Nonclinical Cardiovascular Assessment of the Soluble Guanylate Cyclase Stimulator Vericiguat

Herbert Himmel, Armando Lagrutta, Matthias Vömel, Rupesh P. Amin, John P. Imredy, Timothy Johnson, Maya Vinzing, Judith Prescott, and Robert O. Blaustein

Received July 8, 2022; accepted April 10, 2023

ABSTRACT
Vericiguat and its metabolite M-1 were assessed for proarrhythmic risk in nonclinical in vitro and in vivo studies. In vitro manual voltage-clamp recordings at room temperature determined the effect of vericiguat on human Ether-a-go-go Related Gene (hERG) K⁺ channels. Effects of vericiguat and M-1 on hERG K⁺, Nav1.5, hCav1.2, hKvLQT1/1minK, and hKv4.3 channels were investigated via automated voltage-clamp recordings at ambient temperature. Effects of vericiguat and M-1 on hERG K⁺ and Nav1.5 channels at pathophysiological conditions were explored via manual voltage-clamp recordings at physiologic temperature. Single oral doses of vericiguat (0.6, 2.0, and 6.0 mg/kg) were assessed for in vivo proarrhythmic risk via administration to conscious telemetered dogs; electrocardiogram (ECG) and hemodynamic parameters were monitored. ECG recordings were included in 4- and 38-week dog toxicity studies. In manual voltage-clamp recordings, vericiguat inhibited hERG K⁺-mediated tail currents in a concentration-dependent manner (20% threshold inhibitory concentration ~1.9 μM). In automated voltage-clamp recordings, neither vericiguat nor M-1 were associated with biologically relevant inhibition (>20%) of hNav1.5, hCav1.2, hKvLQT1, and hKv4.3. No clinically relevant observations were made for hNav1.5 and hKvLQT1 under simulated pathophysiological conditions. Vericiguat was associated with expected mode-of-action-related dose-dependent changes in systolic arterial blood pressure (up to ~20%) and heart rate (up to ~53%). At maximum vericiguat dose, corrected QT (QTc) interval changes from baseline varied slightly (~6 to +1%) depending on correction formula. Toxicity studies confirmed absence of significant QTc interval changes. There was no evidence of an increased proarrhythmic risk from nonclinical studies with vericiguat or M-1.

SIGNIFICANCE STATEMENT
There was no evidence of an increased proarrhythmic risk from in vitro and in vivo nonclinical studies with vericiguat or M-1. The integrated risk assessment of these nonclinical data combined with existing clinical data demonstrate administration of vericiguat 10 mg once daily in patients with heart failure with reduced ejection fraction is not associated with a proarrhythmic risk.

Introduction
Vericiguat is a soluble guanylate cyclase (sGC) stimulator that was recently approved for the treatment of symptomatic chronic heart failure (HF) following a worsening event in adult patients with reduced ejection fraction (European Medicines Agency, 2021; Food and Drug Administration, 2021; McDonagh et al., 2021). Approval was based on results of the pivotal Phase 3 VICTORIA study, showing a reduction in the composite endpoint of cardiovascular death or HF hospitalization in the vericiguat group relative to the placebo group (Armstrong et al., 2020). Chronic HF is associated with endothelial cell dysfunction and an impaired nitric oxide (NO)–sGC–cyclic guanosine monophosphate (cGMP) signaling pathway (Stasch et al., 2011). The reduced availability of cGMP affects physiologic mechanisms including vasorelaxation, platelet aggregation, and myocardial remodeling, which, in combination with other pathophysiologic pathways, may ultimately result in HF (Stasch et al., 2011).

Symptomatic chronic HF, particularly in conjunction with reduced left ventricular ejection fraction, is a pathophysiologic condition with a well-known enhanced risk for potentially lethal cardiac arrhythmias (Grimm et al., 2003; Rashba et al., 2004; Jackson et al., 2012; Halliday et al., 2017). Other HF-associated conditions, such as autonomic dysfunction with sleep apnea (Mehra and Redline, 2014), genetic predisposition to dilated cardiomyopathy (McNally and Mestroni, 2017), and diuretic therapy-mediated electrolyte abnormalities (Laslett et al., 2011). The reduced availability of cGMP affects physiologic mechanisms including vasorelaxation, platelet aggregation, and myocardial remodeling, which, in combination with other pathophysiologic pathways, may ultimately result in HF.

ABBREVIATIONS: cGMP, cyclic guanosine monophosphate; CiPA, Comprehensive In Vitro Proarrhythmia Assay; Cmax, maximum drug concentration in plasma; Cmax, maximum unbound drug concentration in plasma; DMSO, dimethyl sulfoxide; ECG, electrocardiogram; EGTA, ethyleneglycol tetracetic acid; GLP, Good Laboratory Practice; HEC, human embryonic kidney; HEPES, 4-(2-hydroxyethyl) piperazine-1-ethanesulfonic acid; hERG, human Ether-a-go-go Related Gene; HF, heart failure; HR, heart rate; IC20, 20% threshold inhibitory concentration; IC50, half-maximal inhibitory drug concentration; ICH, International Council for Harmonisation; NO, nitric oxide; PEG400, ethanolympolyethylene glycol 400; QTc, corrected QT; QTcF, corrected QT using Fridericia’s formula; QTcM, corrected QT using Matsunaga’s formula; QTcV, corrected QT using de Water’s formula; SD, standard deviation; SEM, standard error of mean; sGC, soluble guanylate cyclase; T1/2, time at which Cmax was reached.
et al., 2020), may exacerbate the susceptibility of patients with HF for cardiac arrhythmias.

In this article, we report the results of standard Internation Council for Harmonization (ICH) ST7B nonclinical studies conducted prior to dosing vericiguat in humans: ventricular repolarization in vitro [human Ether a-go-go Related Gene (hERG) K⁺ channel assay] and in vivo [electrocardiogram (ECG) in conscious dogs] (European Medicines Agency, 2006; Center for Drug Evaluation and Research, 2021). Following the completion of the VICTORIA trial we conducted a more comprehensive set of in vitro voltage-clamp experiments, a vericiguat stock solution was prepared [10 mM in dimethyl sulfoxide (DMSO)] and diluted appropriately into various extracellular salt solutions to reach the desired final concentrations. For the in vivo study in telemetered dogs, vericiguat was formulated in a vehicle [ethanol/polyethylene glycol 400 (PEG400), 10:90] and administered using gelatin capsules. For the repeat-dose dog toxicity studies, vericiguat was formulated in PEG400 and administered at 1–2 mg/kg.

Materials and Methods

Material and Guidelines
Vericiguat was synthesized and provided by Bayer AG. For in vitro experiments, a vericiguat stock solution was prepared [10 mM in dimethyl sulfoxide (DMSO)] and diluted appropriately into various extracellular salt solutions to reach the desired final concentrations. For the in vivo study in telemetered dogs, vericiguat was formulated in a vehicle [ethanol/polyethylene glycol 400 (PEG400), 10:90] and administered using gelatin capsules. For the repeat-dose dog toxicity studies, vericiguat was formulated in PEG400 and administered at 1–2 mg/kg.

Study Design

Four separate sets of nonclinical studies were conducted to investigate the effects of vericiguat on blood pressure, HR, ECG, and ion channel currents: (i) a dog telemetry and pharmacokinetic study, (ii) “snapshot” ECG assessments during the 4- and 39-week GLP repeat-dose toxicity studies in dogs, (iii) a GLP-compliant hERG K⁺ assay, and (iv) a series of non-GLP-compliant cardiac ion channel studies.

In Vivo Assessments of Systemic Exposure, Blood Pressure, HR, and ECG Intervals in Conscious Beagle Dogs

Systemic exposure was investigated in blood samples collected from nontelemeasured male and female beagle dogs (n = 3/dose) at 1, 3, 7, and 24 hours following single oral administration of 0.6, 2, and 6 mg/kg vericiguat. Blood samples were drawn via the jugular or cephalic vein and centrifuged at 4 ºC at 3600 rpm for 10 minutes. The resulting plasma samples were stored at −15 ºC for the duration of the study. Cmax was defined as the maximum drug concentration in plasma, and Tmax as the time at which Cmax was reached.

Arterial blood pressure (abdominal aorta), ECG (subcutaneous electrodes, standard lead II), and body temperature were continuously monitored over a period of 18 hours (2 hours 20 minutes before and 16 hours after dosing) in beagle dogs (two male, two female) that had been surgically implanted with a telemetry system (model TL11M2-D70-PCT; Data Science, Inc., St. Paul, Minnesota). Vericiguat was administered to conscious telemetered beagle dogs at single oral doses of 0 (vehicle), 0.6, 2, and 6 mg/kg body weight following a Latin square study design. Signals were acquired and analyzed with Ponemah P3 Plus, V.4.9 (Data Science, Inc.). Data were processed and averaged over a predefined period (logging rate) of 5 minutes. These data were then averaged over intervals of 15 minutes for each parameter. For calculation of mean maximal changes in cardiovascular parameters, the 15-minute bins were collapsed into a superinterval (2–6 hours post-treatment) that considers magnitude and duration of the response, and pharmacokinetic properties of the compound encompassing Tmax and several hours thereafter. Appropriately selected superintervals have been shown to improve statistical sensitivity to detect minor changes (Sivarajah et al., 2010). Systolic, diastolic, and mean arterial blood pressure and HR were measured using telemetric pressure signals (n = 4/dose). PQ and QT intervals and the QRBS duration were measured from telemetric ECG signals. QT intervals were corrected for HR by using the formula of Fridericia (QTcF) (Fridericia, 1920), van de Water (QTcV) (Van de Water et al., 1989), and Matsunaga (QTcM) (Matsunaga et al., 1997).

Dogs did not receive anesthetic agents during the study period as no invasive procedures requiring anesthetics were performed. No dogs were terminated during the conduct of these studies. Beagle dogs employed in the telemetric study had participated in previous experiments (their last treatment was 3–13 weeks before this study). Before the start of the study, dogs received a veterinary health assessment. After surgery, all telemetered dogs were given a recovery period of ≥10 days. At the end of the study and following an appropriate drug washout period, telemetered dogs were assigned to a pool of dogs to be employed in future experiments.
ECG Assessments Following Repeat Dosing in a 4-Week Toxicity Study

Beagle dogs (n = 6 per group; three female, three male) initially received a once-daily oral dose of vericiguat of either 0 mg/kg/day, 2.5 mg/kg/day, 7.5 mg/kg/day, or 25 mg/kg/day by gavage. On day 15, the 25 mg/kg dose was reduced to 15 mg/kg for the remainder of the study duration, owing to severe gastrointestinal findings (particularly rectum prolapse). Hereafter, this group is described as the 25/15 mg/kg/day group. The vehicle was PEG400 at 2.0 ml/kg. Acute short-term (<60 seconds) ECG recordings were conducted prior to dosing (baseline) and 2 hours post-dose (Tmax) during week 1 and week 4. Blood pressure was measured using invasive techniques through the femoral artery.

ECG Assessments Following Repeat Dosing in a 39-Week Toxicity Study

Beagle dogs (n = 8 per group; four female, four male) received a once-daily oral dose of vericiguat of either 0 mg/kg/day, 0.5 mg/kg/day, 1.5 mg/kg/day, or 5 mg/kg/day by gavage. The vehicle was PEG400 at 1.0 ml/kg. Acute short-term (<60 seconds) ECG recordings were conducted prior to dosing (baseline) and 2 hours post-dose (Tmax) during week 13 and week 39. Blood pressure was measured using high-definition oscillography.

In Vitro Assessments: Effects of Vericiguat and M-1 on Cardiac Ion Channel Currents

Cell Lines. Stably transfected human embryonic kidney (HEK) cell lines were used for the hERG K⁺, hNav1.5 Na⁺, and hKvLQT1/minK channel voltage-clamp studies. Stably transfected Chinese hamster ovary cell lines were used for the hCav1.2 Ca²⁺ and hKv4.3 K⁺ channel voltage-clamp studies. All cell lines were cultured in a humidified incubator at 37°C and 5% CO₂.

Manual Voltage-Clamp Technique at Physiologic Temperature (GLP hERG K⁺ Assay). The whole-cell voltage-clamp technique under GLP was used to measure hERG K⁺-mediated inward tail currents elicited by hyperpolarizing voltage steps (repeated every 12 seconds, holding potential −80 mV) from +20 mV to −120 mV (duration 500 milliseconds) at 22°C using standard procedures as previously described (Zhou et al., 1998). Vericiguat delivery to the organ bath was initiated after the initial stabilization period of approximately 6 minutes. When possible, vericiguat concentrations (0.1, 1, 10 μM) were applied in a cumulative manner using exposure times of approximately 6 minutes per concentration, followed by a wash-out period and subsequent exposure to a high concentration (1 μM) of the selective hERG K⁺ channel blocker E-4031.

Manual Voltage-Clamp Technique at Physiologic Temperature (Non-GLP). Additional experiments were conducted on hERG K⁺, hNav1.5, and hKvLQT1/minK currents using step-ramp voltage protocols repeated at various intervals from 1 to 30 seconds (0.033–1 Hz) using manual whole-cell voltage clamp at 37°C as described previously (Crumb et al., 2016). hERG K⁺ and KvLQT1/minK were recorded using the following solutions: extracellular NaCl 137 mM, KCl 4 mM, MgCl₂ 1.0 mM, CaCl₂ 1.8 mM, 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES) 10 mM, and dextrose 11 mM (pH 7.4). The intracellular solution was composed of (in mM) extracellular NaCl 130, CsCl 4, MgCl₂ 1.0, CaCl₂ 1.8, HEPES 10, and dextrose 10 (pH 7.4). The intracellular solution was composed of (in mM) KCl 90, KF 50, MgCl₂ 1.6, HEPES 10, EGTA 10, K₂ATP 2.5, and cAMP 0.2 (pH 7.2). The cell membrane was clamped to a holding potential of −50 mV, depolarized to +50 mV (3 seconds), and subsequently returned to −50 mV. Data were collated when the peak tail current reached −50 mV.

Voltage-Clamp Data Analysis. When applicable, the concentration dependence of effects was modeled with a standard four-parameter logistic equation:

\[
\text{effect} = \min + \left(\max/(1 + 10^{(\log IC_{50} - \log X) \times nH})\right)
\]

with minimal and maximal effects (min, max), half-maximal inhibitory drug concentration (IC₅₀), drug concentration (X), and Hill slope (nH). Minimal and maximal effects were usually treated as constants (max = 100 and min = 0), and IC₅₀ and nH as variables. If only one concentration was measured, nH was set to 1.

Exposure Multiple Calculation

Exposure multiples were calculated based on human clinical C_max unbound plasma concentrations of 18 nM and 43 nM for vericiguat and M-1, respectively, at the maximum recommended human dose of 10 mg and in comparison with the IC₅₀ or highest concentration tested for each channel (for the in vitro studies) or with the maximum unbound drug concentration in plasma (C_max,u) in the dogs (for the in vivo studies).

Statistical Methods

In the blood pressure and HR study in telemetered dogs, the calculations included determination of arithmetical mean and standard deviation (SD) or standard error of mean (SEM). Effects were assessed regarding changes after administration versus baseline values compared with changes in the vehicle group; this was done for 15-minute bins (results not shown) as well as for the 2- to 6-hour superinterval that was chosen to enhance sensitivity (Sivarajah et al., 2010). The data reported are group mean values and corresponding SD or SEM of n experiments. Subsequent data analysis with a one-way ANOVA followed by Dunnett’s multiple comparisons test versus vehicle control [differences significant if P < 0.05 (multiplicity-adjusted)] was done for the 15-minute bins (results not shown) as well as for the 2- to 6-hour superinterval. The results of the repeat-dose toxicity studies were not subject to statistical analysis because of the short (<60 seconds) duration of recording. Calculations and graphical presentation of data were conducted with GraphPad Prism v8.
Results

In Vivo Studies in Beagle Dogs

Systemic Exposure Following a Single Oral Dose. Following single oral administration, Cmax levels for vericiguat were 270 μg/L, 848 μg/L, and 1949 μg/L for the 0.6, 2.0, and 6.0 mg/kg doses, respectively, with calculated Tmax of 2.1 hours (0.6 mg/kg) and 3 hours (2 and 6 mg/kg) (Table 1). Trough plasma levels were < 10% of Cmax after 24 hours. In the corresponding protein-unbound plasma, Cmax,u levels were 60 nM, 189 nM, and 434 nM for the 0.6, 2.0, and 6.0 mg/kg doses, respectively (Table 1). Plasma concentrations of M-1 were neither determined in this single-dose study nor in the two repeat-dose toxicity studies mentioned later.

Blood Pressure, HR, and ECG Intervals Following a Single Oral Dose. Vericiguat was associated with expected pharmacology-mediated dose-dependent changes in cardiovascular function (Table 2). The effects of vericiguat on maximum arterial blood pressure in conscious telemetered dogs are shown in Fig. 1. A change was observed in arterial blood pressure, particularly in systolic arterial blood pressure (up to −20%), that was not fully reversible within 16 hours. Vericiguat was associated with a dose-dependent increase in HR, with changes from baseline of 17%, 28%, and 53% for 0.6, 2.0, and 6.0 mg/kg doses, respectively. Along with an increased HR (Table 2; Fig. 1), the PQ and QT intervals were shortened (Table 2) with administration of vericiguat. PQ interval changed by −7%, −15%, and −17% for 0.6, 2.0, and 6.0 mg/kg doses, respectively. QT interval changed by −5%, −7%, and −12% for 0.6, 2.0, and 6.0 mg/kg doses, respectively (Table 2; Fig. 2).

The observed change from baseline of corrected QT (QTc) interval for HR at maximum dose varied slightly between −5.9% and +1.4%, dependent on the formula of correction. The observed change from baseline using the QTcF formula was +0.2%, +0.6%, and +1.4% for 0.6, 2.0, and 6.0 mg/kg doses, respectively (Table 2; Fig. 2). In comparison, the observed change from baseline using the QTcV formula was −1.1%, −1.7%, and −2.8% for 0.6, 2.0, and 6.0 mg/kg doses, respectively. Using QTcM yielded the greatest change from baseline per vericiguat dose, with −2.4%, −3.5%, and −5.9% for 0.6, 2.0, and 6.0 mg/kg doses, respectively. No drug-related or dose-dependent effects on QTc interval using any formulae of correction were observed at tested dosages and at exposure multiples up to 24-fold (Table 2).

ECG Intervals and Systemic Exposure Following Repeated Oral Dosing. In the 4-week repeat-dose toxicity study in beagle dogs, QTcF changes from baseline at week 1 were −2%, +2%, and 0% in males for the 2.5 mg/kg/day, 7.5 mg/kg/day, and 25/15 mg/kg/day dosing regimens, respectively, and −5%, +1%, and −11% in females for the 2.5 mg/kg/day, 7.5 mg/kg/day, and 25/15 mg/kg/day dosing regimens, respectively. At week 4, QTcF changes from baseline were −1%, −7%, and −9% in males for the 2.5 mg/kg/day, 7.5 mg/kg/day, and 25/15 mg/kg/day dosing regimens, respectively, and −6%, −3%, and +9% in females for the 2.5 mg/kg/day, 7.5 mg/kg/day, and 25/15 mg/kg/day dosing regimens, respectively (Supplemental Table 3).

In the 4-week toxicity study, mean Cmax,u of vericiguat at week 1 was 216 nM, 584 nM, and 450 nM for the 2.5 mg/kg/day, 7.5 mg/kg/day, and 25/15 mg/kg/day dosing regimens, respectively. When measured at week 4, Cmax,u changed from week 1 by −7 nM, −89 nM, and +136 nM for the 2.5 mg/kg/day, 7.5 mg/kg/day, and 25/15 mg/kg/day dosing regimens, respectively (Supplemental Table 3).

In the 39-week toxicity study in beagle dogs, QTcF changes from baseline at week 13 were +4%, −11%, and +6% in males for the 2.5 mg/kg/day, 7.5 mg/kg/day, and 25/15 mg/kg/day dosing regimens, respectively, and +9%, +8%, and −7% in females for the 2.5 mg/kg/day, 7.5 mg/kg/day, and 25/15 mg/kg/day dosing regimens, respectively (Supplemental Table 4). Cardiac arrhythmias were not observed in this study.

In the 39-week toxicity study, Cmax,u at week 13 was 59 nM, 192 nM, and 481 nM for the 0.5 mg/kg/day, 1.5 mg/kg/day, and 5 mg/kg/day dosing regimens, respectively. When measured at week 38, Cmax,u changed from week 13 by +14 nM, +16 nM, and −149 nM for the 0.5 mg/kg/day, 1.5 mg/kg/day, and 5 mg/kg/day dosing regimens, respectively (Supplemental Table 4).

Table 2

Summary of changes in cardiovascular function following a single oral administration of vericiguat in conscious, telemetered dogs

<table>
<thead>
<tr>
<th>Dose (mg/kg)</th>
<th>SABP (% Change From Baseline)</th>
<th>DABP (% Change From Baseline)</th>
<th>HR (% Change From Baseline)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (control)</td>
<td>+0.3 ± 3.9</td>
<td>−0.5 ± 3.3</td>
<td>−2.7 ± 6.7</td>
</tr>
<tr>
<td>0.6</td>
<td>−5.6 ± 2.7</td>
<td>−5.6 ± 3.7</td>
<td>+16.8 ± 8.1</td>
</tr>
<tr>
<td>2.0</td>
<td>−11.4 ± 6.4*</td>
<td>−7.7 ± 10.5</td>
<td>+28.1 ± 20.5</td>
</tr>
<tr>
<td>6.0</td>
<td>−20.1 ± 5.6*</td>
<td>−12.2 ± 9.2</td>
<td>+52.7 ± 28.4*</td>
</tr>
</tbody>
</table>

ANOVA, analysis of variance; SABP, diastolic arterial blood pressure; DABP, arterial blood pressure; HR, heart rate; PQ, PQ interval in the ECG; QT, QT interval in the ECG; QTcF, corrected QT using Fridericia's formula; QTcM, corrected QT using Matsunaga's formula; QTcV, corrected QT using van de Water's formula; SABP, systolic arterial blood pressure.

*e = 4/dose. Mean values ± SD of n = 4 animals. Values from the original 15-min time bins were collapsed into a superinterval ranging from 2 to 6 h post-dose covering maximal effects (compare Fig. 1). Statistical analysis (GraphPad Prism 8.0.2): one-way ANOVA followed by Dunnett's multiple comparisons test versus control.

*Statistically significant differences versus control if P < 0.05 (multiplicity-adjusted). The absolute predrug baseline values of all tabulated parameters did not differ significantly between treatment groups.

Table 1

Plasma concentration and pharmacokinetic parameters of vericiguat in satellite dogs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Vericiguat Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC(0→24)</td>
<td>μg·h/L</td>
<td>2274 7396 17.964</td>
</tr>
<tr>
<td>Cmax</td>
<td>μg/L</td>
<td>270 848 1949</td>
</tr>
<tr>
<td>T1/2</td>
<td>h</td>
<td>2.1 3.0 3.0</td>
</tr>
<tr>
<td>Tmax</td>
<td>h</td>
<td>2.1 3.0 3.0</td>
</tr>
</tbody>
</table>

AUC0–24 h, area under the concentration-time curve from 0–24 h; Cmax, maximum concentration in plasma; Cmax,u, maximum unbound drug concentration in plasma; Tmax, time at which Cmax was reached.

Statistically significant differences versus control if P < 0.05 (multiplicity-adjusted). ANOVA, analysis of variance; DABP, diastolic arterial blood pressure; ECG, electrocardiogram; HR, heart rate; PQ, PQ interval in the ECG; QT, QT interval in the ECG; QTcF, corrected QT using Fridericia’s formula; QTcM, corrected QT using Matsunaga’s formula; QTcV, corrected QT using van de Water’s formula; SABP, systolic arterial blood pressure.
In Vitro Whole-Cell Voltage-Clamp Investigations

Effects of Vericiguat and M-1 on the hERG K⁺ Current Channel. In the GLP manual voltage-clamp study at approximately 22°C, vericiguat blocked hERG K⁺-mediated tail currents of stably transfected HEK293 cells in a dose-dependent manner. Based on mean values ± SD, curve fitting with a standard four-parameter logistic equation yielded a 20% threshold inhibitory concentration (IC₂₀) of approximately 1.9 µM and IC₅₀ of 9.9 µM (Table 3).

In automated voltage-clamp recordings conducted at room temperature, vericiguat inhibited hERG K⁺ outward and inward tail currents by 65% at 10 µM at 22°C, with an IC₅₀ of 4.4 µM and 4.3 µM, respectively (Table 3; Fig. 3, A and B). Exposure multiples were calculated as 244 and 239 for hERG K⁺ outward and inward tail currents, respectively. M-1 inhibited hERG K⁺ outward and inward tail currents by 20% and 17%, respectively, at 10 µM at 22°C. Exposure multiples were calculated as >233 (based on an IC₅₀ >10 µM) for both outward and inward tail currents.

In manual patch clamp experiments performed to characterize the rate dependence of hERG K⁺ current reduction at physiologic temperature, vericiguat inhibited hERG K⁺ with an IC₅₀ of 2.9 µM at 0.03 Hz (73% at 10 µM), compared with 20% at 10 µM at 1 Hz. At 10 µM, inhibition by M-1 was −3.2% at 1 Hz and −0.0% at 0.03 Hz (Table 3).

Effects of Vericiguat and M-1 on Other Current Channels. Vericiguat and M-1 did not cause biologically relevant inhibition of hNav1.5, hCav1.2, hKvLQT1, and hKv4.3 at 10 µM, neither at 22°C nor at physiologic temperature or in experiments simulating extreme depolarization or pacing rates (Table 3; Fig. 3, C–F).

Fig. 1. Effects of vericiguat on (A) HR and (B) mean arterial blood pressure of conscious telemetered dogs (deviations from baseline). n = 4/dose; mean values of 15-min bins. HR, heart rate; MABP, mean arterial blood pressure; po, per oral.
Discussion

The four sets of nonclinical studies demonstrated no evidence of an increased proarrhythmic risk from the in vitro and in vivo assessment of vericiguat or its major N-glucuronide metabolite M-1.

In dogs, administration of vericiguat as single oral doses at a maximum dose of 6.0 mg/kg was associated with dose-dependent decreases in arterial blood pressure and compensatory increases in HR. This is consistent with long-lasting vasodilation attributable to the mode of action of sGC stimulators, which mediate relaxation of smooth muscle cells by increasing cGMP levels (Stasch et al., 2011). QTc intervals using QTcF, QTcV, and QTcM formulae were not prolonged to a meaningful extent in beagle dogs. Recorded exposure multiples of 3.3, 10.5, and 23.6 at 0.6, 2.0, and 6.0 mg/kg, respectively, indicate proarrhythmic risk did not occur at clinically relevant doses.

In several in vitro electrophysiological studies, potential effects on cardiac ion channels of vericiguat and M-1 were assessed in a comprehensive manner, covering the most important cardiac ion channels (hERG K⁺, hNav1.5, hCav1.2, hKvLQT1/minK, and hKv4.3) at various temperatures (ambient and physiologic) and a range of stimulation rates (0.03–3 Hz), simulating extreme pathophysiological conditions that might be observed in patients with HF. Neither vericiguat nor M-1 inhibited cardiac ion channels (hERG K⁺, hNav1.5, hCav1.2, hKvLQT1/minK, and hKv4.3) at substantial exposure multiples of therapeutically relevant concentrations. The results for M-1 are consistent with the preponderance of scientific literature that

Fig. 2. Effects of vericiguat on (A) QT interval and (B) QTcF interval of conscious telemetered dogs (deviations from baseline). n = 4/dose; mean values of 15-min bins. po, per oral; QTcF, corrected QT using Fridericia’s formula.
TABLE 3

In vitro electrophysiological assessments of vericiguat and M-1

<table>
<thead>
<tr>
<th>Ion Channel; Conditions</th>
<th>Vericiguat</th>
<th>M-1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IC$_{50}$ (µM)</td>
<td>IC$_{50}$ (µM)</td>
</tr>
<tr>
<td>hERG K$^+$, -22°C</td>
<td>1.9 (105-fold higher than the human C$_{max,a}$ 18 nM at 10 mg)</td>
<td>9.9</td>
</tr>
<tr>
<td>hERG K$^+$, outward tail (-0.08 Hz); -22°C</td>
<td>65</td>
<td>20</td>
</tr>
<tr>
<td>hERG K$^+$, inward tail (-0.08 Hz); -22°C</td>
<td>65</td>
<td>17</td>
</tr>
<tr>
<td>hNav1.5 (-0.17 Hz); ~22°C</td>
<td>2.3</td>
<td>-0.7</td>
</tr>
<tr>
<td>hCav1.2 (-0.17 Hz); ~22°C</td>
<td>6.8</td>
<td>9</td>
</tr>
<tr>
<td>hKvLQT1 (-0.06 Hz); ~22°C</td>
<td>1.5</td>
<td>-1.9</td>
</tr>
<tr>
<td>hKv4.3 (-0.08 Hz); ~22°C</td>
<td>3.4</td>
<td>-1.6</td>
</tr>
<tr>
<td>hERG K$^+$ (1 Hz); 37°C</td>
<td>19.9</td>
<td>-3.2</td>
</tr>
<tr>
<td>hERG K$^+$ (0.033 Hz); 37°C</td>
<td>73.4</td>
<td>-0.0</td>
</tr>
<tr>
<td>hNav1.5 (3 Hz); ~80 mV; 37°C</td>
<td>-3.3</td>
<td>-2.3</td>
</tr>
<tr>
<td>hKvLQT1 (0.1 Hz); ~22°C</td>
<td>-2.9</td>
<td>-0.1</td>
</tr>
<tr>
<td>hKvLQT1 (0.033 Hz); ~22°C</td>
<td>-1.3</td>
<td>-2.7</td>
</tr>
</tbody>
</table>

C$_{max,a}$ maximum drug concentration in plasma; hERG, human Ether-a-go-go Related Gene; IC$_{20}$ 20% threshold inhibitory concentration; IC$_{50}$, half-maximal inhibitory concentration.

*aManual voltage clamp.

*bAutomated voltage clamp.

*cExposure multiples calculated based on human clinical C$_{max}$ (unbound) of 18 nM, compared with the IC$_{50}$ or highest concentration tested for each channel at 10 mg dosage.

*dExposure multiples calculated based on human clinical C$_{max}$ (unbound) of 43 nM, compared with IC$_{50}$ or highest concentration tested for each channel at 10 mg dosage.

*eInterpreted as small, reverse frequency dependence of hERG potency, comparing effects at the different stimulation rates tested in the hERG studies listed.

N-glucuronide-conjugated drug metabolites are generally unreactive and benign (European Medicines Agency, 2013; Smith et al., 2018). Therefore, these data contribute to the current scientific understanding that there is no cause for concern regarding exposure to N-glucuronide metabolites. Vericiguat inhibited the hERG K$^+$ ion channel with an IC$_{20}$ approximately 105-fold higher than the human clinical C$_{max,a}$ of 18 nM at 10 mg at room temperature.

Some technical challenges were encountered during the study of pharmacological effects by vericiguat or M-1 under conditions mimicking pathophysiological conditions. Excessive current rundown was particularly noted in studies measuring KvLQT1/minK currents at physiologic temperature at extreme pacing rates, confounding pharmacological assessments. For this reason, a separate assessment was conducted at room temperature, in which little or no effects were noted at the extreme rates that could be tested. Similarly, no assessments of stable hNav1.5 currents were possible from holding potentials depolarized lower than -80 mV, owing to excessive current rundown attributed to the steady state inactivation properties of hNav1.5 currents.

At supratherapeutic concentrations, reverse frequency dependence was observed during the study of hERG K$^+$ inhibition by vericiguat at extreme pacing rates. The inhibitory potency at the two extremes (1 Hz and 0.033 Hz) was in line with previous assessments at room temperature, and sufficient margins were calculated for the lowest inhibitory concentration. This phenomenon of a so-called “reverse-frequency-dependent” hERG K$^+$ inhibition is well known (Weirich and Antoni, 1998) and has been described for many hERG K$^+$ blockers in vitro (Baskin and Lynch, 1994) and in vivo, including in humans (Démolis et al., 1996). Although reverse frequency dependence on action potentials has been correlated with drugs potently blocking the hERG K$^+$ current, when frequency dependence of blockade on hERG K$^+$ channels has been systematically studied and modeled, it is clear that the major difference between drugs with high versus low torsadogenic risk is the impact of inward currents mitigating the effect of hERG K$^+$ and not a systematic difference in the intrinsic frequency dependence of hERG K$^+$ inhibition (Li et al., 2017). Other important considerations in the overall reverse frequency dependence are the effect of a drug on the KvLQT1/ minK current, which contributes to the repolarization reserve (Weirich and Antoni, 1998), and safety margins. Drugs such as loratadine, sold over the counter, have been shown to display rate frequency dependence on the hERG K$^+$ current (Crumb, 2000), but these potential concerns are obviated by the large safety margin to the effective clinical C$_{max}$ (Redforn et al., 2003). Similarly, our study of vericiguat indicates intrinsic blocking properties on the hERG K$^+$ channel do not translate into adverse effects when sufficient safety margins are established.

Vericiguat had no meaningful effect on QTc interval in dogs when administered at doses \leq7.5 mg/kg/day. This absence of an effect was observed in 4- and 39-week repeat-dose toxicity studies in beagle dogs. It is important to note a positive control was not used in these studies. As in vitro hERG K$^+$ channel studies and in vivo telemetered beagle dog assays were deemed negative in terms of meaningful QT prolongation and altered ventricular repolarization at the therapeutic dose, a positive control was waived and is supported by recent recommendations in a cardiac safety regulation protocol (Lester, 2021). Moxifloxacin is often used as a positive control in QT prolongation investigations to determine the sensitivity of an assigned assay owing to its expected prolongation of the QT interval, regardless of therapy area (Carlson et al., 2011; Langenickel et al., 2016; Demmel et al., 2018; Sun et al., 2020). Although a positive control was not per protocol in these experiments, a clinical QTc interval study in patients with chronic
coronary heart disease did use moxifloxacin as a positive control and similarly concluded that vericiguat 10 mg was not associated with a proarrhythmic risk (Boettcher et al., 2021).

In summary, there was no nonclinical evidence of an increased proarrhythmic risk based on comprehensive in vitro and in vivo assessment of vericiguat or its major N-glucuronide metabolite M-1—findings consistent with the lack of any evidence of proarrhythmia seen during the vericiguat clinical development program. The integrated risk assessment of these nonclinical data combined with existing clinical data (Boettcher et al., 2020) demonstrate that administration of vericiguat 10 mg once daily in patients with HF with reduced ejection fraction is not associated with a proarrhythmic risk (Boettcher et al., 2021).

Acknowledgments

The authors thank Michael Hoffmann as study director of the cardiovascular study in telemetered dogs and Susanne Herbold, Sarah Rimpel, Bharathi Balasubramanian, and Jixin Wang for conducting the automated voltage-clamp experiments.

Data Availability

The raw data are available upon reasonable request by an e-mail to the corresponding author.

Authorship Contributions

Participated in research design: Himmel, Vömel, Imredy.
Conducted experiments: Himmel, Vömel, Imredy.
Contributed new reagents or analytic tools: Himmel, Vömel, Imredy.
Performed data analysis: Himmel, Vömel, Imredy.
Wrote or contributed to the writing of the manuscript: Himmel, Lagrutta, Vömel, Amin, Imredy, Johnson, Vinzing, Presscott, Blaustein.

References

Fig. 3. Effects of vericiguat on (A) outward and (B) inward hERG K+, (C) hNav1.5, (D) hCav1.2, (E) hKvLQT1, and (F) hKv4.3 currents. Representative tracings from automated voltage-clamp experiments. Transfected cells were exposed to solvent (0.1% DMSO), vericiguat (1 and/or 10 µM), and the appropriate positive controls (quin, 10 or 300 µM; nif, 1 µM; HMR1556, 10 µM). Voltage-clamp protocols: hERG K+ (panels A, B), −80 mV (200 ms), +20 mV (1000 ms), −40 mV (outward tail)−120 mV (inward tail) for 500 ms, −80 mV (200 ms), repeated every 2 s; hNav1.5 (panel C), −80 mV (40 ms), −120 mV (500 ms), −35 mV (20 ms), −120 mV (500 ms), −80 mV (40 ms), repeated every 6 s; hCav1.2 (panel D), −60 mV (100 ms), +5 mV (200 ms), −60 mV (100 ms), repeated every 6 s; hKvLQT1 (panel E), −80 mV (200 ms), +50 mV (2500 ms), −120 mV (500 ms), −80 mV (200 ms), repeated every 12 s; hKv4.3 (panel F), −80 mV (550 ms), +40 mV (200 ms), −80 mV (10 ms), repeated every 12 s. n = 3–13. DMSO, dimethyl sulfoxide; hERG, human Ether-a-go-go Related Gene; HMR1556, positive control for hKvLQT1 K+ channel; nif, nifedipine; quin, quinidine; veri, vericiguat.