CONTENTS

Number 1, May, 1930

II. Studies on the Colloid Chemistry of Antisepsis and Chemotherapy. III. The Ultramicroscopic Examination of Neoarsphenamine and of Certain Antiseptics, and Their Effects upon Protein Solutions. By Arthur D. Hirschfelder and Harold N. Wright 13

III. Studies on the Colloid Chemistry of Antisepsis and Chemotherapy. IV. The Duplication in Vitro of the "Interference Phenomenon" in Combination Chemotherapy. By Harold N. Wright and Arthur D. Hirschfelder 39

V. Pharmacological Studies of Twenty-Three Isomeric Octyl Alcohols. By David I. Macht and Harriet P. Leach 71

VI. Experimental Studies on Heart Tonics. II. The Application of Biometric Methods to Digitalis Standardization. By William Nyiri and Louis DuBois 99

VII. Experimental Studies on Heart Tonics. III. The Relationships of Calcium Ions, Hydrogen Ions and Digitalis. By William Nyiri and Louis DuBois 111

Number 2, June, 1930

VIII. Some Observations on the Suitability of Amytal as an Anesthetic for Laboratory Animals. By R. C. Garry 129

XII. A Comparison of the Premedication Values of Several Barbituric Acid Derivatives in Relation to Nitrous Oxide Anesthesia. By M. S. Stormont, I. Lampe and O. W. Barlow 165

XIV. Studies on the Duration of Action of Drugs. II. Mydriatic Actions of Epinephrine and Atropine. By Theodore Koppanyi and Abraham Lieberson 187

CONTENTS

XVI. The Absorption of Drugs from the Right Ventricular Cavity. By Carl J. Wiggers 209

XVII. The Estimation of Digitalis by Pigeon-Emesis and Other Methods. By J. H. Burn 221

XVIII. Detoxification of Nicotine by Ultraviolet Rays. By A. J. Pacini and Hugh McGuigan 241

NUMBER 3, JULY, 1930

XIX. The Scientific Proceedings of the American Society for Pharmacology and Experimental Therapeutics. Twenty-First Annual Meeting, Held at Chicago, Ill., March 26, 27, 28, 29, 1930 .. 245

XX. II. Observations on the Effect of Pitressin on Blood Pressure, Pulse Rate and Respiration in Dogs. By Charles M. Gruber and William B. Kountz .. 275

XXI. Ephedrine on the Ureter. By George B. Roth .. 301

XXII. The Action of Alcohol, Caffeine, and Tobacco, on the Cardiac Output (and Its Related Functions) of Normal Man. By Arthur Grollman ... 313

XXIII. The Testing of Local Anesthetics. By T. H. Rider ... 329

XXIV. Pharmacological Note on Carbo Ligni and Carbo Animalis. By David I. Macht 343

XXV. Biological and Chemical Studies of the Relationship between Arsenic and Crystalline Glutathione. By Sanford M. Rosenthal and Carl Voegtlin ... 347

XXVI. Studies on Crystalline Insulin. XI. Does Insulin Cause an Initial Hyperglycemia? By E. M. K. Geiling and A. M. De Lawder ... 369

NUMBER 4, AUGUST, 1930

XXVII. The Action of an Alkaloidal Product from the Leaf of Solanum Pseudocapsicum, L. By J. M. Watt, H. L. Heimann and E. Meltzer ... 387

XXVIII. The Prevention of Acute Intoxication from Local Anesthetics. By P. K. Knoefel, R. P. Herwick and A. S. Loevenhart .. 397

XXX. Idiosynrasy to Quinine, Cinchonidine and Ethylhydrocupreine and Other Levorotatory Alkaloids of the Cinchona Series: Further Chemical Delimitation of the Idiosynrasy; Alteration in Sensitiveness. By W. T. Dawson and Francis A. Garbade ... 417

XXXI. Studies in Cancer Chemotherapy. IX. The Reaction of the Blood in Cancer. By Fritz Bischoff, M. Louisa Long and Elsie Hill ... 425

XXXII. Some Observations on the Effect of Pitressin upon the Cardiovascular System. By Charles M. Gruber and William B. Kountz ... 435

XXXIII. IV. The Effect of Epinephrine upon the Rate of Contraction and upon the Conduction Time of Peristalsis and Antiperistalsis in Excised Ureters. By Charles M. Gruber .. 449

XXXIV. Local Anesthetics Derived from Dialkylamino Propandiols. I. Phenylurethans. By T. H. Rider ... 457

XXXV. A Study of the Innervation of the Pylorus of the Terrapin. By Nolan L. Kalttreider ... 469
ILLUSTRATIONS

Perfusion of the isolated heart of the frog with a 1:8000 solution of Transvaal toad secretion (Fig. 1) .. 3
The effect of an intravenous injection of toad secretion (3 mgm. per kilogram) in the cat (Fig. 2) ... 5
— effect of a solution of toad secretion (1:50,000) on the isolated cat's heart (Fig. 3) .. 7
— effect of toad secretion on the isolated intestine of the cat (Fig. 4) 8
Drawing showing the appearance of a cholesterol suspension and of egg albumin, viewed with the ultramicroscope (Fig. 1) 17
Aggregation of egg albumin by antiseptics, viewed with the ultramicroscope (Fig. 2) .. 20
Effect of changes in H-ion concentration upon the flocculation of neoarsphenamine (Fig. 3) .. 27
Neoarsphenamine and its reaction with egg albumin (Fig. 4) 28
Effects of neoarsphenamine and mercurochrome on rabbit's blood plasma (Fig. 5) .. 31
Studies on the colloid chemistry of antisepsis and chemotherapy (Fig. 1) .. 47
— on the colloid chemistry of antisepsis and chemotherapy (Fig. 2) 48
— on the colloid chemistry of antisepsis and chemotherapy (Fig. 3) 50
— on the colloid chemistry of antisepsis and chemotherapy (Fig. 4) 52
Ichthyometer (Fig. 1) .. 78
Ichthyogram (Fig. 2) .. 79
Helicogram. Effect of octyl alcohol XXI (Fig. 3) 83
Cat, 2.6 kgm. Ether anesthesia (Fig. 4) ... 86
Vas deferens of rat. Effect of octyl alcohol I (Fig. 5) 88
Uterus of the guinea pig (Fig. 6) ... 89
Relation of ouabain to calcium (Fig. 1) .. 116
Toxic effect of 0.002 per cent CaCl₂, subsequent to administration of 0.002 mg. per cent ouabain (Fig. 2) ... 117
Hastening and reinforcing effect of toxic digitan action by subsequent administration of calcium (Fig. 3) ... 118
Almost immediate toxic effect of 0.08 cc. Digitan intravenously subsequent to 0.2 per cent CaCl₂ in 0.65 per cent NaCl solution intravenously (Fig. 4) .. 119
Typical digitalis poisoning in slightly acid menstruum (Fig. 5) 122
Male cat (Fig. 1) .. 130
— rabbit (Fig. 2) .. 131
Perfusion of frog's heart with Greene's frog-heart cannula (Fig. 3) 132
Female cat (Fig. 4) .. 134
B, capillary tube enclosed in C, straw to which is attached F, the pen (Fig. 1). 139
A, reservoir with, leading from it, B, capillary tube, enclosed in C, the straw, which is nipped in D, a small half-cylinder of metal, chilled at E, the fulcrum, to fit the bearing-cones (Fig. 2) .. 139
ILLUSTRATIONS

A, the float proper, held central by B, the manometer tube cover, C, the ink reservoir with D, the capillary leading from it to E, the pen held in F, celluloid (Fig. 2) ... 139
Armillar for use with the Thompson sphygmanograph (Fig. 1) .. 142
Wristlet for use with the Thompson sphygmanograph (Fig. 2) .. 144
Photograph of the manometer and portable case (Fig. 3) ... 145
Typical human blood pressure tracing recorded by the sphygmanograph (Fig. 4) 146
Rise of blood pressure in human subject resulting from subcutaneous injection (five minutes previous to beginning of record of ephedrine hydrochloride). Time intervals of five minutes (Fig. 5) ... 147
Fall of blood pressure in human subject during inhalation of amyl nitrite (Fig. 6) 147
A comparison of the premedication values of several barbituric acid derivatives in relation to nitrous oxide anesthesia (Fig. 1) ... 166
— comparison of the premedication values of several barbituric acid derivatives in relation to nitrous oxide anesthesia (Fig. 2) ... 167
Persistence of mydriasis after graded intravenous injections of epinephrine in three cats. Large doses (0.01 to 0.5 mgm.) (Fig. 1) ... 189
— of mydriasis after graded intravenous injections of epinephrine in two cats. Small doses (0.0006 to 0.0125 mgm.) (Fig. 2) ... 190
— of mydriasis in the left pupil after the injection of epinephrine into the left common carotid artery (Fig. 3) ... 191
Comparison of the difference in the duration of mydriasis in the right pupil after a given dose of epinephrine injected into the femoral vein (A) and into the left common carotid artery (B). Same cat as in figure 3 (Fig. 4) ... 192
Persistence of mydriasis after graded intraocular injections of epinephrine (Fig. 5) 193
— of mydriasis after graded intraocular injections of atropine (Fig. 6) 196
— of mydriasis after graded intraocular injections of atropine (Fig. 7) 197
Diagram showing arrangement of perfusion apparatus. Relative size of heart and manometer not drawn to scale (Fig. 1) ... 211
Optical pressure curves from left ventricle showing depressing effect of KCl injection limited to right ventricle. B, 15 seconds; C, 30 seconds; D, 45 seconds and E, 2 minutes after injection. Time ½ second (Fig. 2) ... 213
Curves same as figure 2, showing stimulating effects of CaCl2. B, 1 minute; C, 1.5 minutes; D, 4.5 minutes after injection (Fig. 3) ... 213
— same as figure 2, showing stimulating effects of 0.5 cc. of a 1:10,000 epinephrin solution. B, 15 seconds; C, 30 seconds; D, 1 minute; and E, 2.5 minutes after injection (Fig. 4) ... 213
— same as figure 2, showing stimulating and toxic effects of strophanthin (1 mgm.). B, 1 minute; C, 3 minutes; D, 4 minutes; E, 9.5 minutes; F, 12 minutes; G, 26.5 minutes; H, 27 minutes; I, 27.5 minutes after administration (Fig. 5) ... 213
Optical pressure curves from left ventricle illustrating depressant effects of two doses of 1:200 chloroform. A and D, controls (Fig. 6) ... 216
Curves same as in figure 6, showing depressant effects of 3 cc., 1:200 chloral hydrate solution. A, control; D, E and F, recovery (Fig. 7) ... 216
ILLUSTRATIONS vii

Curves same as in figure 6, showing depressant effects of 2 cc., 1:10,000 ephedrine. A, control (Fig. 8) 216
— same as in figure 6, showing depressant effect of 2 cc., 1 per cent quinidine sulphate solution (Fig. 9) 216
The estimation of digitalis by pigeon-emesis and other methods (Fig. 1) 228
— estimation of digitalis by pigeon-emesis and other methods (Fig. 2) 229
— estimation of digitalis by pigeon-emesis and other methods (Fig. 3) 231
Graph illustrating the normal variations in blood pressure in unanesthetized dogs (Fig. 1) 280
Curve plotted from the data obtained from a 9-kgm. dog under chloretone anesthesia (Fig. 2) 282
— obtained from a 6-kgm. dog. Local anesthesia. Upper record is that of the respiration with, tambour and pneumograph, the middle record the blood pressure with membrane manometer and the lower record the time interval in fifteen seconds (Fig. 3) 283
— plotted from the data obtained from a non-anesthetized 6.5-kgm. dog (Fig. 4) 285
9.5-kgm. dog. Local anesthesia. Top record the blood pressure with membrane manometer, and bottom record the time interval in fifteen seconds (Fig. 5) 286
Curve plotted from the data obtained from an experiment upon an unanesthetized 9.5-kgm. dog (Fig. 6) 288
6-kgm. dog. Local anesthesia, both vagi cut four hours earlier. Top record the blood pressure with membrane manometer, bottom record the time interval in fifteen seconds (Fig. 7) 289
Curve plotted from the data obtained from an experiment upon an 8-kgm. dog. Both vagi cut two hours previously. Local anesthesia (Fig. 8) 290
14-kgm. dog under ether anesthesia. Both adrenal glands excised. Top curve that of the blood pressure with a membrane manometer, bottom curve the time interval in fifteen seconds (Fig. 9) 292
12-kgm. dog. Local anesthesia. Both carotid arteries had been tied off under ether anesthesia three hours before this record was made. Top curve the blood pressure with membrane manometer and bottom record the time in fifteen-second intervals (Fig. 10) 294
Effect of 10 mgm. of ephedrine sulphate (Lilly & Co.) in 100 cc. of alkaline Locke-Ringer on the excised dogs' ureter (Fig. 1) 305
— of 20 mgm. of ephedrine hydrochloride (Read) on the excised ureter of dog (Fig. 2) 305
— of 80 additional milligrams of ephedrine hydrochloride (Read) on the same segment of dog's ureter which was used to obtain figure 2 (Fig. 3) 306
— of 20 mgm. of ephedrine hydrochloride (Read) in 100 cc. of alkaline Locke-Ringer, on a quiescent segment of dogs' ureter (Fig. 4) 307
— of 0.1 mgm. of epinephrine (Parke Davis & Co.) on the same segment which was used for obtaining figure 4, the Locke-Ringer having been changed seven minutes previously (Fig. 5) 308
— of 10 mgm. of ephedrine sulphate (Lilly & Co.) on a beating segment of pigs' ureter (Fig. 6) 308
ILLUSTRATIONS

Prevention of the local inflammatory reaction from N/100 arsenoxide when N/10 glutathione is simultaneously injected (right ear) (Fig. 1) 356

Biological and chemical studies of the relationship between arsenic and crystalline glutathione (Chart 1) .. 360
— and chemical studies of the relationship between arsenic and crystalline glutathione (Chart 2) .. 360
— and chemical studies of the relationship between arsenic and crystalline glutathione (Chart 3) .. 361
— and chemical studies of the relationship between arsenic and crystalline glutathione (Chart 4) .. 361

Blood sugar effects of insulin preparations at various stages of purification (Fig. 1) ... 375

Studies on crystalline insulin (Fig. 2) ... 379

Cats. Electrocardiogram. Lead II. Time ½ and ½ second (Fig. 1) 390
— atropinised—showing slowing of the pace-maker (Fig. 2) 390
—. Electrocardiograph, Lead II (Fig. 3) ... 391

The action of an alkaloidal product from the leaf of Solanum pseudocapsicum, L. (Fig. 4) ... 392

Cat—to show intermittent stoppage of the heart (Fig. 5) 393

Record I. 8.46 kgm. dog. Amytal anesthesia (Fig. 1) 406

Some observations on the effect of pitressin upon the cardiovascular system (Fig. 1) ... 411
— observations on the effect of pitressin upon the cardiovascular system (Fig. 2) ... 411
— observations on the effect of pitressin upon the cardiovascular system (Fig. 3) ... 412
— observations on the effect of pitressin upon the cardiovascular system (Fig. 4) ... 413

Pig ureter excised 36 hours. Kidney half (Fig. 1) 452

Excised pig ureter kept in ice cold Locke’s solution 24 hours. Bladder half of ureter (Fig. 2) ... 453

Showing the stimulating effect of pilocarpine, the inhibiting action of ephedrine and epinephrin and the antagonistic action of atropine on the rhythmic contractions of the pylorus (Fig. 1) 473
Illustrating the effect of ephedrine on the tonus of the pylorus and lack of stimulation by pilocarpine, following atropine (Fig. 2) 473

Showing the characteristic rhythmic contractions with no alteration of the base-line, in response to pilocarpine on the pyloric sphincter (Fig. 3) 475
— the typical response of the pyloric sphincter to epinephrin, when not previously stimulated by drugs (Fig. 4) 475
— no effect of adrenalin or ephedrine on the rhythmic contractions and on the tonus of the pylorus (Fig. 5) 475

Illustrating the stimulating effect of epinephrin and ephedrine on the tonus of the pylorus as observed in two sphincters (Fig. 6) 475

Showing the typical effect of ephedrine on quiescent, relaxed sphincters not previously stimulated by drugs (Fig. 7) 475

— the inhibiting effect of adrenalin and ephedrine on both the rhythmic contractions and tonus of the small intestine, initiated by pilocarpine (Fig. 8) ... 475