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TABLE 3

Total and free brain /partition coefficients summarizing the pharmacokinetic studies of berzosertib in FVB wild-type, Berpl~'~, Mdrla/b~'~, and

Mdrla/b~'~ Berpl™

~ mice
LV. P.O. Steady State
Mdrla/b~'~ Mdrialb '~ Mdrla/b~'~
Wild-Type Berpl™'~ Mdria/b~'~ Berpl™'~ Wild-Type Berpl™'~ Wild-Type Berpl™'~
Kp,brain 0.64 0.84 2.36 17.13 0.70 13.9 0.8 14.0
Kpyu,brain 0.011 0.019 0.044 0.3426 0.012 0.278 0.014 0.28
DAfgree 1 1.73 4 31.15 1 23.16 1 20

P.O., oral administration

maintain an effective free concentration in vivo for a prolonged
duration for the berzosertib/TMZ combination.

Discussion

Despite the current multimodal treatment approach of sur-
gery, TMZ, and RT for GBM, the median survival of patients

A

is dismal, with most patients succumbing to their disease in
<24 months (Stupp et al., 2018). Therefore, development of
effective radio- or chemo-sensitizing strategies is a significant
unmet medical need. DNA repair pathways have been widely
studied in the last 2 decades with multiple molecules now in
clinical trials. Among these pathways, ATR is a key orchestra-
tor in the DDR after therapy-induced replication stress. In
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Fig. 9. Free/unbound spatial distribution of berzosertib in different regions of the brain after oral administration in mice with GBM 12 intracra-
nial tumors. Data represent mean + S.D., n = 4-5. *P < 0.05 and **P < 0.01. (A) Free/unbound concentrations in plasma, normal brain, tumor rim, and
tumor core and (B) free/lunbound concentration ratios in brain, tumor rim, and tumor core with respect to plasma after a dose of 20 mg/kg. (C) Free/
unbound concentrations in plasma, normal brain, tumor rim, and tumor core and (D) free/funbound concentration ratios in brain, tumor rim, and tumor

core with respect to plasma after a dose of 60 mg/kg.

this study, we evaluated the brain delivery of berzosertib, a
potent ATR inhibitor, and its potential chemosensitization
with TMZ for the treatment of GBM.

In vitro synergy studies performed in multiple GBM cell
lines demonstrated synergistic activity for the berzosertib/
TMZ combination with marked synergy when berzosertib
concentrations were between 100 and 300 nM. Thus, 100 nM
was established as the minimum effective concentration that
would be necessary for effective chemosensitization in vivo
with TMZ. Combination synergy scores were enhanced in
p53 mutant and MGMT methylated cell lines, which suggests
the possibility of increased sensitivity of berzosertib with
TMZ in these subsets of GBM PDX cell lines. These results
align with previous studies demonstrating that the absence
of wild-type p53 confers greater sensitivity to berzosertib in a
variety of cancers, and MGMT-deficient glioma cells showed
enhanced sensitivity to the berzosertib/TMZ combination
(Middleton et al., 2018; Jackson, 2019; Gorecki et al., 2020).

In vivo efficacy studies conducted in orthotopic (intracra-
nial) GBM 22 PDX models demonstrated a lack of survival
improvement after berzosertib/TMZ treatment. These in
vivo data contrasted with our in vitro synergy data in these
same models, and Jackson et al. have previously demon-
strated the efficacy of an ATR inhibitor and TMZ combina-
tion in flank tumor models derived from both LN229 and
GBM22 cell lines in vivo (Jackson, 2019). Collectively,
these findings suggest the possibility that drug delivery
may be impaired in intracranial tumors. Subsequent brain
distribution studies were conducted to investigate this
possibility.

In vivo pharmacokinetic studies were conducted after single
intravenous, oral, and steady-state infusion dosing. An intrave-
nous dose of berzosertib was administered to wild-type and trans-
porter knockout mice to determine systemic pharmacokinetic
parameters and the role of the efflux transporters P-gp and Berp
in limiting its brain delivery. Oral-dose pharmacokinetics were
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Fig. 10. Pharmacokinetic modeling to predict exposure of berzosertib in plasma and different regions of the brain. (A) Schematic of the pharmaco-
kinetic model. (B) Simulated plasma and brain concentrations overlayed with observed pharmacokinetic data for 20-mg/kg dose. (C) Simulated
plasma, brain, tumor rim, and tumor core total concentrations for 20-mg/kg dose. (D) Simulated plasma, brain, tumor rim, and tumor core total
concentrations for 60-mg/kg dose. (E) Simulated plasma, brain, tumor rim, and tumor core free concentrations for 60-mg/kg dose.

studied because the route of administration in the in vivo efficacy
studies was oral. Our in vivo studies clearly indicate that P-gp
plays a major role in restricting delivery of berzosertib into brain.
Although Berp does not play a significant role on its own (in the
presence of P-gp) in limiting the delivery of berzosertib, Mdria/
b/"BerpI™'~ mice had a total Kp,brain value that was greater
than the additive Kp from BerpIl™~ and Mdrla/b™'~ mice, which
indicates a functional compensation in the role of these two major
efflux transporters, P-gp and Berp, at the BBB. This compensa-
tion of P-gp and Berp at the BBB has been described for a variety
of compounds (Polli et al., 2008; Chen et al., 2009; Kodaira et al.,
2010; Agarwal et al., 2012; Laramy et al., 2018). The oral bio-
availability in wild-type mice was 67%, indicating that oral dos-
ing was feasible for in vivo efficacy studies. The oral
bioavailability was similar in Mdrla/b Berpl™~ mice (74%),
indicating that the efflux transporters in the intestine did not
affect drug absorption, as opposed to their restrictive effect in the
brain. A possible reason for this might be the high intestinal
lumen concentrations of berzosertib at the current dose compared
with those in the plasma, which may have led to the saturation
of the intestinal transporters (Lin and Yamazaki, 2003). Steady-
state infusion studies indicated that the efflux transporters signif-
icantly restricted the delivery of berzosertib to the brain and not
to other organs tested like the heart, kidney, liver, and muscle.
This is an important finding considering that understanding
delivery to these organs is critical in toxicological considerations
for the clinical translation of berzosertib.

Although the delivery of berzosertib was restricted by P-
gp and Berp, the Kp in brain in wild-type mice was 0.7
(after a single oral dose). This, however, is an incomplete
picture, since a Kp value close to unity does not necessarily
mean that drug in plasma effectively permeates across the
BBB. These “high” Kp values (close to unity) can be misin-
terpreted as efficient brain delivery of a drug and therefore
may not be an accurate predictor of its efficacious concen-
tration to the brain. Differences in relative binding affinity
of a drug to plasma and brain that can lead to change in
free drug partitioning across the BBB is an additional fac-
tor that needs to be considered. According to the free drug
hypothesis, only free drug is available to move across cell
membranes, and evaluation of BBB penetration requires a
critical understanding of parameters that influence the
movement of free/unbound drug across the BBB, including
Kpu, (Hammarlund-Udenaes et al., 2008). We found that
berzosertib is highly bound to brain tissues compared with
the plasma (~58-fold higher). We also found that the there
was no difference in binding in the plasma and brain of
wild-type and knockout mice of all genotypes. Extremely
high binding of berzosertib in brain compared with that in
the plasma led to a low Kpyy,,brain value of 0.011 in wild-
type mice. The importance of measuring the relative drug
binding in plasma and brain is critical to explain this dis-
agreement between Kp and Kp,,.
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Fig. 11. Factors involved in the observed lack of efficacy of berzosertib for GBM.

The use of elacridar, a dual inhibitor of P-gp and Berp, in
combination with berzosertib showed a modest 2-fold increase
in brain accumulation. This indicates that coadministration of
a transporter inhibitor might not be an effective option to
improve the brain accumulation of berzosertib.

We also determined the concentrations of berzosertib within
different regions of intracranial tumor—tumor core, tumor
rim, and normal brain—to determine whether our purported
effective concentration was achieved from the dosage regimen
employed in the in vivo efficacy study. The drug distribution
around the tumor was heterogeneous, with the rank order of
tumor core > tumor rim = normal brain. Although the total
drug concentrations achieved in all the regions were above
100 nM for the 60-mg/kg dose as used in the efficacy study
(Fig. 8), when the total concentration was converted to free
concentration by incorporating the brain and plasma binding
data, none of the brain regions had achieved the efficacious in
vitro free concentration of 36 nM (adjusted for binding in the
media used for in vitro synergy studies) (Fig. 9). The concen-
trations in the tumor core, tumor rim, and normal brain were
all multiplied by the free fraction obtained from the normal
brain in this case since we were not able to determine binding
in tumor core and rim separately. However, an earlier pub-
lished study for ponatinib, an epidermal growth factor recep-
tor inhibitor, indicated that the binding of the drug in tumor
core was lower than that in the tumor rim, which was similar
to the normal brain (Laramy et al., 2017). This indicates that

our assumption might not be ideal; however, in the case of
GBM, the tumor core is usually surgically resected, and there-
fore, drugs must reach the invasive tumor rim and normal
brain to prevent tumor regrowth. Similarity in the binding
between tumor rim and the normal brain, therefore, might
be a reasonable conservative assumption for berzosertib.

Utilizing data from our in vivo pharmacokinetic studies and
the tumor drug distribution study, we developed a pharmaco-
kinetic model for berzosertib that would be able to simulate
concentration-time profiles in the plasma, normal brain, tumor
rim, and tumor core. In simulated concentration-time profiles
for the in vivo efficacy study dose of 60 mg/kg, the free concen-
tration-time profiles in all the brain regions were well below
the free efficacious target concentration of 36 nM throughout
the entire time course of the dose (Fig. 10E). Assuming linear-
ity, this model can therefore be used to predict concentration-
time profiles for different dosing regimens and to aid in deter-
mining an efficacious dosing regimen of berzosertib in combi-
nation with TMZ.

In conclusion, the berzosertib/TMZ combination showed syn-
ergy in vitro in GBM cell lines and PDXs but not in orthotopic
tumors. Key factors driving this observation include restricted
brain delivery of berzosertib due to efflux at the BBB, a high
extent of brain binding, and heterogeneous drug distribution
within the tumor; however, further exploration is warranted
since mechanisms impacting efficacy are diverse and BBB
penetration is one aspect of drug delivery. Other factors
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include the maturity of the vascular bed, expression of efflux
transporters, integrity of the intercellular junctions, and per-
fusion within the tumor. As noted earlier, a previous study
showed a significant improvement in efficacy with the berzo-
sertib/TMZ combination in a flank tumor model of GBM 22
(Jackson, 2019). However, in this study, a 5-mg/kg dose of
TMZ was used compared with our TMZ dose of 50 mg/kg, and
the berzosertib/TMZ combination was not administered con-
currently. This suggests that dose, duration, and sequencing
of the combination are key parameters that must be consid-
ered when testing ATR inhibitors like berzosertib in combina-
tion with TMZ (Fig. 11). Determining efficacious synergistic
doses of TMZ is a key factor for the efficacy of this combina-
tion. In the case of berzosertib, dosing regimens should be
designed to ensure that the efficacious free concentrations can-
not only be achieved in vivo but also can be maintained over a
prolonged period to ensure inhibition of ATR. Determining the
effective dose of a combination therapy from in vitro synergy
studies, understanding the brain delivery of ATR inhibitors,
and using in vivo pharmacokinetic data to guide dosing regi-
mens in the in vivo efficacy studies in GBM PDXs form a
framework for the future preclinical testing of ATR inhibitors
in combination with DNA-damaging agents for the treatment
of GBM.
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