JPET Fast, Forward, Published on September 15,2003 as DOI: 101124/ipet 103.055442 JPET Fast, Forward, Published on September 15,2003 as DOI: 101124/ipet 103.055442 JPET #55442 Shichijo et al.

CRTH2 activation *in vivo* increases blood leukocyte counts and its blockade abrogates 13,14-dihydro-15-keto PGD₂-induced eosinophilia in rats

Michitaka Shichijo,¹ Hiromi Sugimoto,¹ Koichi Nagao, Hisayo Inbe, Jeffrey A. Encinas, Keisuke Takeshita, Kevin B. Bacon, and Florian Gantner

Bayer Yakuhin, Ltd., Research Center Kyoto, Respiratory Disease Research, Japan

JPET Fast Forward. Published on September 15, 2003 as DOI: 10.1124/jpet.103.055442 This article has not been copyedited and formatted. The final version may differ from this version.

JPET #55442

Shichijo et al.

a) Running title: Cloning and characterization of the rat PGD₂ receptor, CRTH2

b) Correspondence: Dr. F. Gantner, Bayer Yakuhin, Ltd., Research Center Kyoto, Respiratory Research, 6-5-1-3 Kunimidai, Kizu-cho, Soraku-gun, 619-0216 Kyoto, Japan Phone: +81-774-75-2492, fax: +81-774-75-2506, e-mail: <u>florian.gantner.fg@bayer.co.jp</u>

c)

Text pages: 31

Tables: 3

Figures: 9

References: 22

Abstract: 170 words

Introduction: 486 words

Discussion: 828 words

d) Non-standard abbreviations:

CRTH2, chemoattractant receptor-homologous molecule expressed on Th2 cells; DK-PGD₂, 13,14-Dihydro-15-Keto-Prostaglandin D₂; DP, PGD₂ receptor; PGD₂, prostaglandin D₂; PTX, pertussis toxin; TP, TxA₂ receptor; TxA₂, thromboxane A₂;

e) recommended section: Inflammation & Immunopharmacology

Shichijo et al.

Abstract

We cloned, expressed, and characterized in vitro and in vivo the gene encoding the rat ortholog of CRTH2 (chemoattractant receptor-homologous molecule expressed on Th2 cells), a G protein-coupled receptor for prostaglandin D₂ (PGD₂). Quantitative RT-PCR analysis demonstrated highest CRTH2 expression in the lung, brain, ovary, and spleen. Pharmacologically, rat CRTH2 stably transfected in mouse pre-B lymphoma L1.2 cells behaved very similar compared to the mouse and human orthologs showing a binding affinity for PGD₂ of 11 nM, a functional calcium mobilization when exposed to agonist and similar sensitivity to agonists and antagonists.

In vivo, selective activation of CRTH2 by DK-PGD₂ injection into rats led to a dose- and time-dependent increase of the number of leukocytes in the peripheral blood. Specifically, eosinophils, lymphocytes and neutrophils were recruited with maximum effects seen 60 min after the injection of 300 µg DK-PGD₂ per rat. Pretreatment of the animals with the CRTH2/thromboxane A₂ receptor antagonist, ramatroban, completely abrogated DK-PGD₂-induced eosinophilia suggesting that CRTH2 might have a physiological and/or pathophysiological role in controlling leukocyte migration.

Shichijo et al.

Chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) has been identified by a comparative differential display approach in Th1 and Th2 lymphocytes (Nagata et al., 1999a; Nagata et al., 1999b). The initial attention this receptor gained due to its restricted expression pattern on Th2 cells, basophils and eosinophils (Nagata et al., 1999a) was increased when it became clear that its ligand is the prostanoid, prostaglandin D_2 (Hirai et al., 2001) (Monneret et al., 2001). This arachidonic acid product is predominantly released by activated mast cells and its potential implication in allergic reactions has been known for many years (Lewis and Austen, 1981). Large amounts of PGD_2 are released into the airways of asthmatics immediately after challenge (Murray et al., 1985; Murray et al., 1986) (Wenzel et al., 1991) and mice overexpressing the lipocalin-type PGD synthase show stronger inflammatory reactions in the lung upon antigen challenge (Fujitani et al., 2002). In contrast, mice lacking DP, the first PGD₂ receptor identified, show a diminished response to ovalbumin challenge in animal models for asthma highlighting the importance of PGD_2 in allergic reactions (Matsuoka et al., 2000).

Despite binding the common ligand PGD₂, CRTH2 and DP differ significantly from each other by showing low sequence homology and by being coupled to different classes of G proteins. While DP couples to a stimulatory G_s protein leading to the activation of adenylyl cyclase and increasing levels of cAMP and Ca²⁺ (Hirata et al., 1994) (Boie et al., 1995), CRTH2 activation inhibits cAMP formation but induces an increase in intracellular Ca²⁺ mobilization via G_i-dependent pathways (Hirai et al., 2001) (Sawyer et

Shichijo et al.

al., 2002) (Sugimoto et al., 2003). This difference in G protein coupling appears to allow CRTH2 to transmit pro-migratory signals in response to PGD₂. For instance, CRTH2-transfected Jurkat cells can migrate along a gradient of PGD₂, whereas DP-transfected Jurkat cells cannot (Hirai et al., 2001). In leukocytes of all species studied so far PGD₂ induces migration exclusively via CRTH2 (Hirai et al., 2001) (Monneret et al., 2001) (Sugimoto et al., 2003) (Gosset et al., 2003) (Hata et al., 2003).

Considering the ability of PGD_2 to stimulate the migration of inflammatory cells, it is reasonable to speculate that CRTH2 may play a role in the selective recruitment of cellular components of the allergic response into sensitized or injured tissues. Expression studies in mice, however, have shown that a variety of tissues express mRNA for CRTH2 (Abe et al., 1999; Sawyer et al., 2002) suggesting that this receptor CRTH2 may have broader functions.

In this paper, we describe the cloning and functional characterization of rat CRTH2 by comparing it to the mouse and human counterparts of the receptor. We further show the effect of the CRTH2/TxA₂ antagonist ramatroban (Sugimoto et al., 2003), a well-established medicine for the treatment of allergic rhinitis, on PGD₂-induced CRTH2 activation in vitro, and in animals exposed to the CRTH2-selective agonist, DK-PGD₂ (Giles and Leff, 1988) (Hirai et al., 2001).

Shichijo et al.

Methods

Chemicals and Reagents

Ramatroban ((+)-(3R)-3-(4-fluorobenzenesulfonamido)-1,2,3,4-tetra-hydrocarbazole-9propionic acid) was synthesized at Bayer Yakuhin Ltd. (Shiga, Japan), ridogrel ((E)-5-[[[(3-pyridinyl)[3-(trifluoromethyl)phenyl]-methylen]amino]oxy] pentanoic acid) was prepared by Bayer AG, (Wuppertal, Germany). BWA868C was synthesized by SOGO Pharmaceutical Co. Ltd. (http://www.sogo-pharma.co.jp/index.html). PGD₂ was from Sigma-Aldrich (St. Louis. MO), and $[^{3}H]PGD_{2}$ was purchased from Amersham Pharmacia (Buckinghamshire, UK). Sodium butyrate was purchased from Wako Pure Chemicals (Osaka, Japan). Fluo-3AM and pluronic F-127 were purchased from Molecular Probes (Eugene, OR, USA). 13,14-Dihydro-15-Keto-Prostaglandin D₂ (DK-PGD₂) and BW245C and BW868C were purchased from Cayman (Ann Arbor, MI). Pertussis toxin (PTX) was obtained from Calbiochem (La Jolla, CA). Ramatroban, BWA868C, BWC245, and PGD₂ were dissolved in dimethyl sulfoxide (DMSO, Nacalai Tesque, Inc., Kyoto, Japan). As confirmed in preliminary experiments, the concentrations of DMSO in working dilutions used in this study (< 0.1 %) had no effect on receptor binding, Ca^{2+} mobilization and cell migration assays.

All chemicals not further specified were obtained from Wako Chemicals (Osaka, Japan).

Cloning of rat CRTH2

The mouse and human CRTH2 protein sequences were used to search for homologs in the rat EST subset of the Genbank database (http://www.ncbi.nlm.nih.gov) using the program tblastn. Three ESTs were identified, (accession numbers BE112439, BE100786,

Shichijo et al.

and BE113412, all derived from heart tissue) with high homology to the 5' end of the mouse *Crth2* transcript. The ESTs were then used to search the rat high-throughput genome sequences subset of Genbank to find sequence reads from the rat *Crth2* genomic locus. The locus was identified on the sequence contig AC128991.3. After comparing the locus' open reading frame with the coding sequence of mouse Crth2, PCR primers were designed to flank the rat coding sequence for amplification and sequencing. Primer sequences used were 5'-GGGTGCCAGGTTCAGCTCTCCTTT-3' and 5'-ATGGGAGAGGCCTGGGATGTTGTG-3'.

For use as a template for amplification, cDNA was prepared from a pool of rat tissue (strain: Sprague-Dawley) total RNAs (Ambion). First-strand cDNA was synthesized with the SUPERSCRIPT[™] First–Strand Synthesis System (Gibco BRL). PCR was then carried out with KOD-Plus-polymerase (Toyobo, Osaka, Japan; 2 min. at 95 °C, 15 sec. at 94 °C, 15 sec. at 69 °C and 3 min. at 72 °C) for 35 cycles. The PCR products were cloned into a pGEM T easy vector (Promega) for sequencing then subcloned into a pcDNA3.1 vector (Invitrogen, Carlsbad, CA) for expression. Clones were sequenced using the ABI Prism Dye Terminator Cycle Sequencing Reaction kit and analyzed on an ABI Prism 377 sequencing system (Applied Biosystems). The sequence is available under Genbank accession number AY228550.

Expression profiling

Total RNA samples prepared from rat tissues were purchased from Ambion (Austin, TX). First-strand cDNA was synthesized with the SUPERSCRIPT[™] First–Strand Synthesis System (Gibco BRL). Semi-quantitative PCR was carried out in 20µl volume containing

Shichijo et al.

20 ng of each tissues cDNA as a template and 0.5 μ M of each primer using Hot Star Taq master mix kit (Qiagen). As the corresponding primers, cloning primers were used. PCR condition is as follows: All samples were pre-heated at 95 °C for 15 min and then subjected to denaturing conditions at 95 °C for 10 sec. After annealing at 65 C for 15 sec, genes were amplified at 72 C for 1.5 min (35 cycles).

Generation of CRTH2 stable transfectants

The rat and mouse Crth2 gene inserted into the pcDNA3.1(-) expression vector (Invitrogen) was transfected into L1.2 cell (a kind gift from Prof. Eugene Butcher, Standord, CA) by electroporation (250V/1000 mF, Gene Pulser II; Bio-Rad, Hercules, CA). Stable transfectants were selected in the presence of G418 (0.5 mg/ml; Invitrogen). Human CRTH2 stable transfectants were generated as described previously (Sugimoto et al., 2003).

Receptor binding assay

CRTH2/L1.2 cells ($2x10^5$ cells) were mixed with ³H-labeled PGD₂ and various concentrations of test compounds in 100 µl binding buffer (50 mM Tris-HCl pH7.4, 40 mM MgCl², 0.1% BSA, 0.1%NaN₃) in 96-well U-bottom polypropylene plates. After incubation for 60 min at room temperature, the cell suspension was transferred to a filtration plate (#MAFB, Millipore, Bedford), and radioactivity was measured by a scintillation counter (TopCount, Perkin Elmer Life Sciences). Non-specific binding was determined by incubations in the presence of 1 µM unlabeled PGD₂.

Shichijo et al.

Ca^{2+} mobilization assay

 Ca^{2+} loading buffer was prepared by mixing 1 mM Fluo-3/AM and pluronic F-127 (Molecular Probes) in Ca^{2+} assay buffer (20 mM HEPES, pH 7.6, 0.1% BSA, 1 mM probenecid, Hanks' solution). The CRTH2 transfectants established were resuspended in Ca^{2+} loading buffer at $1x10^7$ cells/ml and incubated for 60 min at room temperature. After the incubation, cells were washed and resuspended in Ca^{2+} assay buffer, then dispensed into transparent-bottomed 96-well plates (3631; Coaster, Corning, NY) at $2x10^5$ cells/well. Cells were incubated with various concentrations of ramatroban for 5 min. at room temperature. The emitted 480 nm fluorescence was measured on a FDSS6000 fluorometer (Hamamatsu Photonics, Hamamatsu, Japan).

Animal experiments

Male Brown Norway or Wistar rats (7wks) were purchased from Charles River (Yokohama, Japan). Animals were kept under standard conditions in a 12 h day/night rhythm with free access to food and water *ad libitum*. All animals received humane care in accordance with international guidelines and national law.

DK-PGD₂, supplied as a solution in methyl acetate, was evaporated under a gentle stream of nitrogen, and reconstituted in ethanol to prepare a stock solution of 30 mg/ml. Prior to injection, the adequate volume of PBS was added to obtain diluted ethanol solutions as specified in Figure legends.

Rats were injected intravenously with DK-PGD₂, or the corresponding volume of the respective solvent with or without pretreatment by ramatroban (dissolved in NaOH, pH-neutralized by HCl addition, and given in a 10% cremophor solution) under slight

Shichijo et al.

anesthetization with ether. At the time points indicated after injection, peripheral blood was collected from the abdominal vein under anesthetization by i.p. injection of urethane (2 g/kg). After blood collection, animals were sacrificed by complete bleeding. Immediately after the bleeding, the left femur was isolated and the femoral head and condoles were removed. The displaceable cells were recovered by flushing the lumen of the femur shaft with 4 ml PBS. Total white blood cells in the samples were counted under the microscope using a hemocytometer. Differential cell counts were performed on the blood smears stained with May-Gruenwald's and Giemsa's solution based on standard morphologic and histological criteria (200 cells counted in total).

Statistics

Unless otherwise stated, data are expressed as means \pm SD of at least three independent experiments. Statistical significance was determined using the unpaired Student's *t*-test if applicable or with the Dunnett's or Welch test if variances were non-homogeneous using commercially available statistic software (GraphPad Software, San Diego, CA). *P* values <0.05 were considered as statistically significant (**p* <0.05, ***p* < 0.01).

Shichijo et al.

Results

Molecular cloning, sequence alignment, and tissue expression of rat CRTH2

The gene encoding the rat ortholog of CRTH2 was cloned by search for homologs in the rat EST subset of the Genbank database using the program tblastn and the full cDNA sequence is shown in Figure 1. The sequence of the rat CRTH2 protein bears 89% identity with mouse CRTH2 and 75% identity with human CRTH2, the three differing primarily in their cytoplasmic tail regions (Figure 2).

Semi-quantitative RT-PCR analysis revealed that the tissue distribution of rat (Figure 3) resembles the pattern reported for the mouse CRTH2 mRNA (Abe et al., 1999), showing highest expression in the lung, brain, ovary, and spleen but differs from that in humans, where it is most highly expressed in heart, stomach, small intestine and thymus (Sawyer et al., 2002).

Pharmacological characterization of rat CRTH2

In order to pharmacologically characterize the rat CRTH2 receptor we generated stable rat CRTH2 expressing L1.2 cells and compared them to clones expressing the mouse or human ortholog. Saturation analysis experiments of $[^{3}H]$ -labeled PGD₂ specific binding to recombinant rat, mouse and human CRTH2 transfectants were performed. The three orthologs showed similar binding affinities for PGD₂, similar total binding, and similar numbers of binding sites per cell, respectively (Figure 4, Table.1). Non-labeled PGD₂ inhibited the binding of $[^{3}H]$ -labeled PGD₂ to rat, mouse and human CRTH2 transfectants in a concentration-dependent manner with IC₅₀ values of 6.1 nM, 2.6 nM and 2.3 nM,

Shichijo et al.

respectively. The CRTH2 specific agonist, DK-PGD₂, was comparable to PGD₂ in binding affinities to all three orthologs. Interestingly, BWA868C, known as a DP specific antagonist, showed weak but significant inhibition of [³H]-labeled PGD₂ binding at μ M concentrations. Ramatroban, a CRTH2/TP antagonist, showed inhibitory effects on the binding of [³H]-labeled PGD₂ to rat, mouse and human CRTH2 transfectants with IC₅₀ values around 50 nM. At concentrations equal to or exceeding 1 μ M, weak but significant inhibition of PGD₂ binding to CRTH2 was noted for BW245C and ridogrel, questioning their absolute specificity for the DP and TP receptor, respectively (Figure 5, Table 2).

To determine the functional expression of rat CRTH2, PGD₂, DK-PGD₂ and BW245Cstimulated calcium mobilization was monitored. PGD₂ and DK-PGD₂ induced Ca²⁺ mobilization in a concentration-dependent manner with EC₅₀ values of 6.9 nM and 4.9 nM in human CRTH2 transfectants, 16 nM and 40 nM in mouse CRTH2 transfectants and 39 nM and 90 nM in rat CRTH2 transfectants, respectively. These effects were completely suppressed by pretreatment with a G_{ci} inhibitor, pertussis toxin (PTX). The DP specific agonist BW245C failed to induce Ca²⁺ mobilization in all three transfectants (Figure 6A and data not shown). Ramatroban concentration-dependently inhibited PGD₂induced Ca²⁺ mobilization in rat, mouse and human CRTH2 transfectants with similar IC₅₀ values in the range of 120-130 nM. In line with its weak inhibitory effect on PGD₂ binding BW868C diminished the calcium response at 10 μ M. Again, ridogrel was without any effect (Figure 6B, Table 3). Unlike indomethacin, ramatroban did not shown).

Shichijo et al.

Induction of leukocyte recruitment from the bone marrow by the CRTH2 agonist, DK-PGD₂

 PGD_2 stimulation evoked a weak but significant migratory response of CRTH2 transfected L1.2 cells which was fully abrogated by ramatroban (data not shown). Splenocytes and bone marrow cells isolated from rats showed a distinct mRNA signal for CRTH2. Exposure of the cells to PGD_2 or DK-PGD₂ however did not trigger significant cell migration while a response to other chemoattractants such as platelet activation factor, leukotriene B₄ or IL-5 was observed. In addition, pretreatment of cells with IL-5 did not prime leukocytes for CRTH2 agonists nor did DK-PGD₂ preincubation modify the responses to any chemoattractant investigated (data not shown).

Due to these weak responses *in vitro* we sought to investigate CRTH2-triggered migration *in vivo*. A bolus injection of PGD₂ (not shown) or the CRTH2 specific agonist, DK-PGD₂, led to a time- and dose-dependent leukocyte recruitment from the bone marrow in rats (Figures 7, 8), mice, and guinea pigs (not shown). In all species investigated, the maximum increases in leukocyte numbers in peripheral blood were reached 60 min after injection (Figure 7). Increases in peripheral blood cell counts were paralleled, but not fully compensated, by a drop of cell counts in the bone marrow (Figure 8). Significant effects were seen at DK-PGD₂ doses equal or higher to 100 μ g per animal (data not shown). As expected, eosinophils and lymphocytes were affected in particular as exemplified in Figure 7, however, neutrophils also showed a similar tendency.

JPET Fast Forward. Published on September 15, 2003 as DOI: 10.1124/jpet.103.055442 This article has not been copyedited and formatted. The final version may differ from this version.

JPET #55442

Shichijo et al.

We then set out to examine whether this DK-PGD₂-induced peripheral blood eosinophilia was mediated by CRTH2 and pretreated rats with ramatroban before DK-PGD₂ injection. Indeed, a dose-dependent reduction of total leukocytes and eosinophils in the peripheral blood was noted in rats pretreated with the CRTH2 antagonist. At the highest ramatroban dose tested, i.e. at 30 mg/kg, cell counts were comparable to levels of solvent controls proving that blockade of the CRTH2 receptor in vivo abrogates DK-PGD₂-induced cell recruitment (Figure 9).

Shichijo et al.

Discussion

In the present study, we identified the rat CRTH2 gene, examined the organ expression pattern and the homology of this gene to its human and mouse counterparts, characterized its pharmacology using gene-transfected cells, and, finally, established an *in vivo* animal model suitable for CRTH2 antagonist evaluation.

Overall identity between the human and rat CRTH2 sequences was 75.6 %, and 96 % between the mouse and rat sequences. Phylogenetic homology comparison studies evidenced high overall similarity to other rat chemoattractant receptors such as LTB_4 , N-formyl peptide, C3a, and C5a (not shown).

RT-PCR analysis revealed that rat CRTH2 mRNA was expressed in various tissues including kidney, embryo, liver, brain, thymus, heart, lung, spleen, testis and ovary. Like the mouse (Abe et al., 1999), the rat CRTH2 mRNA signal was strongest in lung, brain and spleen suggesting – together with the high percentage of sequence identity - high functional similarity between rat and mouse CRTH2. The tissue expression pattern of rodents however differs from the human tissue expression profile (Sawyer et al., 2002) pointing towards potential physiological and/or pathophysiological disparities. Indeed, some biological responses reported for its selective agonist, DK-PGD₂, in secretory organs and tissues (Larsen et al., 2002), suggest that CRTH2 has more functions than inducing the migration of leukocytes, inducing shape changes, and regulating the expression of adhesion molecules in Th2 cells, eosinophils and/or basophils (Hirai et al., 2001) (Heinemann et al., 2003). Nevertheless, these well-established functions of CRTH2

Shichijo et al.

fit very nicely into the concept of PGD₂ being a crucial player in the pathogenesis of asthma (Murray et al., 1985; Murray et al., 1986) (Wenzel et al., 1991) (Fujitani et al., 2002) (Matsuoka et al., 2000). Since various animal models for asthma exist to study the underlying disease processes, the investigation of rodent CRTH2 receptor biology and its comparison to human CRTH2 is very helpful and might lead to a better understanding of PGD₂'s function under physiological and pathophysiological conditions.

With regard to ligand binding, ligand specificity, G-protein coupling, second messenger generation, and induction of migration CRTH2 receptors from all species studied so far seem to behave alike (c.f. Figures 4-6, Tables 1-3). Rat CRTH2 binds PGD₂ with high affinity (Kd = 11 nM), comparable to human (Kd = 6.3 nM) and mouse (Kd = 9.1 nM). Equilibrium competition binding assays confirmed that DK-PGD₂ is a high affinity ligand for CRTH2. Interestingly, BWA868C, reported to be a selective DP antagonist, showed competitive binding to CRTH2 at high concentrations (c.f. Table 2). This partial antagonism might explain why BWA868C showed a weak inhibitory effect on PGD₂-induced Ca²⁺ flux (Figure 6B) and human eosinophil migration (Sugimoto et al., 2003).

Ligand-triggered calcium mobilization was observed in rat, mouse and human CRTH2 transfectants after PGD₂ or DK-PGD₂ stimulation, respectively. Very recently, Hata *et al.* failed to detect changes in intracellular calcium in their mouse transfectants using ER293 host cells. The host cells we used, L1.2 mouse B cell leukemia cells, clearly are capable of generating a calcium flux in response to chemokine ligand (Gallatin et al., 1983) (Yoshida et al., 1998) and thus CRTH2-triggered calcium mobilization was

JPET Fast Forward. Published on September 15, 2003 as DOI: 10.1124/jpet.103.055442 This article has not been copyedited and formatted. The final version may differ from this version.

JPET #55442

Shichijo et al.

comparatively easy to measure. All other data presented in the report by Hata et al. however nicely fit to the results we obtained for murine CRTH2 (Hata et al., 2003).

As expected from studies performed in human and mouse cells, chemotaxis of rat CRTH2 transfectants was observed after PGD₂ stimulation, however the response was comparatively weak (data not shown). The fact that chemotaxis was completely abolished in the presence of ramatroban confirms the general role of CRTH2 as a chemoattractant receptor. Why primary rat cells failed to respond to CRTH2 agonists remains obscure. Either the CRTH2 receptor protein is quickly downregulated during cell isolation or during the pre-incubation period in culture, or some additional unknown factors come into play.

In vivo, however, the migratory response was obvious. Based on our in vitro results performed in transfectants and on a recent report by Heinemann and colleagues, who demonstrated eosinophil recruitment from the bone marrow in the bloodstream following $\Delta 12$ -PGJ₂ injection into the hind limbs of guinea pigs (Heinemann et al., 2003), we challenged rats intravenously with DK-PGD₂. In addition to cell recruitment from the bone marrow which accounts for approximately 50% of the total cell increase in the blood, DK-PGD₂ seems to recruit leukocytes from additional, not yet identified sources of the body. Although the specificity of this CRTH2 agonist is unknown in vivo and additional effects cannot be excluded, the leukocyte recruitment observed was clearly CRTH2-mediated, since ramatroban pretreatment dose-dependently blocked eosinophilia in this model (c.f. Figures 7-9). Preliminary data obtained in our laboratory argue for a

Shichijo et al.

direct, IL-5-independent mechanism of eosinophil recruitment from the bone marrow via CRTH2 activation however further studies are required for final clarification.

Collectively, this report characterizes the CRTH2 receptor of the rat, presents evidence for an in vivo role of CRTH2 in leukocyte recruitment, and confirms ramatroban as a potent small molecule antagonist and a useful tool to study CRTH2 biology. JPET Fast Forward. Published on September 15, 2003 as DOI: 10.1124/jpet.103.055442 This article has not been copyedited and formatted. The final version may differ from this version.

JPET #55442

Shichijo et al.

Acknowledgements

Special thanks go to E. Takao for experimental support.

Shichijo et al.

References

- Abe H, Takeshita T, Nagata K, Arita T, Endo Y, Fujita T, Takayama H, Kubo M and Sugamura K (1999) Molecular cloning, chromosome mapping and characterization of the mouse CRTH2 gene, a putative member of the leukocyte chemoattractant receptor family. *Gene* **227**:71-77.
- Boie Y, Sawyer N, Slipetz DM, Metters KM and Abramovitz M (1995) Molecular cloning and characterization of the human prostanoid DP receptor. *J Biol Chem* 270:18910-18916.
- Fujitani Y, Kanaoka Y, Aritake K, Uodome N, Okazaki-Hatake K and Urade Y (2002) Pronounced eosinophilic lung inflammation and Th2 cytokine release in human lipocalin-type prostaglandin D synthase transgenic mice. *J Immunol* 168:443-449.
- Gallatin WM, Weissman IL and Butcher EC (1983) A cell-surface molecule involved in organ-specific homing of lymphocytes. *Nature* **304**:30-34.
- Giles H and Leff P (1988) The biology and pharmacology of PGD2. *Prostaglandins* **35**:277-300.
- Gosset P, Bureau F, Angeli V, Pichavant M, Faveeuw C, Tonnel AB and Trottein F (2003) Prostaglandin D2 affects the maturation of human monocyte-derived dendritic cells: consequence on the polarization of naive Th cells. *J Immunol* 170:4943-4952.
- Hata AN, Zent R, Breyer MD and Breyer RM (2003) Expression and molecular pharmacology of the mouse CRTH2 receptor. *J Pharmacol Exp Ther*.

Shichijo et al.

Heinemann A, Schuligoi R, Sabroe I, Hartnell A and Peskar BA (2003) delta12prostaglandin J2, a plasma metabolite of prostaglandin D2, causes eosinophil
mobilization from the bone marrow and primes eosinophils for chemotaxis. J *Immunol* 170:4752-4758.

Hirai H, Tanaka K, Yoshie O, Ogawa K, Kenmotsu K, Takamori Y, Ichimasa M, Sugamura K, Nakamura M, Takano S and Nagata K (2001) Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. *J Exp Med* **193**:255-261.

- Hirata M, Kakizuka A, Aizawa M, Ushikubi F and Narumiya S (1994) Molecular characterization of a mouse prostaglandin D receptor and functional expression of the cloned gene. *Proc Natl Acad Sci U S A* 91:11192-11196.
- Larsen P, Schleihauf E, Yu H, Prior T and Rangachari PK (2002) Calcium-stimulated short-circuit currents in the canine proximal colonic epithelium: effects of DK-PGD2, a metabolite of prostaglandin D2. *Can J Physiol Pharmacol* 80:1085-1094.
- Lewis RA and Austen KF (1981) Mediation of local homeostasis and inflammation by leukotrienes and other mast cell-dependent compounds. *Nature* **293**:103-108.
- Matsuoka T, Hirata M, Tanaka H, Takahashi Y, Murata T, Kabashima K, Sugimoto Y,
 Kobayashi T, Ushikubi F, Aze Y, Eguchi N, Urade Y, Yoshida N, Kimura K,
 Mizoguchi A, Honda Y, Nagai H and Narumiya S (2000) Prostaglandin D2 as a
 mediator of allergic asthma. *Science* 287:2013-2017.

JPET Fast Forward. Published on September 15, 2003 as DOI: 10.1124/jpet.103.055442 This article has not been copyedited and formatted. The final version may differ from this version.

JPET #55442

Shichijo et al.

- Monneret G, Gravel S, Diamond M, Rokach J and Powell WS (2001) Prostaglandin D2 is a potent chemoattractant for human eosinophils that acts via a novel DP receptor. *Blood* **98**:1942-1948.
- Murray JJ, Tonnel AB, Brash AR, Roberts LJ, 2nd, Gosset P, Workman R, Capron A and Oates JA (1985) Prostaglandin D2 is released during acute allergic bronchospasm in man. *Trans Assoc Am Physicians* **98**:275-280.
- Murray JJ, Tonnel AB, Brash AR, Roberts LJ, 2nd, Gosset P, Workman R, Capron A and Oates JA (1986) Release of prostaglandin D2 into human airways during acute antigen challenge. *N Engl J Med* **315**:800-804.
- Nagata K, Hirai H, Tanaka K, Ogawa K, Aso T, Sugamura K, Nakamura M and Takano S (1999a) CRTH2, an orphan receptor of T-helper-2-cells, is expressed on basophils and eosinophils and responds to mast cell-derived factor(s). *FEBS Lett* 459:195-199.
- Nagata K, Tanaka K, Ogawa K, Kemmotsu K, Imai T, Yoshie O, Abe H, Tada K, Nakamura M, Sugamura K and Takano S (1999b) Selective expression of a novel surface molecule by human Th2 cells in vivo. *J Immunol* **162**:1278-1286.
- Sawyer N, Cauchon E, Chateauneuf A, Cruz RP, Nicholson DW, Metters KM, O'Neill GP and Gervais FG (2002) Molecular pharmacology of the human prostaglandin D2 receptor, CRTH2. *Br J Pharmacol* 137:1163-1172.
- Sugimoto H, Shichijo M, Iino T, Manabe Y, Watanabe A, Shimazaki M, Gantner F and Bacon KB (2003) An orally bioavailable small molecule antagonist of CRTH2, ramatroban (BAY u3405), inhibits prostaglandin D2-induced eosinophil migration in vitro. *J Pharmacol Exp Ther* **305**:347-352.

JPET Fast Forward. Published on September 15, 2003 as DOI: 10.1124/jpet.103.055442 This article has not been copyedited and formatted. The final version may differ from this version.

JPET #55442

Shichijo et al.

Wenzel SE, Westcott JY and Larsen GL (1991) Bronchoalveolar lavage fluid mediator levels 5 minutes after allergen challenge in atopic subjects with asthma: relationship to the development of late asthmatic responses. J Allergy Clin Immunol 87:540-548.

Yoshida T, Imai T, Kakizaki M, Nishimura M, Takagi S and Yoshie O (1998) Identification of single C motif-1/lymphotactin receptor XCR1. *J Biol Chem* **273**:16551-16554. JPET Fast Forward. Published on September 15, 2003 as DOI: 10.1124/jpet.103.055442 This article has not been copyedited and formatted. The final version may differ from this version.

JPET #55442

Shichijo et al.

Footnotes

¹ These authors contributed equally to this work.

Shichijo et al.

Legends for figures

Figure 1: Rat CRTH2 cDNA gene sequence

Full cDNA sequence of the rat CRTH2 gene. The sequence is available under Genbank accession number AY228550. For details regarding the cloning procedure see *Methods* section.

Figure 2: Rat CRTH2 cDNA amino acid sequence alignment

Amino acid sequence alignment of human, mouse, and rat CRTH2. Identical residues are shown with white backgrounds, similar residues with gray backgrounds, and dissimilar residues with black backgrounds. Identity between the human and mouse sequences is 77.5%, between the human and rat sequences is 75.6%, and between the mouse and rat sequences is 96%. The GenBank accession numbers for the sequences are human, NP_004769; mouse, NP_034092; and rat, AAP57088.

Figure 3: RT-PCR detection of rat Crth2 expression in tissue cDNA

Rat *Crth2* was amplified by RT-PCR (35 cycles) using equal amounts of total RNA derived from each of the tissues shown to give a product of 1297 bp. Amplification performed with no template cDNA added (designated H_2O) is shown as a negative control. The housekeeping genes $\beta 2$ microglobulin ($\beta 2m$) and Gapdh (GDH) were

Shichijo et al.

amplified from the same samples for 20 PCR cycles to ensure that the starting cDNA amounts for each sample were approximately equivalent.

Figure 4: Saturation binding of [³H]-labeled PGD₂ to rat CRTH2 transfectants

2 x 10^5 rat CRTH2 transfectants were incubated in a total volume of 100 µl with various concentrations of [³H]-labeled PGD₂ in the absence (total-binding) or presence (non-specific binding) of 1 µM of cold PGD₂. Binding of labeled PGD₂ to the CRTH2 expressing cells was assessed by scintillation counting after washing of the filters twice (see *Methods* for details), calculated based on the cpm standard curve obtained by labeled PGD₂ and expressed as fmoles/cell equivalents. Means of each data point determined in duplicate is shown. Graph represents one out of two independently performed experiments with very similar results.

Figure 5: Competitive binding of [³H]-labeled PGD₂ to rat CRTH2 transfectants

A. Competitive binding of [³H]-labeled PGD₂ (1 nM) to rat CRTH2 by non-labeled PGD₂ (n = 4), DK-PGD₂ (n = 4), and BW245C (n = 3). B. Effects of ramatroban (n = 4), BWA868C (n = 4) and ridogrel (n = 3) are shown. Experiments were performed as described in the *Methods* section. Data represent mean values ± SD. Significant differences between test compound-treated and untreated binding was analyzed by Student's *t* test ; *p < 0.05, **p < 0.01.

Shichijo et al.

Figure 6: PGD₂- and DK-PGD₂-induced Ca²⁺ mobilization in rat CRTH2 transfectants

A. Concentration-response of Ca^{2+} mobilization in rat CRTH2 transfectants induced by PGD₂ (n = 3) and DK-PGD₂ (n = 3), and the effect of PTX (1 µg/ml, pre-incubated for 2 h) on this response (n = 2). B. Effects of ramatroban (n = 5), BWA868C (n = 3) and ridogrel (n = 3) on PGD₂ (10 nM)-induced Ca²⁺ mobilization in rat CRTH2 transfectants. Data represent mean values ± SD. Significant differences between test compound-treated and untreated Ca²⁺ mobilization was analyzed by Student's *t* test ; **p <0.01.

Figure 7: Changes in peripheral blood leukocyte counts in rats following injection of DK-PGD₂

Rats were intravenously injected with DK-PGD₂ (300 µg/rat) or the corresponding volume of vehicle (2% EtOH in PBS). At the time points indicated, animals were killed and heparinized blood was collected for the determination of total white blood cell numbers and differential leukocyte staining. Data are mean values \pm SEM of 3 (vehicle) or 5 (DK-PGD₂) animals each. Statistical differences were analyzed using Dunnett's method (**P*<0.05, ***P*<0.01).

Figure 8: Changes in bone marrow leukocyte counts in rats following injection of DK-PGD₂

Rats were treated as described in legend to Figure 7, and bone marrow was obtained as detailed in the *Methods* section. Data are mean values \pm SEM of 3 (vehicle) or 5 (DK-

Shichijo et al.

PGD₂) animals each. Statistical differences were analyzed using Dunnett's method (*P < 0.05, **P < 0.01).

Figure 9: Ramatroban prevents eosinophilia induced by CRTH2 activation

Rats were intravenously injected with various doses of ramatroban or the corresponding volume of vehicle (10% cremophor in pH neutralized NaOH) prior to injection of DK-PGD₂ (250 µg/rat) or its solvent (1 ml of 0.83% ethanol/PBS). Sixty min later, heparinized blood was collected from the abdominal vein for the determination of total white blood cell numbers and differential leukocyte staining. Data are mean values \pm SEM of 3 (solvent controls, S) or 5 (DK-PGD₂ (DK) with or without ramatroban) animals each. Statistical differences were analyzed using Dunnett's method (**P*<0.05, ***P*<0.01).

Shichijo et al.

Table 1: Binding characteristics of [³H]PGD₂ to recombinant CRTH2 expressed on

L1.2 cells

	Rat	Human	Mouse
Kd (nM)	11	6.3	9.1
Bmax (pM)	530	450	600
Binding	1.6 x 10 ⁶	1.4 x 10 ⁶	1.8 x 10 ⁶
sites/cell			

CRTH2 transfectants (2 x 10^5 in 100 µl for rat, 3 x 10^5 cells in 100 µl for human and mouse) were incubated with various concentrations of [³H]-labeled PGD₂ in the presence of 1 µM cold PGD₂. Binding sites were calculated from Bmax values and the cell numbers used in the experiments. Each data point was determined in duplicate. Data represent the mean of two independent experiments.

JPET Fast Forward. Published on September 15, 2003 as DOI: 10.1124/jpet.103.055442 This article has not been copyedited and formatted. The final version may differ from this version.

JPET #55442

Shichijo et al.

Table 2: Determination of IC₅₀ values (nM) for various ligands in inhibiting [³H]PGD₂ binding to CRTH2

	Rat	Human	Mouse
PGD ₂	6.1 ± 3.4	2.6 ± 1.2	2.3 ± 0.2
DK-PGD ₂	9.4 ± 1.5	18.1 ± 5.3	6.1 ± 0.5
BW245C	> 10000	> 10000	> 10000
Ramatroban	45 ± 12	47 ± 13	60 ± 13
BW868C	1039 ± 372	3945 ± 689	930 ± 216
Ridogrel	> 10000	> 10000	> 10000

Various concentrations of non-labeled ligands were added to the reaction mixture of 1 nM [3 H]-labeled PGD₂ and CRTH2 transfectants. Data are expressed as mean values \pm SD from 3-4 independent determinations.

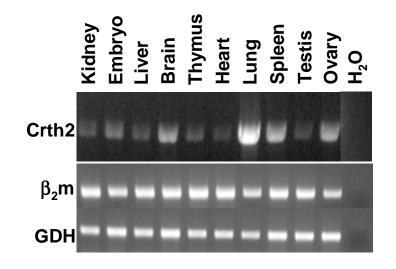
Shichijo et al.

Table 3: Inhibition of PGD₂-induced Ca²⁺ mobilization in CRTH2 transfectants by various receptor antagonists

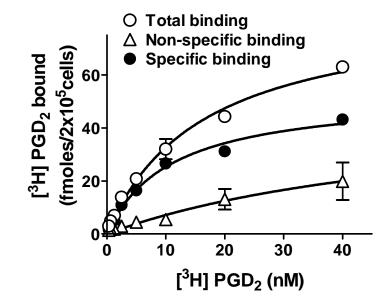
	Rat	Human	Mouse
Ramatroban	123 ± 28	118 ± 26	133 ± 37
BW868C	> 10000	> 10000	7959 ± 881
Ridogrel	> 10000	> 10000	> 10000

Various concentrations of test compounds were added to rat, human or mouse CRTH2 transfectants before exposure of cells to PGD_2 (10 nM). Where calculable, data are expressed as mean values \pm SD (nM) from 3 independent determinations.

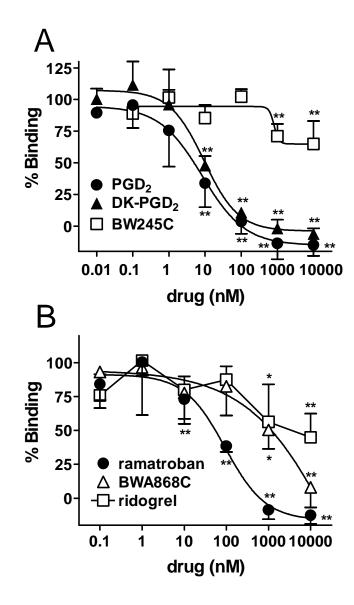
 $\rm JPET\,\#55442$

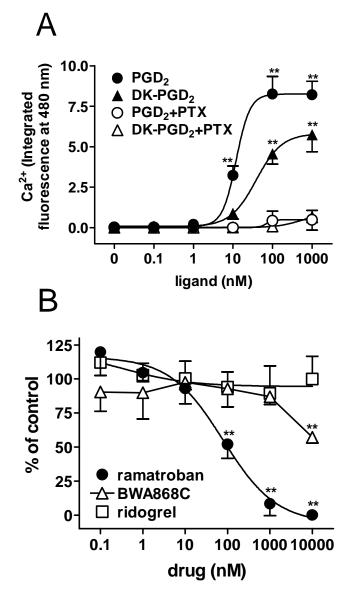

1		TCACACTGAA			
	MANI	TLK	P L C	PLLE	EMV
51		AACCACAGCA			GACCACGTGT
	Q L P	N H S N	SSL	R Y I	DHVS
101	CGGTGCTGTT			TGGGCCTGGT	
	V L L	HGL	ASLL	GLV	ENG
151	CTCATCCTGT		CTGTCGCATG		
	LILF	V V G	CRM	RQTV	VTT
201	CTGGGTGCTG				GCCTCTCTGC
	W V L	H L A L	S D L	LAA	A S L P
251	CTTTCTTCAC			ACTCGTGGGA	ACTGGGCACC
	FFT	Y F L	A V G H	S W E	L G T
301	ACTTTCTGCA	AGCTACATTC	CTCGGTCTTC	TTCCTCAACA	TGTTTGCCAG
	Т F С К	L H S	S V F	F L N M	FAS
351	CGGCTTCCTG	CTCAGCGCCA	TCAGCCTGGA	TCGCTGCCTG	CAGGTGGTGA
	GFL	L S A I	S L D	R C L	Q V V R
401	GGCCAGTGTG	GGCACAGAAC	CACCGCACGG	TGGCGGCCGC	GCACAGAGTC
	P V W	A Q N	H R T V	A A A	H R V
451	TGCCTGATGC	TCTGGGCTCT	GGCGGTGCTC	AACACAGTAC	CCTATTTCGT
	C L M L	W A L	A V L	N T V P	Y F V
501	GTTCAGGGAC	ACCATCCCGC	GGCGTGATGG	CCGCATCATG	TGCTATTACA
	FRD	T I P R	r d G	R I M	C Y Y N
551	ACATGCTGCT	CTTGAATCCA	GGGTCTGACC	GCGACACCAC	GTGCGACTAC
	M L L	L N P	G S D R	DTT	C D Y
601	CGTCAGAAGG	CCCTGGCGGT	CAGCAAGTTC	CTGTTGGCCT	TCATGGTACC
	R Q K A	L A V	S K F	L L A F	M V P
651	TCTGGCCATC	ATCGCCTCGA	GCCACGTGGC	TGTGAGCCTA	CAACTGCATC
	LAI	I A S S	H V A	V S L	Q L H H
701	ACCGTGGTCG	CCAGAGGACA	GGCCGTTTCG	TGCGTCTGGT	GGCAGCCATA
	RGR	QRT	G R F V	R L V	A A I
751	GTGGTGGCCT	TCATACTCTG	CTGGGGGCCC	TACCACATCT	TCAGTCTGTT
	V V A F	I L C	WGP	Y H I F	S L L
801	GGAGGCGCGT	GCCCATTCTG	TCACCACGCT	ACGGCAGCTC	GCGTCACGTG
	EAR	A H S V	T T L	RQL	A S R G
851	GGCTGCCCTT	TGTCACCAGC	CTGGCCTTCT	TCAACAGCGT	GGTCAACCCA
	L P F	V T S	LAFF	N S V	V N P
901	CTACTCTATG	TGCTCACTTG	TCCCGACATG	TTGCACAAGC	TGAGGCGCTC
	L L Y V	L T C	P D M	L H K L	r r s
951	GCTACTCACG	GTGCTTGAAA	GCGTGCTGGT	GGAGGACAGC	GACCTGAGTA
	L L T	V L E S	V L V	E D S	D L S T
1001	CTGGGCCCGG	CAAGCGCTGT	CGCCGCCGCC	ATCGCCGCCG	CGCCTCCTCC
	G P G	KRC	R R R H	RRR	A S S
1051	ACCACCACCC	CAGCCTCTAC	CTTACTGCTG	GCTGACCGAT	TTCCCCAACT
	Т Т Т Р	A S T	L L L	A D R F	РQL
1101		CGCTTAATCG			
		R L I G			AELP
1151	CACGGAGGGT				
		REQ			
1201	ACTTTGGATT				
	TLD*				

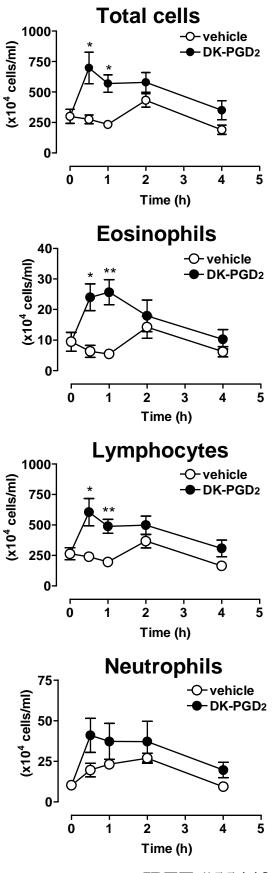
 $\operatorname{JPET}\#55442$


CRTH2 amino acid seuqence alignment:

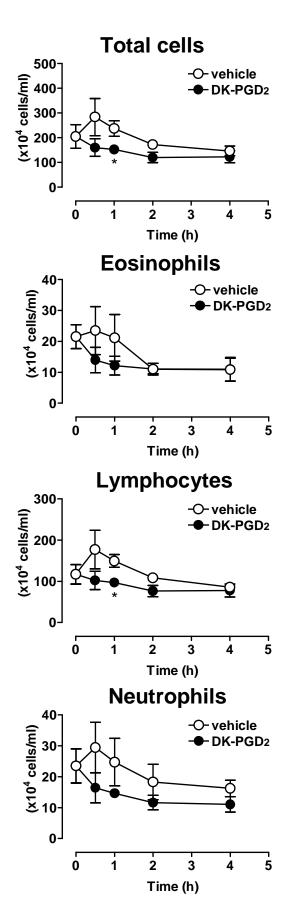
) M-ANVTLKPLCPLLEEMVQLPNHSNSSLRYIDHVSVLLHGLASLLGLVEN	2 (1)	Human_CRTH2 Mouse_CRTH2 Rat_CRTH2
) GLILFVVGCRMRQTVVTTWVLHLALSDLLAAASLPFFTYFLAVGHSWELG	2 (50)	Human_CRTH2 Mouse_CRTH2 Rat_CRTH2
) TTFCKLHSSVFFLNMFASGFLLSAISLDRCLQVVRPVWAQNHRTVAVAHR	2 (100)	Human_CRTH2 Mouse_CRTH2 Rat_CRTH2
) VCLMLWALAVLNTIPYFVFRDTIPRLDGRIMCYYNLLLWNPGPDRDTTCD	2 (150)	Human_CRTH2 Mouse_CRTH2 Rat_CRTH2
) YRQKALAVSKFLLAFMVPLAIIASSHVAVSLRLHHRGRQRTGRFVRLVAA	2 (200)	Human_CRTH2 Mouse_CRTH2 Rat_CRTH2
) IVVAFVLCWGPYHIFSLLEARAHSVTTLRQLASRGLPFVTSLAFFNSVVN	2 (250)	Human_CRTH2 Mouse_CRTH2 Rat_CRTH2
) PLLYVFTCPDMLYKLRRSLRAVLESVLVEDSDQSGGLRNRRRRAS	2 (300)	Human_CRTH2 Mouse_CRTH2 Rat_CRTH2
) STATPASTLLLADR PQLR-PTRLIGWMRRGSAEVPQRV	2 (345)	Human_CRTH2 Mouse_CRTH2 Rat_CRTH2
ý 	2 (383)	Human_CRTH2 Mouse_CRTH2

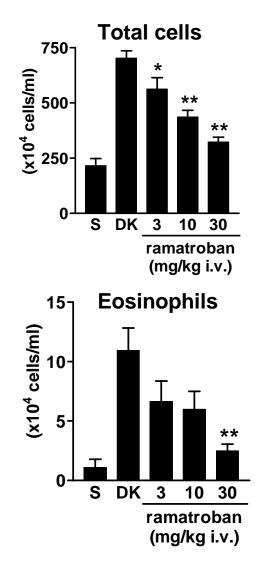

		401
uman_CRTH2	(396)	
ouse_CRTH2	(383)	
Rat_CRTH2	(399)	SCTLD


JPET #55442 Figure 3, Shichijo et al.



JPET #55442 Figure 4, Shichijo et al.




JPET #55442, Figure 5, Shichijo et al.

JPET #55442, Figure 7, Shichijo et al.

JPET #55442, Figure 9, Shichijo et al.