CONTENTS

NUMBER 1, JANUARY, 1916

I. A Quantitative Study of the Analgesia Produced by Opium Alkaloids, Individually and in Combination with Each Other in Normal Man. By David I. Macht, N. B. Herman and Charles S. Levy 1

III. The Comparative Pharmacologic Action of Ethylhydrocuprein (Optochin) and Quinine. By Maurice I. Smith and Bernard Fantus 53

IV. Does the Pituitary Gland Contain Epinephrin or a Compound Similar to It? By Walter K. Watanabe and Albert C. Crawford 75

NUMBER 2, FEBRUARY, 1916

V. On the Vaso-Constrictive Action of Serum on the Coronary Vessels of the Mammalian Heart. By H. Yanagawa .. 89

VI. Quinine and Atrophan in Inflammation of Frog's Mesentery. By Yasuo Ikeda ... 101

VII. Scientific Proceedings of the American Society for Pharmacology and Experimental Therapeutics. Seventh Annual Session, 1915 109

NUMBER 3, MARCH, 1916

VIII. The Effect of Drugs on Inflammation of the Frog's Mesentery. By Yasuo Ikeda ... 137

IX. The Segmental Action of Strychnine. By Hugh McGuigan, R. W. Keeton and L. H. Sloan ... 143

XI. The Rôle of the Liver in Acute Polycythaemia: II. The Effect of Epinephrin and Emotional Stimuli on the Red Corpuscle Content of the Blood in Rabbits. By Paul D. Lamson .. 167

NUMBER 4, APRIL, 1916

XII. The Peripheral Point of Attack of Strychnine. By Frederick S. Hammett ... 175

XIII. Artificial Cerebral Circulation after Circulatory Isolation of the Mammalian Brain. By E. D. Brown .. 185

NUMBER 5, MAY, 1916

XVI. The Role of the Liver in Acute Polycythaemia: III. The Relation of Plasma Volume to the Number of Erythrocytes per Unit Volume of Blood. By Paul D. Lamson and Norman M. Keith

XVII. The Action of Certain Volatile Oils on Isolated Intestinal Segments. By A. L. Muirhead and H. F. Gerald

XVIII. On the Pharmacology of the Ureter: II. Action of Drugs Affecting the Sacral Autonomies. By David I. Macht

XIX. The Influence of Salicylate on Metabolism in Man. By W. Denis and J. H. Means

XX. An Explanation of the Laxative Action of White Mustard Seed. By E. C. van Leersum

XXI. Some Reactions of Blood Vessels to Certain Chemicals. By I. Adler

XXII. On the Action of Atropine Sulphate on the Isolated Stomach and Bowel of the Dog. By Edgard Zunz and Jacques Tysebaert

XXIII. On the Increase of “Tone” Associated with the Action of strophanthus on the Heart. By John Tait and Harold Pringle

XXIV. Pharmacological Chemical Studies on “Senso” the Dried Venom of the Chinese Toad. By Shigematsu Shimizu

XXV. A Contribution to the Pharmacology of Novocain. By Robert A. Hatcher and Cary Eggelston

XXVI. The Influence of Atropine and Pilocarpine on the Isolated Stomach and Bowel of the Dog. By Hugh McGuigan

XXVIII. The Absorption of Potassium Iodid by the Thyroid Gland in Vivo, Following its Intravenous Injection in Constant Amounts. By David Marine and J. M. Rogoff

XXX. On the Central Action of Curare. By Hugh McGuigan

XXXI. The Lethal Dose of Arsenic for Splenectomized Mice. By Caroline Towles

XXXII. The Central Action of Curare. By Hugh McGuigan

XXXIII. The Spontaneous Liberation of Epinephrin from the Adrenals. By G. N. Stewart and J. M. Rogoff

XXXIV. The Influence of the Adrenals on the Kidneys. By E. K. Marshall, Jr. and David M. Davis

XXXV. The Pharmacology of the Vas Deferens. By J. A. Waddell
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Illustration Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curve of mutual inductance (Fig. 1)</td>
<td>4</td>
</tr>
<tr>
<td>Magnification of lower portion of curve of Fig. 1. (Fig. 2)</td>
<td>5</td>
</tr>
<tr>
<td>Pyridin-phenanthrene group (Fig. 3)</td>
<td>34</td>
</tr>
<tr>
<td>Benzyl-isoquinoline group (Fig. 4)</td>
<td>34</td>
</tr>
<tr>
<td>Myogram of frog's gastrocnemius (Fig. 1)</td>
<td>59</td>
</tr>
<tr>
<td>— of frog's gastrocnemius (Fig. 2)</td>
<td>60</td>
</tr>
<tr>
<td>— of frog's gastrocnemius (Fig. 3)</td>
<td>61</td>
</tr>
<tr>
<td>— of frog's gastrocnemius (Fig. 4)</td>
<td>62</td>
</tr>
<tr>
<td>Perfusion of frog's heart (Fig. 5)</td>
<td>63</td>
</tr>
<tr>
<td>— of frog's heart (Fig. 6)</td>
<td>63</td>
</tr>
<tr>
<td>Myogram of and blood pressure tracing (Fig. 7)</td>
<td>64</td>
</tr>
<tr>
<td>Blood pressure, dog (Fig. 8)</td>
<td>65</td>
</tr>
<tr>
<td>—, dog (Fig. 9)</td>
<td>65</td>
</tr>
<tr>
<td>—, dog (Fig. 10)</td>
<td>66</td>
</tr>
<tr>
<td>Decapitated cat (Fig. 1)</td>
<td>84</td>
</tr>
<tr>
<td>Ring of pig's ureter six hours after death (Fig. 1)</td>
<td>157</td>
</tr>
<tr>
<td>— of pig's ureter twenty-four hours after excision (Fig. 2)</td>
<td>158</td>
</tr>
<tr>
<td>Human ureter; one ring; four hours after nephrectomy for hydronephrosis on December 15, 1915 (Fig. 3)</td>
<td>159</td>
</tr>
<tr>
<td>Experiment December 21, 1915, Ring of pig's ureter three hours after death (Fig. 4)</td>
<td>159</td>
</tr>
<tr>
<td>Quiescent ureteral ring, from pig stimulated to powerful contractions by a minute dose of epinephrine (Fig. 5)</td>
<td>161</td>
</tr>
<tr>
<td>Pig's ureteral ring, twenty-two hours after excision (Fig. 6)</td>
<td>161</td>
</tr>
<tr>
<td>Longitudinal strip of pig's ureter (Fig. 7)</td>
<td>162</td>
</tr>
<tr>
<td>Experiment January 12, 1916, Pig's ureter (Fig. 8)</td>
<td>163</td>
</tr>
<tr>
<td>— January 28, 1916, Ring of pig's ureter (Fig. 9)</td>
<td>164</td>
</tr>
<tr>
<td>Experiments December 21, 1915, Pig's ureter (Fig. 16)</td>
<td>178</td>
</tr>
<tr>
<td>Curarized muscle; Strychninized curarized muscle (Plate I)</td>
<td>180</td>
</tr>
<tr>
<td>Strychninized muscle. Normal muscle. Stimulation through nerve (Plate II)</td>
<td>180</td>
</tr>
<tr>
<td>— muscle. Normal muscle. Direct muscle stimulation (Plate III)</td>
<td>181</td>
</tr>
<tr>
<td>Top tracing: Normal. Bottom tracing. Strychninized. Direct muscle stimulation (Plate IV)</td>
<td>181</td>
</tr>
<tr>
<td>Perspective view of perfusion apparatus (Plate I)</td>
<td>189</td>
</tr>
<tr>
<td>Shows slowing of the heart due to vagus stimulation produced by perfusing epinephrine through the cerebral vessels (Fig. 1)</td>
<td>198</td>
</tr>
<tr>
<td>Showing the rise in blood pressure produced by perfusing epinephrine through the cerebral vessels, etc. (Fig. 2)</td>
<td>200</td>
</tr>
<tr>
<td>— that the weaker solution of epinephrine produces a rise in blood pressure while the stronger one produces a fall (Fig. 3)</td>
<td>201</td>
</tr>
<tr>
<td>One drop epinephrine injected into the femoral vein (Fig. 4)</td>
<td>202</td>
</tr>
</tbody>
</table>
ILLUSTRATIONS

Dog's intestine in Ringer-Locke solution (Fig. 8) 257
Cat's intestine in Ringer's solution (Fig. 11) 257
Rabbit's intestine in Ringer-Locke solution (Fig. 12) 258
Dog's intestine in Ringer-Locke solution (Fig. 19) 258
Rabbit's intestine in Ringer's solution (Fig. 29) 259
Dog's intestine, used in a previous experiment, after being placed in fresh
Ringer's solution (Fig. 31) 259
— intestine in Ringer's solution (Fig. 35) 260
Action of pilocarpin (Fig. 1) 262
— of physostigmin and atropin (Fig. 2) 263
Pig's ureter (Fig. 3) .. 263
Ring of pig's ureter twelve hours after death of animal (Fig. 4) 265
— of pig's ureter twenty-four hours after death of animal (Fig. 5) 265
— of pig's ureter twenty-four hours after excision (Fig. 6) 266
— of pig's ureter eighteen hours after excision (Fig. 7) 266
— of pig's ureter twenty-four hours after excision (Fig. 8) ... 267
— of pig's ureter twenty-four hours old (Fig. 9) 267
— of pig's ureter twelve hours old (Fig. 10) 268
Isolated loop of intestine of guinea-pig in Tyrode's solution (Fig. 1) 294
A group of vessels at the root of mesentery (Fig. 1) 302
Shows extreme contraction of artery and in less degree of vein (Fig. 2) 304
Small artery and vein both showing considerable constriction (Fig. 3) 308
Shows the prompt and vigorous contraction after KOH in concentration
of pH* etc. (Fig. 4) .. 313
— the gradual constricting effect of HC1 mol (Fig. 5) 314
— the prompt and vigorous contracting effect of sodium carbonate, etc.
(Fig. 6) .. 315
Normal intestinal loop (Fig. 1) 327
— intestinal loop (Fig. 2) .. 328
— loop (Fig. 3) ... 328
Intestinal loop (Fig. 4) ... 329
— loop (Fig. 5) ... 330
— loop (Fig. 6) ... 331
— loop (Fig. 7) ... 332
Normal loop (Fig. 8) .. 333
To show absence of refractory state during the stage of slow (or tonus)
contraction of the strophanthinsed ventricle (Fig. 1) 340
— a peculiar irregularity in the beat of the deeply strophanthinsed ven-
tricle (Fig. 2) .. 340
— the effect of clamping and then suddenly releasing the inlet perf-
fusion-tube of the strophanthinsed ventricle (Fig. 3) 342
Showing the experiment of fig. 3 at different pressures, etc. (Fig. 4) 343
Before the injection, etc. .. 359
— the perfusion, etc. ... 361, 363
Showing rise of blood pressure to about 220 min. of mercury, etc. (Trac-
ing 1) ... 397
ILLUSTRATIONS

Showing fall of blood pressure immediately following the intravenous injection of 5.0 mg. of novocain per kilogram (Tracing 2) 398
Signal magnet (Fig. 1) 448
Tracing of time record (Fig. 2) 448
Cat 81 (Fig. 1) 483
— 81. Animal prepared by excision of right adrenal and section of nerves of left (Fig. 2) 486
— 116 (Fig. 3) 487
— 116. Pocket experiment with stimulation of right splanchnic in abdomen after section of both splanchnes (Fig. 4) 488
— 57. Pocket experiment with epinephrin rise after release (Fig. 5) 494
— 57. Pocket (Fig. 6) 494
— 137 (Fig. 7) 497
— 117 (Fig. 8) 498
— 57 (Fig. 9) 498
— 37 (Fig. 10) 505
— 37 (Fig. 11) 506
— 37 (Fig. 12) 507
— 81 (Fig. 13) 508
— 116 (Fig. 14) 516
— 95 (Fig. 15) 519
— 95 (Fig. 16) 519
— 95 (Fig. 17) 520
— 95 (Fig. 18) 521
Vas deferens of rabbit, suspended in Ringer's solution (Tracing 1) 533
— of rat, suspended in Tyrode's solution (Tracing 2) 533
— of rat, suspended in Tyrode's solution (Tracing 3) 554
— of dog, suspended in Tyrode's solution (Tracing 4) 554
— of sheep suspended in Tyrode's solution (Tracing 5) 555
— of guinea pig, suspended in Tyrode's solution (Tracing 6) 555
— of dog, suspended in Tyrode's solution (Tracing 7) 555
— of sheep, suspended in Tyrode's solution (Tracing 8) 556
— of dog, suspended in Tyrode's solution (Tracing 9) 556
— of rat, suspended in Tyrode's solution (Tracing 10) 557
— of rabbit, suspended in Tyrode's solution (Tracing 11) 558
— of rat, suspended in Tyrode's solution (Tracing 12) 558