)-ribose antibodies (Jackson, Westgrave, PA;
1:500 in PBS). Immune reaction was revealed by indirect immunoperoxidase method
(Vectastain Elite kit, Vector, Burlingame, CA), using 3,3’-diaminobenzidine as
chromogen. As negative controls, sections incubated with only the primary or the
secondary antisera were used.

Peroxynitrite, the harmful coupling product of nitric oxide and superoxide anion, is a
major cause for oxidative tissue damage and DNA strand break during inflammation
(Zingarelli et al., 1996). Nitrotyrosine, a marker of peroxynitrite reaction with tissue
substrates, was detected in lung tissue by rabbit polyclonal anti-nitrotyrosine antibodies
(Upstate Biotechnology, Buckingham, UK; 1:1000 in PBS), using the same protocol
described above.

Evaluation of myeloperoxidase activity – This was used as a marker for leukocyte
accumulation in tissues, according to Bradley et al. (1982). Briefly, 100 mg of lung tissue
were homogenised in 1.5 ml of 50 mmol/l potassium phosphate buffer, pH 6. One millilitre
of the homogenate was centrifuged at 10,000 g for 10 min. and the pellet suspended in 1
ml of potassium phosphate buffer (50 mmol/l), pH 6, containing 0.5 %
hexadecyltrimethylammonium bromide (Sigma) to negate the pseudoperoxidase activity of
hemoglobin and to solubilise membrane-bound myeloperoxidase. The suspensions were freeze-thawed, sonicated and centrifuged at 12,000 g for 10 min. Myeloperoxidase activity was determined by mixing 0.1 ml of the supernatant with 2.9 ml of potassium phosphate buffer (50 mmol/l), pH 6, containing 0.19 mg/ml of o-dianisidine chloride and 0.0005 % H₂O₂ as a substrate for myeloperoxidase. Oxidised o-dianisidine forms a stable cromophore absorbing at a 460 nm wave length. The absorbance was determined spectrophotometrically over 2 min. The values of tissue myeloperoxidase activity were obtained by comparison with standard concentrations of o-dianisidine in the presence of excess H₂O₂. One unit of myeloperoxidase activity is defined as that required to degrade 1 µmol of H₂O₂ per min. at 25 ° C. Protein concentration was determined with the Bradford method. The results are expressed as mU/mg of proteins.

Determination of malondialdehyde - Malondialdehyde, an end-product of peroxidation of cell membrane lipids caused by oxygen-derived free radicals, is considered a reliable marker of inflammatory tissue damage and was determined by measurement of the chromogen obtained from the reaction of malondialdehyde with 2-thiobarbituric acid, according to Aruoma et al. (1989). About 100 mg of lung tissue were homogenised with 1 ml of 50 mmol/l Tris-HCl buffer containing 180 mmol/l KCl and 10 mmol/l EDTA, final pH 7.4. Then, 0.5 ml of 2-thiobarbituric acid (1% w/v) in 0.05 mol/l NaOH and 0.5 ml of HCl (25% w./v. in water) were added to 0.5 ml of sample. The mixture was boiled for 10 min and cooled. The chromogen was extracted in 3 ml of 1-butanol and the organic phase separated by centrifugation at 2,000 g for 10 min. The absorbance of the organic phase was read spectrophotometrically at 532 nm wave length. Protein concentration was determined with the Bradford method. The values are expressed as nmol of thiobarbituric acid-reactive substances (malondialdehyde equivalents)/mg of protein, using a standard curve of 1,1,3,3-tetramethoxypropane.
Nitrite determination in bronchoalveolar lavage fluid - The intrinsic production of nitric oxide (NO) was determined by the measurement of nitrates, the end-product of NO metabolism, in the bronchoalveolar lavage fluid. Briefly, nitrates were reduced to nitrites by incubation of the samples with nitrate reductase (270 mU/ml, Sigma) and NADPH (150 mmol/l) at room temperature for 1 hour. The amount of nitrate was determined spectrophotometrically by the Griess reaction adapted for a 96-well plate reader (Failli et al., 2002). Briefly, 100 µl of sample were allowed to react with 100 µl of Griess reagent (1% sulfanilamide and 0.1% N-[1-naphtyl]ethylenediamine in 5% phosphoric acid) for 30 min. in the dark. The optical density at 546 nm wavelength was measured with a Bio Rad 550 micro plate reader. Nitrite concentrations in the supernatants were calculated by comparison with standard concentrations of NaNO₂ dissolved in PBS. The reported values are expressed as nmol/ml of bronchoalveolar lavage fluid.

Determination of TNF-α in bronchoalveolar lavage fluid - Production of TNF-α was measured using a commercial enzyme-linked immunosorbent assay (ELISA) kit (Cayman Chemical, Ann Arbor, MI), following the protocol provided by the manufacturer. Results are expressed as ng/ml of bronchoalveolar lavage fluid.

Statistical analysis

Unless otherwise stated, the reported data are expressed as mean ± s.e.m. of the individual values of the animals in each group. Statistical comparison of differences between the different groups was carried out using one-way ANOVA test followed by Student-Newman-Keuls multiple comparison test. P<0.05 was considered significant. Calculations were done using a GraphPad Prism 2.0 statistical program (GraphPad Software, San Diego, CA).
RESULTS

Respiratory activity - The values of the respiratory parameters assayed are reported in fig. 1 A-C. There were no substantial abnormalities in the nonsensitised guinea pigs after inhalation of ovalbumin aerosol (group 1), apart from sporadic cough strokes appearing about 2 min after the onset of the aerosol. Challenge of vehicle-treated sensitised guinea pigs with the ovalbumin aerosol (group 3) resulted in striking abnormalities of the respiratory pattern, consisting of a significant reduction of the latency time for cough and/or dyspnea and a significant increase in the severity of cough and in the occurrence and duration of dyspnea. Conversely, pretreatment with the PARP inhibitors 3-aminobenzamide and 5-aminoisoquinolinone of sensitised, ovalbumin-challenged guinea pigs (groups 4 and 5) resulted in a marked reduction of the respiratory abnormalities compared with the vehicle-treated sensitised animals (group 3). In particular, cough latency time was significantly increased and cough severity was significantly reduced. Clear-cut signs of dyspnea were not detected in the breath recordings in any of the animals of these groups. Administration of p-aminobenzoic acid in the place of 3-aminobenzamide to sensitised, ovalbumin-challenged guinea pigs (group 6) resulted in clear-cut respiratory abnormalities, similar to those of the vehicle-treated animals (group 3).

PARP activity - In the lung tissues of naïve guinea pigs (group 1: 0.2±0.2), PARP activity was estimated to be almost the same as that measured in sensitised, not challenged animals (group 2: 0.26±0.3). Ovalbumin challenge of the sensitised guinea pigs (group 3: 0.7±0.8) induced a 3.5-fold increase in PARP activity over naïve animals.
Lung morphology and morphometry - Macroscopic examination of the lungs showed prominent changes in the sensitised, ovalbumin-challenged guinea pigs (group 3) compared with the nonsensitised guinea pigs (group 1) or the sensitised animals not subjected to ovalbumin aerosol (group 2). These changes mainly consisted in marked swelling of the pulmonary lobes due to accumulation of air. Sectioning of trachea or of main bronchi did not cause lung deflation, thus indicating that peripheral airway obstruction had occurred. Lung inflation could not be observed in the sensitised, ovalbumin-challenged guinea pigs pretreated with either 3-aminobenzamide or 5-aminoisoquinolinone (groups 4 and 5), whereas it could in most of the animals given \(p \)-aminobenzoic acid in place of 3-aminobenzamide (group 6).

Light microscopy of lung tissue (fig. 2) showed that the intrapulmonary bronchi and respiratory air spaces of control guinea pigs (groups 1 and 2) had a normal appearance. In particular, intrapulmonary bronchi showed open lumens with bronchial mucosa forming short folds, and most respiratory air spaces were small sized (A,B). Conversely, lung tissue from the sensitised, ovalbumin-challenged guinea pigs (group 3) mostly showed a reduction of the lumen of intrapulmonary bronchi, with long mucosal folds expanding into the lumen. Moreover, in large areas of the lung parenchyma, the respiratory air spaces were markedly dilated (C). In the sensitised, ovalbumin-challenged guinea pigs pretreated with 3-aminobenzamide (group 4) or 5-aminoisoquinolinone (group 5), the histological lung abnormalities were minimal or even absent. In fact, the intrapulmonary bronchi usually showed no appreciable signs of constriction, and most respiratory air spaces were not dilated (D,E). Only in small areas of the lung parenchyma were attenuated signs of bronchoconstriction and dilation of respiratory air spaces observed. In the sensitised, ovalbumin-challenged guinea pigs treated with \(p \)-aminobenzoic acid in place of 3-aminobenzamide (group 6), the histological features of the lung tissue were substantially similar to those of the sensitised, ovalbumin-challenged animals of group 3 (F).
The visual observations were objectified by morphometrical analysis, whose results are given in fig. 3. As compared with the control guinea pigs (groups 1 and 2), the sensitised, ovalbumin-challenged guinea pigs (group 3) showed a significant increase in the mean surface area of alveolar aerial spaces (A) and a significant decrease in the mean surface area of bronchial lumens (B). In the sensitised, ovalbumin-challenged guinea pigs treated with 3-aminobenzamide (group 4) or 5-aminoisoquinolinone (group 5), but not with \(p \)-aminobenzoic acid (group 6), these parameters nearly returned to the control values, 5-aminoisoquinolinone being slightly more potent than 3-aminobenzamide.

Lung mast cell densitometry - This assay (fig. 3 C) revealed a marked, significant decrease in optical density, indicating a decrease in the overall amount of Astra blue-stained secretion granules, in mast cells from the sensitised, ovalbumin-challenged guinea pigs (group 3) compared with those from the control animals (groups 1 and 2). In the mast cells of the sensitised, ovalbumin-challenged guinea pigs pretreated with 3-aminobenzamide (group 4), and even more in those treated with 5-aminoisoquinolinone (group 5), optical density was significantly higher than in the animals of group 3, thus attaining values similar to those in the control animals (groups 1 and 2). Conversely, in the sensitised, ovalbumin-challenged guinea pigs pretreated with \(p \)-aminobenzoic acid (group 6), the optical density was fairly decreased.

Immunohistochemical localization of poly (ADP-ribose) and nitrotyrosine - Detection of nuclear poly-ADP ribosylated DNA sites, a marker for PARP activity, in lung tissue cells (fig. 4 A) showed no apparent staining in the nonsensitised guinea pigs (group 1), whereas a few, scattered positive cells could be observed in the sensitised, not challenged animals (group 2). Immunostained cells increased markedly in the sensitised, ovalbumin-challenged guinea pigs (group 3). They were mostly located in the airway epithelium and
the inflammatory infiltrate within the stromal septa. In the sensitised, ovalbumin-
challenged guinea pigs pretreated with 3-aminobenzamide (group 4) or 5-
aminoisoquinolinone (group 5), immunostained cells were not detected. Similar findings
were observed in the lung tissue sections immunostained to reveal nitrotyrosine (fig. 4 B),
a marker of peroxynitrite generation and free-radical tissue injury. No immunostaining was
detected in both the control guinea pigs (groups 1 and 2), whereas a clear-cut
immunoreactivity, distributed evenly in the tissue and especially in the airway epithelium,
could be detected in the sensitised, ovalbumin-challenged guinea pigs challenged with
ovalbumin (group 3). In the sensitised, ovalbumin-challenged guinea pigs treated with 3-
aminobenzamide (group 4) or 5-aminoisoquinolinone (group 5), nitrotyrosine
immunostaining was not observed, whereas it was in the guinea pigs given p-aminobenzoic
acid (group 6).

Myeloperoxidase activity and malondialdehyde production - Both myeloperoxidase
activity (fig. 5 A), a marker of leukocyte infiltration into inflamed tissues, and
malondialdehyde (fig. 5 B), a marker of free radical-mediated inflammatory damage,
underwent a marked, significant increase in the lung tissue from sensitised, ovalbumin-
challenged guinea pigs (group 3) as compared with the control animals (groups 1 and 2). In
the sensitised, ovalbumin-challenged guinea pigs treated with 3-aminobenzamide and 5-
aminoisoquinolinone (groups 4 and 5) myeloperoxidase activity and malondialdehyde
were markedly and significantly decreased compared with the animals of group 3, thus
attaining values similar to those in the control animals (groups 1 and 2). Conversely, in the
guinea pigs given p-aminobenzoic acid (group 6), myeloperoxidase activity and
malondialdehyde remained high.
Assays on bronchoalveolar lavage fluid - Both nitrites (fig. 6 A), the end-products of NO, and TNF-α (fig. 6 B), an inflammatory cytokine, were increased in the sensitised, ovalbumin-challenged guinea pigs (group 3) as compared with the controls (groups 1 and 2). In the sensitised, ovalbumin-challenged guinea pigs treated with 3-aminobenzamide and 5-aminoisoquinolinone (groups 4 and 5), but not in those given \(p \)-aminobenzoic acid (group 6), the values of nitrites, as well as those of TNF-α, were significantly lower than in the animals of group 3.

DISCUSSION

Asthma is the most common airway inflammatory disease characterized by recurrent exacerbations and atopy as the main predisposing factor (Kitch et al., 2000; Holgate, 2002; Holt and Sly, 2002). In asthmatic patients, chronic airway inflammation is associated with airway hyperresponsiveness, bronchoconstriction, bronchial mucus plug formation, swelling of aerial air spaces and airway remodelling, all events concurring to produce airflow limitation and respiratory symptoms (Djukanovic, 2000). Inflammation, remodeling and altered neural control of the airways are deemed responsible for both recurrent exacerbations of asthma and permanent airflow obstruction (King, 1999; Holt and Sly, 2002; Maddox and Schwartz, 2002). Histopathologically, airway inflammation in asthma is characterised by increased number of activated eosinophils, mast cells, macrophages and T-lymphocytes in the airway mucosa and lumen. Many different cell types and inflammatory mediators are involved, giving rise to an interlocked cascade of events that results in the characteristic inflammatory and tissue remodeling processes of asthma (Lemanske, 2000; Renauld, 2001; Maddox and Schwartz, 2002).
At present, no definitive cure for asthma has yet been found, although its symptoms can be controlled in most patients by several therapeutic strategies, basically relying on two milestones, glucocorticoids and β2-agonists. Inhaled glucocorticoids are the most effective treatment since they are able, in the long term, to markedly reduce the frequency and severity of exacerbations (Lemanske, 2000; von Mutius, 2000). On the other hand, inhaled β2-agonists, due to their rapid action, are the drugs of choice to counteract acute asthmatic symptoms (von Mutius, 2000). Alternative treatments, like those based on theophyllines, Cromones, immunosuppressors, and the recently developed lipoxygenase inhibitors have not been able to replace the standard therapy of asthma (von Mutius, 2000). The results presented in this study, using a guinea pig model of allergen-induced asthma-like reaction, offer in vivo evidence for the critical role played by PARP at the very early phase of the response to allergen inhalation by the sensitised animals. In fact, ovalbumin challenge of sensitised guinea pigs caused a marked activation of PARP, as shown by PARP activity assay and immunocytochemistry for poly-ADP ribosylated DNA sites in the lung tissue. Accordingly, the current study also shows that a systemic pretreatment of ovalbumin-sensitised guinea pigs with the PARP inhibitors 3-aminobenzamide and 5-aminoisoquinolinone, at doses and exposure times found previously to afford a complete inhibition of PARP (Thiemermann et al., 1997; Cuzzocrea et al., 2002), results in a clear-cut, statistically significant reduction of respiratory abnormalities induced by the inhaled allergen. In particular, the latency for the onset of cough and/or dyspnea is strongly increased, while cough severity and dyspnea are markedly blunted by 5-aminoisoquinolinone (1 mg/kg b.w.) and, with a slightly lower efficiency, by 3-aminobenzamide (10 mg/kg b.w.). The beneficial effects of the assayed PARP inhibitors on the respiratory abnormalities of asthma-like reaction can be explained by the marked reduction of the signs of lung inflammation, bronchoconstriction and air entrapment, as shown by both histopathological and biochemical analyses. As compared with the sensitised, ovalbumin-challenged guinea pigs pretreated with vehicle alone, the lungs from the animals pretreated with
either 3-aminobenzamide or 5-aminoisoquinolinone show a significantly lower degree of bronchial constriction, alveolar inflation and mast cell degranulation, as well as a significant reduction of myeloperoxidase, a marker of leukocyte infiltration, malondialdehyde and nitrotyrosine, both markers of oxidative inflammatory tissue injury. Moreover, a drop of NO (as nitrite amount) and TNF-α, both inflammation-related molecules, was also observed in the bronchoalveolar lavage from the animals treated with the PARP inhibitors. The anti-inflammatory effects of 3-aminobenzamide and 5-aminoisoquinolinone appear to rely on their specific PARP-inhibitory properties, as can be argued by the almost complete absence of immunostaining for poly-ADP ribosylated DNA sites in the lung tissue from guinea pigs pretreated with the two inhibitors. Further clues in favour of a primary role of PARP inhibition in the anti-inflammatory mechanism of the assayed inhibitors also come from the findings that: i) 5-aminoisoquinolinone, a more potent and specific PARP inhibitor than 3-aminobenzamide (Cuzzocrea et al., 2002), also has the most prominent beneficial effects on asthma-like response to ovalbumin; ii) p-aminobenzoic acid, which is similar to 3-aminobenzamide except for ability to inhibit PARP, has no protective effects. The present findings fits well with a recent report by Smulson’s group (Boulares et al., 2003), describing the protection from ovalbumin-induced inflammatory lung response in PARP-1−/− knock-out mice, as both studies strongly suggest that PARP-1 plays a pivotal role in the pathophysiology of asthma-like reaction. However, the possibility of the involvement of other PARP isoforms (Amè et al., 1999; Johansson, 1999; Kickhoefer et al., 1999) should not be ruled out.

The possible causal relationships between PARP inhibition and protection by asthma-like reaction remain to be elucidated. Nonetheless, if it is assumed that, in the very first steps of allergen-induced inflammatory response, PARP may be activated by DNA damage induced by the local generation of harmful reactive oxygen species, it is reasonable to hypothesise that PARP inhibition could reduce the metabolic and oxidative lung cell injury occurring upon massive NAD+ and ATP depletion due to activation of
PARP. On the other hand, we deem unlikely that the beneficial effects of PARP inhibitors on asthma-like reaction could involve a direct inhibition of allergen-induced activation of lung mast cells, which are known to initiate inflammatory allergic reaction (Bradding, 2003).

Over the last decade, many studies have highlighted the role of PARP activation in the pathophysiology of a wide range of diseases. Furthermore, numerous experiments have proven that PARP inhibition, by both pharmacological tools or by selective disruption of PARP gene, may represent an effective approach to reduce inflammatory tissue injury in animal models of ischemia and reperfusion (Thiemermann et al., 1997; Boulares et al., 2003; Bradding, 2003; also reviewed in Virag and Szabó, 2002) and of chemically- or immunologically-induced lung inflammation (Cuzzocrea et al., 2002; Boulares et al., 2003). Of note, the allergen-induced asthma-like reaction in sensitised guinea pigs used in the present study is deemed a reliable model to study the effects of antiasthmatic drugs, due to its similarity to human asthmatic disease (Wanner et al., 1990; Pretolani and Vargaftig, 1993). Hence, the present findings suggest that use of PARP inhibitors may be a promising approach to alleviate asthma attack and may provide background for future clinical trials to evaluate the possible antiasthmatic potential of PARP inhibitors, conceivably in synergism with the current therapeutic protocols based on glucocorticoids and β2-agonists.

ACKNOWLEDGEMENTS

The authors deeply thank Dr. T. Sugimura, Dr. S. Shall and Dr. G. Piacentini for their helpful discussion in the course of this study and critical reading of the manuscript.
REFERENCES

Footnote to the title: This work was supported by a grant from the Italian Ministry of Education, University and Research (MIUR, PRIN 2002) to H.S. and D.B., and by funds from the Universities of Verona and Florence.
LEGENDS TO FIGURES

Fig. 1 – Occurrence of respiratory abnormalities in guinea pigs of the different experimental groups. A) latency for the onset of cough; B) severity of cough; C) overall duration of dyspnea. Compared with the sensitised, ovalbumin-challenged animals (group 3), pretreatment with 3-aminobenzamide (group 4) or 5-aminoisoquinolinone (group 5) causes a clear-cut, significant improvement of the respiratory parameters assayed. Significance of differences between groups (one-way ANOVA): a P>0.01 vs. sensitised, not challenged controls (group 1); b P<0.01 vs. ovalbumin-challenged animals (group 3); c P<0.01 vs. 3-aminobenzamide-pretreated animals (group 4).

Fig. 2 – Lung tissue from guinea pigs of the different experimental groups. A) nonsensitised, ovalbumin-challenged controls (group 1); B) sensitised, not challenged controls (group 2); sensitised, ovalbumin-challenged, pretreated with: C) PBS (group 3), D) 3-aminobenzamide (group 4), E) 5-aminoisoquinolinone (group 5), and F) p-aminobenzoic acid (group 6). Note the peculiar features of alveolar aerial spaces and small-sized bronchi in groups 3 and 6 (right panels), consistent with alveolar air inflation and bronchoconstriction. Hematoxylin & eosin. Bar = 100 µm.

Fig. 3 – A) Surface area of alveolar aerial spaces in the lungs of guinea pigs from the different experimental groups. Significance of differences between groups (one-way ANOVA): a P>0.001 vs. both controls (groups 1 and 2); b P<0.001 vs. sensitised, ovalbumin-challenged animals (group 3); c P<0.001 vs. 3-aminobenzamide-pretreated animals (group 4). B) Surface area of small-sized bronchial lumens in the lungs of guinea pigs from the different experimental groups. Significance of differences between groups (one-way ANOVA): a P>0.05 vs. both controls (groups 1 and 2); b P<0.05 and c P<0.01 vs.
sensitised, ovalbumin-challenged animals (group 3); d \(P < 0.001 \) vs. 3-aminobenzamide-pretreated animals (group 4).

C Optical density of Astra blue-stained lung mast cells in guinea pigs from the different experimental groups. Significance of differences between groups (one-way ANOVA): a \(P < 0.001 \) vs. both controls (groups 1 and 2); b \(P < 0.001 \) vs. ovalbumin-challenged animals (group 3); c \(P < 0.01 \) vs. 3-aminobenzamide-pretreated animals (group 4).

Fig. 4 – Immunocytochemical detection of poly-ADP ribosylated DNA (PAR) and nitrotyrosine (NT) in lung tissue from guinea pigs of the different experimental groups. A) nonsensitised, ovalbumin-challenged controls (group 1); B) sensitised, ovalbumin-challenged, pretreated with: PBS (group 3), C) 3-aminobenzamide (group 4), and D) 5-aminoisoquinolinone (group 5). Poly-ADP ribosylated DNA and nitrotyrosine immunoreactivities are intense in the sensitised, ovalbumin-challenged guinea pigs pretreated with the vehicle (group 3), especially in the bronchiolar and alveolar epithelium. Conversely, immunostaining was nearly absent in the sensitised, ovalbumin-challenged animals pretreated with 3-aminobenzamide or 5-aminoisoquinolinone (groups 4 and 5). Counterstaining with hematoxylin. Bar = 100 \(\mu m \).

Fig. 5 – Myeloperoxidase activity (A) and malondialdehyde production (B) in lung tissue of guinea pigs from the different experimental groups. Significance of differences between groups (one-way ANOVA): a \(P > 0.001 \) vs. both controls (groups 1 and 2); b \(P < 0.001 \) vs. sensitised, ovalbumin-challenged animals (group 3); c \(P < 0.001 \) vs. 3-aminobenzamide-pretreated animals (group 4).

Fig. 6 – Nitrite amounts (A) and TNF-\(\alpha \) release (B) in bronchoalveolar lavage fluid of guinea pigs from the different experimental groups. Significance of differences between groups
(one-way ANOVA): \(a \) \(P > 0.01 \) vs. both controls (groups 1 and 2); \(b \) \(P < 0.01 \) vs. sensitised, ovalbumin-challenged animals (group 3); \(c \) \(P < 0.001 \) vs. 3-aminobenzamide -pretreated animals (group 4).
Figure 1
Figure 5
Figure 6