CONTENTS

NUMBER 1, SEPTEMBER, 1913

I. The Action of Serum on the Perfused Heart of the Rabbit. By A. R. Cushny and J. A. Gunn ... 1

II. The Effect of Certain Oxidizing Substances and of Acids and Alkalies on the Isolated Mammalian Heart. By A. S. Loevenhart and J. A. E. Eyster .. 21

III. An Apparatus for the Perfusion of Isolated Organs, Especially the Isolated Mammalian Heart. By J. A. E. Eyster and A. S. Loevenhart .. 57

IV. The Effect of Atophan and Novatophan on the Endogenous Uric Acid Excretion of Normal Men. By Howard D. Haskins 63

V. The Treatment of Experimental Beri-Beri with Extracts of Spinal Cord. By Carl Voegtlin and Caroline Towles .. 67

VI. The Action of Nitrites and Drugs of the Digitalis Group on the Isolated Coronary Artery. By Carl Voegtlin and David I. Macht 77

VII. The Reversible Action of Adrenaline and Some Kindred Drugs on the Bronchioles. By F. L. Golla and W. L. Symes 87

NUMBER 2, NOVEMBER, 1913

VIII. I. The Direct Application of Drugs to the Temperature Centers. By Henry G. Barbour and Elihu S. Wing 105

IX. II. Paradoxical Action of Antipyrin in Partially and Completely Decerebrate Rabbits. By Henry G. Barbour and Clyde L. Deming .. 149

NUMBER 3, JANUARY, 1914

XI. The Mode of Action of Strophanthin upon Cardiac Tissue. By A. J. Clark ... 215

XII. Time Recorder for Kymograph Tracings. By Oliver E. Closson 235

XIII. The Mechanism of Stimulation of the Medullary Centers by Decreased Oxidation. By H. S. Gasser and A. S. Loevenhart 239

NUMBER 4, MARCH, 1914

XV. Quantitative Studies of Vagus Stimulation and Atropin. By J. D. Pilcher and Torald Sollmann .. 317

XVI. The Alkaloids of Quebracho. By Douglas Cow 341
CONTENTS

XVII. Observations on the Changes in the Circulatory System in Periodic Respiration. By A. J. Clark and P. Hamill. 357

XVIII. The Calibration of the Waller Gas Balance and the Connell Anaesthetometer. By W. M. Boothby and I. Sandiford. 369

XIX. The Determination of the Anaesthetic Tension of Ether Vapor in Man, with Some Theoretical Deductions Therefrom, as to the Mode of Action of the Common Volatile Anaesthetics. By Walter M. Boothby. 379

XX. Two Types of Periodic Respiration Due to Morphin. By Henry G. Barbour. 393

XXIII. The Site of the Action of Strychnine. By Hugh McGuigan and F. C. Beech. 469

XXIV. The Action of Certain Drugs on the Bronchioles. By D. E. Jackson. 479

XXV. Scientific Proceedings of the American Society for Pharmacology and Experimental Therapeutics. 511

XXVI. The Action of Certain Drugs on the Uterus of the Guinea-Pig and of the Rat. By James A. Gunn and John W. C. Gunn. 527

XXVII. The Effect on the Respiration of Altered Vascular Conditions in the Lungs. By W. E. Dixon and Fred Ransom. 539

XXVIII. The Solubility of Lead Sulphide Ores and of Lead Sulphide in Human Gastric Juice. By A. Woelfel and A. J. Carlson. 549

XXIX. Effects of Chloroform and of Ether Anesthesia on the Protein Contents of the Blood Serum of Rabbits. By Leonard W. Buck. 553

XXX. A New Standard for the Determination of the Strength of Pituitary Extracts. By George B. Roth. 559

XXXI. Experiments on the Cardiac Action of Camphor. By O. H. Plant. 571

XXXII. A Note on the Efficiency of the Knowlton-Starling Isolated Heart-Lung Preparation for Testing the Cardiac Action of Drugs. By O. H. Plant. 603

ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Illustration Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracing of rabbit's heart (Fig. 1)</td>
<td>5</td>
</tr>
<tr>
<td>Tracing of rabbit's heart (Fig. 2)</td>
<td>7</td>
</tr>
<tr>
<td>Tracing of rabbit's heart (Fig. 3)</td>
<td>9</td>
</tr>
<tr>
<td>Continuation of experiment from which figure 3 was taken (Fig. 4)</td>
<td>10</td>
</tr>
<tr>
<td>Experiments 5 and 10 (Figs. 1 and 2)</td>
<td>41</td>
</tr>
<tr>
<td>Experiments 14 and 17 (Figs. 3 and 4)</td>
<td>43</td>
</tr>
<tr>
<td>Experiments 19, 21 and 22 (Figs. 5, 6 and 7)</td>
<td>45</td>
</tr>
<tr>
<td>Experiments 23 and 24 (Figs. 8 and 9)</td>
<td>47</td>
</tr>
<tr>
<td>Experiments 25 and 26 (Figs. 10 and 11)</td>
<td>49</td>
</tr>
<tr>
<td>Experiment 30 (Fig. 12)</td>
<td>51</td>
</tr>
<tr>
<td>Experiment 31 (Fig. 13)</td>
<td>53</td>
</tr>
<tr>
<td>Experiment 33 (Fig. 14)</td>
<td>55</td>
</tr>
<tr>
<td>Apparatus for the perfusion of isolated organs especially the mammalian heart (Fig. 1)</td>
<td>58</td>
</tr>
<tr>
<td>Apparatus for the perfusion of isolated organs especially the mammalian heart (Figs. 2 and 3)</td>
<td>60</td>
</tr>
<tr>
<td>Ox coronary—four rings (Fig. 1)</td>
<td>84</td>
</tr>
<tr>
<td>Ox coronary—three rings (Fig. 2)</td>
<td>84</td>
</tr>
<tr>
<td>Pig's coronary—four rings (Fig. 3)</td>
<td>84</td>
</tr>
<tr>
<td>Ox coronary—four rings (Fig. 4)</td>
<td>85</td>
</tr>
<tr>
<td>Ox coronary—three rings (Fig. 5)</td>
<td>85</td>
</tr>
<tr>
<td>Ox coronary—five rings (Fig. 6)</td>
<td>85</td>
</tr>
<tr>
<td>Ox coronary—three rings (Fig. 7)</td>
<td>85</td>
</tr>
<tr>
<td>Pig's coronary—four rings (Fig. 8)</td>
<td>85</td>
</tr>
<tr>
<td>Pig's coronary—five rings (Fig. 9)</td>
<td>86</td>
</tr>
<tr>
<td>Ox coronary—three rings (Fig. 10)</td>
<td>86</td>
</tr>
<tr>
<td>Ox coronary—three rings (Fig. 11)</td>
<td>86</td>
</tr>
<tr>
<td>Ox coronary—three rings (Fig. 12)</td>
<td>86</td>
</tr>
<tr>
<td>First line, spontaneous respiration (plethysmograph) (Fig. 1)</td>
<td>89</td>
</tr>
<tr>
<td>First line, respiratory tracing, from tambour on abdomen (Fig. 2)</td>
<td>91</td>
</tr>
<tr>
<td>Lateral tracheal pressure showing constriction of air-way from 5 mg. of pilocarpine hydrochloride, etc. (Fig. 3)</td>
<td>93</td>
</tr>
<tr>
<td>Lateral tracheal (upper line) and carotid pressures of cat, under artificial respiration by aspiration (Fig. 4)</td>
<td>94</td>
</tr>
<tr>
<td>Plethysmographic record of lungs of rabbit, under insufflation thirty times a minute, showing bronchiolar constriction by adrenaline (Fig. 5)</td>
<td>95</td>
</tr>
<tr>
<td>Plethysmographic record of cat's lungs (upper line), lateral trachea, pressure (second line), and carotid pressure (Fig. 6)</td>
<td>96</td>
</tr>
<tr>
<td>A constriction of air-way by epine (1.0 mg.) (Fig. 7)</td>
<td>97</td>
</tr>
<tr>
<td>Lateral tracheal and carotid pressures (Fig. 8)</td>
<td>98</td>
</tr>
<tr>
<td>Simultaneous records of lateral tracheal pressure (upper tracing) and of tracheal slip (lower tracing) (Fig. 9)</td>
<td>101</td>
</tr>
</tbody>
</table>
Illustrations

Rabbit T. 10. 0.01 gram chloral in brain reduces body temperature (Fig. 1) 120
Rabbit T. 13. Difference between 0.002 and 0.02 gram chloral in brain (Fig. 2) 123
Rabbit T. 21. 0.017 gram chloral and 0.04 gram antipyrin in brain (Fig. 3) 124
Rabbit T. 12. 0.04 gram antipyrin in brain first day after "heat puncture" (Fig. 4) 127
Rabbit T. 24. 0.04 gram antipyrin in brain first day after orbital puncture (Fig. 5) 129
Rabbit T. 56. 0.001 gram quinin in brain more effective than 0.004 gram subcutaneously in same animal (Fig. 6) 131
Rabbit T. 57. 0.001 and 0.002 gram caffeine during puncture hyperthermia (Fig. 7) 136
Rabbit T. 51. Caffeine, quinin, epinephrin and antipyrin in brain after a puncture not giving hyperpyrexia (Fig. 8) 139
Rabbit T. 43. Beta-tetrahydroaminaphytamin in brain causing sharp temperature rise, other symptoms and death (Fig. 9) 142
Rabbit T. 11. Temperature curve after removal of right cerebrum and corpus striatum, showing antipyrin rise (Fig. 1) 157
Rabbit T. 18. Antipyrin rise second day after removal of cerebrum and corpus striatum (Fig. 2) 159
Rabbit T. 25. Antipyrin and quinin after removal of cerebrum and corpus striatum (Fig. 3) 166
Rabbit T. 4. Antipyrin two days after a puncture which resulted in a subnormal temperature (Fig. 4) 166
Rabbit T. 19. Antipyrin reduces temperature of partially decerebrate rabbit which had had no hypopyrexia (Fig. 5) 169
Rabbit T. 47. Antipyrin after complete decerebration including basal ganglia (Fig. 6) 175
Rabbit T. 48. No antipyrin after same operation 175
Action of strophanthin upon the freshly excised heart (Fig. 1) 218
Action of minimal lethal concentration of strophanthin upon the frog's heart (Fig. 2) 219
Action of strophanthin upon the freshly excised heart of a frog in good condition (Fig. 3) 220
Action of strophanthin upon the freshly excised heart of a frog in good condition (Fig. 4) 221
Action of strophanthin upon the frog's heart in the presence of acid (Fig. 5) 224
Action of alkali on the frog's heart (Fig. 6) 224
Action of strophanthin upon the frog's heart in alkaline Ringer (Cw = \(10^{-8.7}\)) (Fig. 7) 225
Action of alkali upon the frog's heart (Fig. 8) 226
Action of strophanthin upon the hypodynamic heart of the frog (Fig. 9) 229
Action of strophanthin upon the hypodynamic heart of the frog (Fig. 10) 230
Time recorder for kymograph tracings (Fig. A) 236
Time recorder for kymograph tracings (Figs. B and C) 237
Experiment 12, Rabbit (Fig. 1) 245
Experiment 9, Rabbit (Fig. 2) 246
Experiment 6, Rabbit (Fig. 3) 247
ILLUSTRATIONS

Rabbit. At signal 78 cc. pure CO given (Fig. 4) .. 248
Experiment 23. Dog (Fig. 6) ... 254
Experiment 24. Dog (Fig. 7) ... 256
Experiment 33. Dog (Fig. 8) ... 258
Experiment 29. Cat (Fig. 9) ... 261
Experiment 34. Dog (Fig. 10) .. 265
Perspective view of vivid diffusion apparatus; earlier form with sixteen tubes
(Fig. 1) ... 285
Cross section of apparatus shown in figure 1 (Fig. 2) 286
Arterial cannula (Fig. 3) ... 286
Cannulae for portal vein (Fig. 4) .. 288
Larger apparatus with thirty-two tubes (Fig. 5) ... 289
View of proximal end of thirty-two-tube apparatus from outside (Fig. 6) 290
Diagrammatic representation of branching of eight-fold distribution tubes of
thirty-two-tube apparatus (Figs. 7 and 8) .. 291
Diagrammatic plan of largest apparatus, with one hundred and ninety-two
tubes (Fig. 9) .. 292
Small type of apparatus for individual organs (Figs. 10 and 11) 294
Mean heart rate before and after section of the vagi (Fig. 1) 319
Mean blood pressure before and after section of the vagi (Fig. 2) 320
Experiment 10. "Submaximal" summation (Fig. 3) 322
Experiment XI. Variability of response of the vagi to stimulation (Fig. 4) 328
Experiment 5. After atropin 0.2 mg. per kilogram (Fig. 5) 332
Experiment II. Vagus response to increase in current after atropin (Fig. 6) 333
Experiment III. The slight effect of increased current after nearly complete
vagus paralysis. (Fig. 7) ... 334
Rabbit; urethane, respiratory movements recorded by an isolated slip of
diaphragm (Fig. 1) .. 342
Cat; urethane; respiratory movements; blood-pressure; base-line (Fig. 2) 343
Isolated rabbit's heart perfused with Locke's solution (Fig. 3) 347
Isolated rabbit's heart perfused with Locke's solution (Fig. 4) 348
Isolated rabbit's heart twenty minutes after commencement of perfusion
with 1-10000 quebrachamine (Fig. 5) ... 349
Isolated rabbit's heart two hours after commencement of perfusion with
1-150000 quebrachamine (Fig. 6) ... 350
Drop-record of perfusion of frog's vessels (Fig. 7) .. 352
Cat; urethane; Blood-pressure; base-line (Fig. 8) .. 353
Cat; urethane; Blood-pressure; base-line (Fig. 9) .. 353
Cat; pithed intestinal movements recorded by Trendelenberg's apparatus
(Fig. 10) ... 354
Cat; pithed; intestinal movements recorded as in figure 10 (Fig. 11) 354
Records from H. M. (Fig. 1) ... 359
Case of H. M. (Fig. 2) ... 359
Curve showing the changes in the blood pressure, Case III (Fig. 3) 363
Curve showing the changes in the blood pressure, Case IV (Fig. 4) 363
Chart representing an ideal ether anaesthesia (Fig. 1) 381
Chart representing an ideal ether anaesthesia (Figs. 2-3) 383
Chart (Fig. 5) ... 384
ILLUSTRATIONS

Chart (Figs. 4 and 6) .. 385
Chart (Figs. 7 and 8) ... 387
Cat, ether. Both vagi cut. Experiment 24 (Fig. 1) 390
Cat, ether. Twenty minutes later. Experiment 24 (Fig. 2) 400
Cat, ether. Experiment 26 (Fig. 3) 403
Cardiac type of periodic respiration. Experiment 16 (Fig. 4) 406
Cardiac type of periodic respiration. Experiment 22 (Fig. 5) 406
Cardiac type of periodic respiration, after brain injury. Experiment 21 (Fig. 6) .. 407
Apnea following brain injury. Experiment 22 (Fig. 7) 410
Exposed heart showing asphyxia and recovery. Experiment 28 (Fig. 8) .. 411
Cardiac type of periodic respiration after morphin. Experiment 35 (Fig. 9) .. 412
Same a few minutes later. Experiment 35 (Fig. 10) 413
Apnea and beginning periodic respiration after two doses of 0.02 gram mor-
phon each. Experiment 37 (Fig. 11) 413
Periodic respiration reinduced by occlusion of trachea between the two marks. Experiment 37 (Fig. 12) 414
Same as figure 12. Experiment 37 (Fig. 13) 415
Vasomotor type of periodic respiration. Experiment 46 (Fig. 15) 418
Frog's heart perfused (Fig. 1) ... 430
Described in text. (Fig. 2) ... 431
Described in text (Fig. 3) .. 433
Frog's heart suspended, not perfused (Fig. 4) 438
Frog's heart (Fig. 5) .. 440
Ventricle of tortoise (Fig. 6) .. 442
Apparatus for artificial (aspiration) respiration (Fig. 1) 481
Pithed dog. Aspiration respiration (Fig. 2) 485
Pithed dog. Aspiration respiration (Fig. 3) 492
Pithed dog. Aspiration respiration (Fig. 4) 497
Pithed dog. Aspiration respiration (Fig. 5) 499
Pithed dog. Aspiration respiration (Fig. 6) 501
Pithed dog (Fig. 7) ... 504
Anaesthetised pregnant guine-pig, uterus in situ (Fig. 1) 530
Same uterus as in figure 1, subsequently isolated (Fig. 2) 531
Isolated pregnant guine-pig's uterus (Fig. 3) 532
Isolated pregnant guine-pig's uterus (Fig. 4) 533
Isolated non-pregnant rat's uterus (Fig. 5) 535
Anaesthetised pregnant rat, uterus in situ (Fig. 6) 535
Isolated pregnant rat's uterus (Fig. 7) 536
Cat A. C. E. (Fig. 1) .. 540
Cat A. C. E. (Fig. 2) .. 541
Decerebrate cat (Fig. 3) ... 542
Cat anaesthetised with A. C. E. (Fig. 4) 543
Diagrammatic representation of apparatus for heart-lung preparation (Fig. 5) .. 544
Heart-lung preparation of cat with suction inspiration (Fig. 6) 545
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Illustration Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart-lung preparation of cat with suction inspiration (Fig. 6)</td>
<td>546</td>
</tr>
<tr>
<td>Apparatus used for work on the isolated uterus</td>
<td>563</td>
</tr>
<tr>
<td>Effects upon the isolated uterus of a virgin guinea pig of a slightly deteriorated solution of β-iminazolylethylamine hydrochloride (Fig. 1)</td>
<td>566</td>
</tr>
<tr>
<td>Later effects of the same solution of β-iminazolylethylamine hydrochloride upon the same uterine strip as in figure 1 (Fig. 2)</td>
<td>567</td>
</tr>
<tr>
<td>Effects of fresh solution of β-iminazolylethylamine hydrochloride upon the isolated uterus of a virgin guinea pig (Fig. 3)</td>
<td>568</td>
</tr>
<tr>
<td>Tracings from the isolated uterus of the same animal used in Fig 3 (Fig. 4)</td>
<td>569</td>
</tr>
<tr>
<td>Isolated frog’s heart perfused in situ (Figs. 1-3)</td>
<td>581</td>
</tr>
<tr>
<td>Effect on heart rate of dropping saturated solution of camphor on chloralized frog’s heart (Fig. 4)</td>
<td>583</td>
</tr>
<tr>
<td>Effect on heart rate of dropping 1 per cent ether solution on chloralized frog’s heart (Fig. 5)</td>
<td>584</td>
</tr>
<tr>
<td>Strips of ventricular muscle from the same turtle’s heart contracting in 0.7 per cent saline (Fig. 6)</td>
<td>587</td>
</tr>
<tr>
<td>Effect of camphor on normal mammalian heart (Figs. 7 and 8)</td>
<td>589</td>
</tr>
<tr>
<td>Effect of camphor on chloralized mammalian heart (Fig. 9)</td>
<td>598</td>
</tr>
<tr>
<td>Effect of camphor on phosphorous poisoned mammalian heart (Fig. 10)</td>
<td>601</td>
</tr>
<tr>
<td>Caffeine (Fig. 1)</td>
<td>606</td>
</tr>
<tr>
<td>Strophanthin (Fig. 2)</td>
<td>606</td>
</tr>
</tbody>
</table>