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Figure Legends

Figure 1. Hypoxic or pharmacological PC enhances HL-1 cell viability after chronic

hypoxia.

A. Cell viability was determined (trypan blue exclusion assay) after the following treatments of

HL-1 cells: Normoxia- cells maintained in normoxia (5% CO2 and 95% air, 20 hr); Hypoxia –

cells exposed to hypoxia (2% O2, degassed media, 20 hr); PC – cells hypoxically preconditioned

(90 min hypoxia, 60 min normoxia, 20 hr hypoxia).  Pharmacological PC was induced by

treatment of HL-1 cells with Ado receptors agonists or PKC activators as follows: NECA –

general Ado receptor agonist, 1mM, 10 min; CHA – specific A1 Ado receptor agonist, 300 nM,

20 min; MECA – specific A3 Ado receptor agonist, 100 nM, 20 min; PMA – activates

conventional PKC isoforms, 500 nM, 10 min; PKCe agonist peptide – PKCe specific activator,

0.25 mM, 30 min; Ethanol – PKCe specific activator, 50 or 200 mM, 4 min. Following

pharmacological PC, cells were exposed to 20hr of hypoxia.  Specificity of action of PMA and

PKCe agonist peptides was confirmed in the presence of antagonists, BIM – general PKC

inhibitor, 15 mM, 15 min, and PKCe peptide antagonist, 0.5 mM, 30 min.  The role of Ado

receptors in hypoxic PC was investigated using Ado receptor antagonists prior to PC as follows;

CGS 15943 – nonspecific Ado receptor antagonist, 4 nM, 20 min; DPCPX – specific A1 Ado

receptor antagonist, 1 mM, 20 min; MRS 1220 – specific A3 Ado receptor antagonist, 200 nM,

20 min.  Following Ado receptor antagonism and hypoxic PC, cells were exposed to 20 hr

hypoxia.  The role of Ado transporters was investigated by treating HL-1 cells with 15 mM DIPY

during 20 hr hypoxia or with 100 nM NBTI+15 mM DIPY during PC followed by 20 hr

hypoxia.  Pooled data are shown, mean ±S.E., n ! 3, * P < 0.05 compared to PMA; **P < 0.001
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compared to normoxia, # P < 0.01 compared to NECA; ^ P < 0.01 compared to MECA; † P <

0.05 compared to CHA; § P <0.01 compared to PKCe agonist).

B. A schematic representation summarizing the treatments, PC time course and outcome of

experiments described above.

Figure 2. Hypoxic challenge leads to an efflux of Ado via ENTs in HL-1 cells

Extracellular levels of Ado (in the presence and absence of ENT inhibitors, 500 nM

NBTI+30mM DIPY) were determined by HPLC as described in Methods.  Representative

experiment shown (mean ± S.D.), each condition conducted in duplicate. Experiments repeated at

least twice with similar results.

Fig. 3. PKCe  is activated by PMA and CHA in HL-1 and mouse cardiomyocytes.

HL-1 cells and primary neonatal mouse cardiomyocytes were treated A) with PMA (500nM,

15min) or B) CHA (300nM, 20min). Western blot analysis of cytosolic fraction (C) and

membrane fraction (M) show activation of PKCe (translocation to the membrane fraction).

Representative experiment shown, repeated at least twice with identical results.

Figure 4. Activation of A1 or A3 Ado receptors, or PKCe , stimulates adenosine uptake in

HL-1 cells.

Activation of A1 and/or A3 receptors (using identical treatment to those described in figure 1)

result in a significant increase in adenosine uptake in HL-1 cells.   (Pooled data, mean ± S.E or

S.D., n ! 2, each condition conducted in triplicate or sextuplicate,  * = P <0.05 versus control, **

= P <0.001 compared to control, # = P <0.01 compared to CHA or MECA alone).  There was no
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statistically significant difference between non-NBTI inhibited adenosine uptake in the presence

or absence of PKCe agonist.

Figure 5.  Activation of PKCe stimulates Ado uptake in mouse cardiomyocytes

Activation of PKCe (by PMA, 500 nM, 20 min or peptide agonist 0.25 mM, 30 min) stimulates

adenosine uptake in primary cultures of mouse neonatal cardiomyocytes. Similar treatment

conditions were used as described in figure 4. (Pooled data, mean ± S.E., n=3, each condition

conducted in triplicate, * P <0.05 compared to control).

Figure 6. Ado uptake returns to basal levels following PC in HL-1 cells.

HL-1 cells were subjected to hypoxic PC (as described in figure 1) and Ado uptake measured

following 0, 90 and 120min of post-PC normoxia.  Uptake is significantly increased immediately

following preconditioning (0 min post PC, ** = P <0.001 compared to control) but gradually

returns to basal levels (90 min post PC, * = P <0.05 compared to control; 120 min post PC, no

significant difference compared to control).  Representative experiment shown as percent

adenosine uptake relative to control (mean ± S.E.), repeated 3 times with similar results, each

condition conducted in triplicate.
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