Consequences of pharmacological inhibition of cathepsin C using IcatC\textsubscript{XPZ-01} on maturation of granzyme zymogens in cytotoxic lymphocytes

Roxane Domain,1 and Brice Korkmaz2

1INSERM; and 2Centre d’Etude des Pathologies Respiratoires, INSERM U1100

Abstract ID 16611

Granzymes are serine proteinases present in cytotoxic lymphocytes and involved in elimination of virus infected and cancerous cells. As other related immune cell serine proteinases, granzymes are matured \textit{in vitro} by a cysteine proteinase called, cathepsin C (CatC). However, biochemical characterization of granzymes A and B in cytotoxic lymphocytes from Papillon-Lefèvre syndrome (PLS) patients with CatC deficiency allowed the highlighting of a CatC independent processing and maturating pathway. Patients with PLS retained significant granzyme activities (~50-60\%) in cytotoxic lymphocytes and displayed normal cytotoxicity against cancer cells (1). These results suggested that CatC is not the unique proteinase involved in the maturation of pro-granzymes in human lymphocytes. The presence of CatC-like proteinase(s) might provide a molecular explanation for the lack of a generalized cytotoxic T-cell activity in patients with PLS. Pharmacological targeting of CatC using a nitrile cell permeable inhibitor (IcatC\textsubscript{XPZ-01}) (2) resulted in ~50\% of Granzyme B inhibition in cytotoxic T-cells, showing that CatC-independent maturation was not altered.

References:
