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ABSTRACT

Arsenic trioxide (ATO) is an anticancer agent used for the treat-
ment ofacute promyelocytic leukemia (APL). However,
5%-10% of patients fail to respond or experience disease
relapse. Based on poly(ADP-ribose) polymerase (PARP) 1
involvement in the processing of DNA demethylation, here we
have tested the in vitro susceptibility of ATO-resistant clones
(derived from the human APL cell line NB4) to PARP inhibitors
(PARPI) in combination with hypomethylating agents (azaciti-
dine and decitabine) or high-dose vitamin C (ascorbate), which
induces 5-hydroxymethylcytosine (5hmC)-mediated DNA de-
methylation. ATO-sensitive and -resistant APL cell clones were
generated and initially analyzed for their susceptibility to five
clinically used PARPI (olaparib, niraparib, rucaparib, veliparib,
and talazoparib). The obtained PARPI ICsq values were far be-
low (olaparib and niraparib), within the range (talazoparib), or
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above (rucaparib and veliparib) the C,.ax reported in patients,
likely as a result of differences in the mechanisms of their cyto-
toxic activity. ATO-resistant APL cells were also susceptible to
clinically relevant concentrations of azacitidine and decitabine
and to high-dose ascorbate. Interestingly, the combination of
these agents with olaparib, niraparib, or talazoparib resulted in
synergistic antitumor activity. In combination with ascorbate,
PARPI increased the ascorbate-mediated induction of 5hmC,
which likely resulted in stalled DNA repair and cytotoxicity.
Talazoparib was the most effective PARPI in synergizing with
ascorbate, in accordance with its marked ability to trap PARP1
at damaged DNA. These findings suggest that ATO and PARPI
have nonoverlapping resistance mechanisms and support fur-
ther investigation on PARPi combination with hypomethylating
agents or high-dose ascorbate for relapsed/ATO-refractory
APL, especially in frail patients.

SIGNIFICANCE STATEMENT

This study found that poly(ADP-ribose) inhibitors (PARPi) show
activity as single agents against human acute promyelocytic
leukemia cells resistant to arsenic trioxide at clinically relevant
concentrations. Furthermore, PARPi enhance the in vitro effica-
cy of azacitidine, decitabine, and high-dose vitamin C, all
agents that alter DNA methylation. In combination with vitamin
C, PARPI increase the levels of 5-hydroxymethylcytosine, likely
as a result of altered processing of the oxidized intermediates
associated with DNA demethylation.

Introduction

Acute promyelocytic leukemia (APL) is a subtype of acute
myeloid leukemia (AML) with aggressive clinical presentation
that is characterized by the reciprocal balanced translocation
t(15;17), involving the promyelocytic leukemia (PML) and reti-
noic acid receptor o (RARA) genes. The PMIL/RARA fusion pro-
tein blocks myeloid differentiation at the promyelocyte stage
and induces aberrant self-renewal of APL cells with disruption
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of normal hematopoiesis. PML-RARA acts as a transcriptional
repressor of RARA target genes, deregulating the homeostatic
control of development, expansion, and maturation/differentia-
tion of hematopoietic stem cells. Moreover, PML-RARA inter-
feres with the normal formation of PML-nuclear bodies,
leading to impaired stress response, decreased DNA damage
repair, and reduced cell propensity to undergo senescence and
apoptosis (Gurnari et al., 2019).

For several years, treatment of newly diagnosed APL has
been centered on the use of all-trans retinoic acid (ATRA) in
combination with an anthracycline, resulting in long-term re-
mission rates above 80% (Sanz et al., 2009). For low-risk APL,
ATRA plus arsenic trioxide (ATO) is the standard of care in
the frontline setting (Sanz et al., 2019), with long-term re-
sponse rates exceeding 90% (Lo-Coco et al., 2013; Cicconi et
al., 2020). The current National Comprehensive Cancer Net-
work treatment guidelines for APL have also included ATO in
the frontline therapy of high-risk APL patients without cardi-
ac dysfunction, in combination with ATRA and an anthracy-
cline or ATRA and the antibody-drug conjugate gemtuzumab
ozogamicin (i.e., an anti-CD33 monoclonal antibody conjugated
with the DNA-damaging agent calicheamycin). Moreover,
ATO is used for relapsed/refractory APL with or without
ATRA, gemtuzumab ozogamicin, or an anthracycline, depend-
ing on remission duration and the chemotherapeutic agents
used for first-line therapy (https:/www.nccn.org/professionals/
physician_gls/pdf/faml.pdf).

In APL blasts, ATO binds to the PML portion of the hybrid
oncoprotein and stimulates its sumoylation, polyubiquitina-
tion, and proteasomal degradation. This process is followed by
the restoration of PML-nuclear bodies and induction of apopto-
sis in APL cells (Noguera et al., 2019). ATO also possesses ad-
ditional mechanisms, including generation of reactive oxygen
species (ROS) (Miller et al., 2002). Despite the excellent re-
sults obtained with ATRA/ATO therapy, 5%—10% of patients
develop relapsed/refractory disease (Sanz et al., 2019), and in
patients not eligible for allogeneic hematopoietic cell trans-
plantation or who fail to respond to second-line agents, enroll-
ment in a clinical trial is encouraged.

The best-characterized molecular mechanism involved in
ATO resistance is represented by missense somatic mutations
within the B2 ATO-binding domain of PML gene (40% of
ATO-resistant APL cases), which prevent ATO binding and
impede degradation of PMI/RARA oncoprotein (Goto et al.,
2011; Zhu et al., 2014; Madan et al., 2016). The most common
PML-A216V/T amino acidic mutation can also be found in the
unrearranged PML allele (Iaccarino et al., 2016). Other PML-
unrelated mechanisms may contribute to ATO resistance,
such as cellular metabolic adaptation, dysregulation of redox
signaling, presence of the X-RARA oncoprotein instead of
PML-RARA, and mutations in other genes (Alex et al., 2014;
Balasundaram et al., 2016; Iaccarino et al., 2019; Noguera et
al., 2019).

In the search of potential therapeutic approaches for APL
relapsed/refractory to ATO, we have generated an in vitro
model of APL human sublines with acquired resistance to

ATO and focused our attention on poly(ADP-ribose) polymer-
ase inhibitors (PARPi) based on preclinical evidence of their
activity against myeloid malignancies (Faraoni et al., 2015,
2018; Esposito et al., 2015; Nieborowska-Skorska et al., 2017;
Zhao and So, 2017; Kohl et al., 2019). These agents belong to a
new class of orally administered anticancer drugs that mainly
act by dampening the activity of PARP1, a nuclear enzyme re-
quired for sensing and repairing DNA damage. Five PARPi
have recently been approved for advanced/recurrent ovarian,
breast, pancreatic, or prostate cancers with defective homolo-
gous recombination due to mutated BRCA1/2 genes or other
genetic/epigenetic alterations leading to reduced repair of
DNA double-strand breaks (Faraoni and Graziani, 2018).
Moreover, these and other PARPi are currently under clinical
investigation as monotherapy and in combination with tar-
geted agents or chemotherapy for several types of cancers, in-
cluding hematological malignancies (www.clinicaltrials.gov).

Our previous studies revealed that PARPi exerted cytotoxic
effects in primary cultures of AML blasts and leukemia cell
lines. Among the different AML cell lines tested, the promyelo-
cytic cell line NB4 was the most sensitive to the PARPi olapar-
ib (Faraoni et al., 2015). In addition, studies in murine and
human AML grafts revealed that PMI/RARA translocation-
driven leukemia was extremely sensitive to olaparib and veli-
parib (Esposito et al., 2015).

In the present study, we have compared the antitumor ac-
tivity of different PARPi (olaparib, niraparib, rucaparib, tala-
zoparib, and veliparib) in APL cells rendered resistant to ATO
as monotherapy and combined with agents endowed with anti-
leukemic activity and whose mechanism of action involves a
DNA damage response with PARP1 intervention. In particu-
lar, PARPi have been tested in combination with the DNA hy-
pomethylating agents azacitidine and decitabine or with high-
dose vitamin C (hereafter referred to as ascorbate), which has
been shown to promote 5-hydroxymethylcytosine (5hmC)-me-
diated DNA demethylation by enhancing the activity of ten-
eleven translocation (TET) enzymes (Minor et al., 2013). Re-
sults indicated that olaparib, niraparib, and talazoparib in
combination with the aforementioned DNA demethylating
agents exerted synergistic antiproliferative effects against
APL cells, including those resistant to ATO. The increased
DNA damage observed in APL cells exposed to PARPi plus
ascorbate was associated with a significant increase in
the levels of 5hmC, likely as a consequence of altered process-
ing of the oxidized intermediates associated with DNA
demethylation.

Materials and Methods

Generation of NB4 Clones and Cell Culture Conditions.
The promyelocytic leukemia cell line NB4 (American Type Culture
Collection, Manassas, VA) was cultured in RPMI 1640 medium (Sig-
ma-Aldrich, St. Louis, MO) supplemented with 2 mM r-glutamine
(EuroClone, Pero, Milan, Italy), 1% penicillin/streptomycin (Euro-
Clone), and 20% fetal bovine serum at 37°C in a humidified CO; incu-
bator. Four different clones (CL1, CL2, CL3, and CL4) were produced
by limiting dilution from the NB4 cell line at early passages from the

ABBREVIATIONS: AML, acute myeloid leukemia; APL, acute promyelocytic leukemia; ATO, arsenic trioxide; ATRA, all-trans retinoic acid;
BER, base excision repair; Cl, combination index; DCF, 2,7-dichlorodihydrofluorescein; DHA, dehydroascorbate; DHE, dihydroethidium; Fa,
fraction affected; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; 5hmC, 5-hydroxymethylcytosine; MDS, myelodysplastic syndrome;
PARP, poly(ADP-ribose) polymerase; PARPi, PARP inhibitors; PI, propidium iodide; PML, promyelocytic leukemia; RARA, retinoic acid recep-

tor o; ROS, reactive oxygen species; TET, ten-eleven translocation.
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initial stock purchased from American Type Culture Collection
(Fig. 1). To generate ATO-resistant cells, cell clones were exposed to
increasing concentrations of ATO (0.1-1 uM) for about 1 year, and the
corresponding ATO-resistant clones were named CL1-R, CL2-R, CL3-
R, and CL4-R. At this time, to preserve the resistant phenotype, cells
were frozen in several aliquots. ATO-resistant clones were maintained
in culture with 1 pM ATO; experiments were performed after at least
two passages from the last ATO treatment. The parental NB4 cell line
and its ATO-sensitive and -resistant clones were authenticated by
testing the expression of the fusion PML/RARA gene (see below).

Drug Treatment and Survival Assay. The ATO (As,03; Sig-
ma-Aldrich) stock solution was prepared by dissolving the drug in 1 N
NaOH and diluting it in PBS (EuroClone) at a final concentration of 2
mM. The stock solutions of PARPi (2 mM olaparib, talazoparib, and
veliparib; 20 mM niraparib and rucaparib; Selleck Chemicals, Hous-
ton, TX) were prepared by dissolving the powder of each compound in
DMSO (Sigma-Aldrich), followed by dilution in RPMI 1640 medium.
Decitabine (Cayman Chemical, Ann Arbor, MI) and azacitidine (Sig-
ma-Aldrich) were dissolved in PBS (2 mM) and DMSO (20 mM), re-
spectively. Ascorbate (r-ascorbate; Sigma-Aldrich) was diluted in
RPMI 1640 medium at 250 mM concentration. Drug aliquots were
stored at —80°C, and for each experiment, a new aliquot was thawed
and used. In all experiments, the DMSO final concentration in the cul-
ture medium was always <0.01% (v/v).
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Fig. 1. ATO-resistant clones maintain APL phenotype. (A) Flowchart
of the generation of ATO-sensitive and -resistant NB4 clones. Four dif-
ferent clones were isolated by limiting dilution from the bulk NB4 cell
line (CL1, CL2, CL3, CL4). Each clone was independently exposed to
increasing concentrations of ATO (0.1-1 uM) to generate the corre-
sponding four ATO-resistant clones (CL1-R, CL2-R, CL3-R, CL4-R). (B)
Expression of the PMIL/RARA transcript evaluated by RT-PCR analysis
in ATO-sensitive and -resistant clones and the NB4 cell line. The ABL
proto-oncogene 1, non-receptor tyrosine kinase (ABL1) was used as a
housekeeping gene. (C) Proliferation rate of ATO-sensitive and -resistant
clones analyzed by cell count and trypan blue exclusion assay (triplicate
counts) at 24, 48, and 72 hours. Each plot shows cell growth of the ATO-
sensitive clone and its ATO-resistant counterpart at the indicated times.
Values are means = S.D. of three independent experiments.
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For cell treatment, drugs were added at the beginning of each ex-
periment and left in culture medium until cell harvesting. NB4 paren-
tal cell line and its clones were treated with the PARPi olaparib
(1.25-20 pM), niraparib (1.25-10 pM), talazoparib (12.5-100 nM), ru-
caparib (1.25-10 pM), and veliparib (5-20 uM) as single agents or in
combination with azacitidine (1.25-1 pM), decitabine (25-500 nM), or
ascorbate (0.25-1 mM). Drug concentrations tested always included
the plasma peak concentration (Cp,.) values reached in patients with
cancer.

For survival assays, cells were analyzed by the MTS viability test
(Promega, Madison, WI), according to the manufacturer’s instructions,
or by trypan blue dye exclusion count. The drug concentration capable
of inhibiting 50% of cell growth (IC59) compared with the untreated
control was extrapolated from the dose-response curves by using line-
ar regression (GraphPad Prism 5 software; GraphPad Inc., San Diego,
CA). The dose-effect curves were analyzed by the median-effect meth-
od of Chou and Talalay with the CompuSyn software (ComboSyn Inc.,
Paramus, NJ). The combination index (CI) indicates a quantitative
measure of the drug combination effects in terms of synergistic
(CI < 1), additive (CI = 1), or antagonistic effect (CI > 1).

Apoptosis was evaluated by flow cytometry analysis of the sub-G1
fraction after cell fixation in ethanol, treatment with 10 ug/ml RNase
A (Sigma-Aldrich), and staining with 100 yug/ml propidium iodide (PI)
(Sigma-Aldrich) for 20 minutes at 37°C in the dark. Samples (5 x 10*
cells) were acquired on a BD FACSCalibur flow cytometer and evalu-
ated using CellQuest Software (BD Biosciences, San Jose, CA).

Molecular Analysis of PML/RARA. Total RNA was isolated by
Trizol reagent (Invitrogen, Thermo Fisher Scientific, Waltham, MA).
In total, 1 pug of RNA was reverse-transcribed with random hexamer
primers and amplified (reagents from Life Technologies, Thermo Fish-
er Scientific) with the GeneAmp PCR System 9700 (Applied Biosys-
tems, Foster City, CA). RT-PCR for PMI/RARA detection was carried
out using standard protocols (van Dongen et al., 1999).

For sequencing the region of PML gene corresponding to the B2
ATO-binding domain, the PMI/RARA fusion transcript was amplified
by polymerase chain reaction and analyzed by Sanger sequencing as
reported elsewhere (Iaccarino et al., 2016).

Immunoblot Analysis of Apoptosis and DNA Damage
Markers. Total cellular proteins were extracted using a buffer con-
taining 50 mM Tris-HCI (pH 7.5), 5 mM EDTA, 5 mM EGTA, 150 mM
NaCl, 1% Nonidet P-40, 1 mM Na orthovanadate, 20 mM pf-glycero-
phosphate, 1 mM AEBSF (Sigma-Aldrich), and protease inhibitor
cocktail (Thermo Fisher Scientific). Protein aliquots were loaded onto
SDS polyacrylamide gel electrophoresis and blotted to nitrocellulose
membranes. Filters were incubated with the following antibodies:
anti-PARP1 (1:1000, C2-10; Trevigen, Gaithersburg, MD), anti—cas-
pase 8 (1:500, 12F5; Enzo Life Sciences, NY), anti—cleaved caspase
8 (1:400, Asp374; Cell Signaling Technology, Danvers, MA), anti—cas-
pase 3 (1:1000, D3R6Y; Cell Signaling Technology), anti—cleaved cas-
pase 3 (1:1000, D175; Cell Signaling Technology), anti-yH2AX (1:1000,
JBW301; Millipore, Burlington, MA), anti—glyceraldehyde 3-phos-
phate dehydrogenase (GAPDH) (1:1000, 14C10; Cell Signaling Tech-
nology), and anti—f-actin (1:2000, A2066; Sigma-Aldrich). Horseradish
peroxidase—conjugated IgGs were used as secondary antibodies
(1:5000, anti-mouse A4416; Sigma-Aldrich; anti-rabbit NA934; GE
Healthcare, Chicago, IL). The autoradiograms were subjected to densi-
tometric analysis using the ImagedJ 1.45s software (Schneider et al.,
2012), and results were normalized against GAPDH or $-actin.

Determination of Intracellular ROS. Total intracellular ROS
were evaluated by the 2,7-dichlorodihydrofluorescein diacetate (CM-
HyDCFDA; Invitrogen, Thermo Fisher Scientific) reagent that is de-
acetylated by nonspecific esterases and oxidized in 2,7-dichlorodihy-
drofluorescein (DCF) fluorescent compound by hydroxyl and peroxyl
radicals or other intracellular ROS in the cells. Cytosolic superoxide
anion production was detected by dihydroethidium (DHE; Invitrogen,
Thermo Fisher Scientific) reagent. DHE is oxidized by superoxide an-
ion in 2-hydroxyethidium, which becomes fluorescent after intercala-
tion into DNA. For ROS analysis, cells were harvested after 4 hours of
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Fig. 2. Differential sensitivity of ATO-sensitive and -resistant APL clones to the antiproliferative, apoptotic, and DNA-damaging effects of ATO.
(A) Analysis of APL clones’ susceptibility to the antiproliferative effects of ATO. All NB4-derived cell clones were treated with ATO (0—2 uM), and
after 3 days, proliferation was evaluated by the MTS assay. The mean IC;5y values + S.D., calculated from at least three independent experiments,
are reported. Statistical analysis was assessed by unpaired ¢ test: *P < 0.05; **P < 0.01. (B) Apoptosis analysis. Induction of apoptosis was evalu-
ated by PI staining and flow cytometry of untreated cells (white bars) or cells treated with 0.5 uM (gray bars) and 1 pM (black bars) ATO at 48
hours after drug exposure. The results of three independent experiments are expressed as mean percentages + S.D. of Pl-positive cells in ATO-
sensitive (left panel) and -resistant (right panel) clones. Statistical analysis was performed by unpaired one-way ANOVA (*P < 0.05;
**P < 0.01; ***P < 0.001). (C) Western blot analysis of proteins associated with the apoptotic pathway (PARP1, caspase 8 and 3) and DNA dam-

age (yH2AX). GAPDH was used as a housekeeping gene.



treatment with graded concentrations of ascorbate. Cells (5 x 105)
were incubated with 5 pM of CM-H,DCFDA or DHE at 37°C for 30
minutes in 5% fetal bovine serum in PBS and analyzed by the BD
FACSCalibur flow cytometer.

Analysis of 5hmC by Dot Blot Assay. Cells were treated with
ascorbate or PARPI (i.e., olaparib, niraparib, or talazoparib), as single
agents or in combination, for 24 hours, and then genomic DNA was ex-
tracted with DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany).
Dot blots were performed as previously published (Ciccarone et al.,
2018). Briefly, DNA was denatured in 0.4 N NaOH, 10 mM EDTA, at
95°C for 10 minutes and neutralized with an equal volume of cold 4 M
ammonium acetate (pH 7.0). Starting from 2 pg of denatured DNA, 2-
fold dilutions of each sample were spotted on the nylon membrane
Hybond-N+ (GE Healthcare) in an assembled Bio-Dot apparatus (Bio-
Rad Laboratories, Hercules, CA). Each well was washed with 0.4 N
NaOH, 10 mM EDTA, and then 2x saline-sodium citrate buffer. After
baking at 80°C for 15 minutes, air-dried membranes were blocked in
5% skimmed milk in Tris-buffered saline/Tween 20and incubated
with anti-5hmC antibody (39769; Active Motif, Carlsbad, CA) and
anti-rabbit horseradish peroxidase—conjugated secondary antibody.
Dot-blot signals were revealed by chemiluminescence. Equal spotting
of total DNA onto the membrane was checked by staining the same
blotted filter with 0.02% methylene blue in 0.3 M sodium acetate (pH
5.2).

Statistical Analysis. Statistical analysis was performed by using
the GraphPad Prism 5 software, and data were reported as means +
S.D. Statistical analysis of the differences in IC5, values between two
groups was performed by unpaired Student’s ¢ test. For multiple com-
parisons, unpaired one-way ANOVA analysis followed by least signifi-
cant difference (LSD) test was used. All statistical tests were two-
sided. Differences were considered statistically significant when P <
0.05.

Results

Generation of ATO-Resistant Clones. The NB4 cell
line was originally derived from the bone marrow of a 23-year-
old woman with APL (French-American-British classification
system M3) (Lanotte et al., 1991). From this cell line, we gen-
erated four clones by limiting dilution (CL1, CL2, CL3, and
CL4), and these were subsequently exposed to increasing con-
centrations of ATO (0.1-1 uM) within a time frame of 1 year
to generate the corresponding ATO-resistant clones (CL1-R,
CL2-R, CL3-R, and CL4-R) (flowchart in Fig. 1A). Sensitive
and resistant clones were characterized for PMI/RARA ex-
pression by RT-PCR. All NB4 clones, including the ATO-resis-
tant ones, maintained the expression of the fusion PML/RARA
gene (Fig. 1B). Sequencing of the PML allelic region corre-
sponding to the B2 ATO-binding domain indicated that all
ATO-resistant clones lacked the PML-A216V/T mutation or
other mutations in the PML B2 domain (data not shown).

Since the proliferation rate might affect tumor cell response
to ATO, we analyzed the growth pattern of the APL clones by
cell count and found no significant differences between the
ATO-sensitive clones and their corresponding ATO-resistant
counterparts (Fig. 1C).

The in vitro susceptibility to ATO antiproliferative effects of
the parental and ATO-selected clones or of the NB4 bulk cell
line was analyzed by MTS assay after 3 days of treatment
with graded drug concentrations. The ATO ICy in the resis-
tant clones (2.6—4.5 pM range) was 5- to 9-fold higher than in
the corresponding sensitive clones (0.5-0.9 M range) (Fig.
2A). Analysis of apoptosis after treatment with 0.5 and 1 uM
ATO revealed the induction of cell death in ATO-sensitive
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clones in a concentration-dependent manner, whereas no or
marginal apoptotic effects (at the higher concentration tested)
were observed in ATO-resistant cells (Fig. 2B). Consistent
with the results of flow cytometry, showing apoptotic induction
in ATO-sensitive cells, immunoblot analysis demonstrated
that this effect was associated with cleavage of PARP1, cas-
pase 3, and caspases 8, the latter indicating activation of the
apoptotic extrinsic pathway. Moreover, ATO induced DNA
damage only in ATO-sensitive clones, as evidenced by the
high expression levels of histone 2AX phosphorylation at ser-
ine 139 (yH2AX) (Fig. 20).

ATO-Resistant Clones Are Sensitive to PARPi. Re-
cent preclinical studies have shown that PARPi exert cytotoxic
effects against myeloid malignancies (Faraoni, et al., 2019a
and b; Fritz et al., 2021). To investigate the potential activity
of different PARPi in APL cells, ATO-sensitive and -resistant
NB4 clones as well as the bulk cell line were exposed to in-
creasing concentrations of olaparib, niraparib, talazoparib, ru-
caparib, and the investigational PARPi veliparib. Cell growth
was analyzed by MTS assay on day 6 after a single exposure
to the PARPiI. In fact, based on our previous studies, the anti-
proliferative activity of PARPi in myeloid tumor cells requires
prolonged drug exposure (Faraoni et al., 2015, 2018, 2019a).
The drug concentrations tested in the experiments always in-
cluded the plasma C,,.x reported in patients with cancer dur-
ing phase 1 clinical trials (C,,.x ranges were represented by
dotted lines in Fig. 3) (Fong et al., 2009; Kummar et al., 2009;
Sandhu et al., 2013; Mateo et al., 2016; de Bono et al., 2017;
Kristeleit et al., 2017; Nishikawa et al., 2017; Shapiro et al.,
2019). All clones and the NB4 cell line were sensitive to ola-
parib with ICs, values lower (2.9-12.1 uM) than the reference
Cax values (range 16-22 pM). Moreover, the ATO-resistant
CL1-R and CL4-R clones showed significantly lower suscepti-
bility to olaparib compared with their ATO-sensitive counter-
parts (Fig. 3A). All clone pairs presented comparable
susceptibility to niraparib with ICsq values (0.7-2.0 uM) below
or within the Cy,., range (1.2—4.4 uM) (Fig. 3B). In the case of
talazoparib, the IC5q values of most clones (five of eight clones;
16.0-56.7 nM) were below or within the C,,,x (30—-60 nM), and
no significant differences were observed between ATO-sensi-
tive and -resistant clones, except for the CL3/CL3-R couple,
with CL3-R being significantly more sensitive to talazoparib
than CL3 (Fig. 3C). Regarding rucaparib and veliparib, in al-
most all cases (seven of eight clones for rucaparib and eight of
eight clones for veliparib), the obtained ICsy values were above
the C.x values (0.6-9.5 uM and 2.6-13.5 pM, respectively)
(Fig. 3, D and E). Similar to what was observed with talazo-
parib, CL3-R was also more susceptible to these PARPi com-
pared with its parental CL3 clone. Overall, these results
indicated that ATO-resistant NB4 clones were still responsive
to clinically achievable concentrations of the PARPi olaparib,
niraparib, and in most cases, talazoparib.

PARPi in Combination with Hypomethylating
Agents Induce Synergistic Growth-Inhibitory Effects
in ATO-Sensitive and -Resistant APL Clones. Based on
our previous report on the synergistic cytotoxic effects induced
by the PARPI olaparib in AML and MDS cells when tested in
combination with hypomethylating agents (Faraoni, et al,,
2019a), we have investigated the activity of azacitidine and
decitabine against ATO-sensitive and -resistant APL cells, as
single agents or in association with the PARPi. As shown in
Fig. 4, A and B, in all cell clones, azacitidine and decitabine



390

Giansanti et al.

A olaparib

L —
S 15 fTTTTTTTTTTTTTTTommmomoooes
‘%ﬁ, 10 -
S) 5 |

NN islisisiEisll |

&(}\’% &&&O’)’ A u%&v
B niraparib
e
— 3 7
=
2 2
]
S B ECTE '
0
N 2 W&
& S (J S % O ¥
C talazoparib
200 -
150 A
=
£ 100 A
o | ﬁ_ _J _____ J _____
— 50 A ’—T—“
0
Nk D <
7 T T PP T
D rucaparib
25 -
20 A
g 15 |
3 10 A
©
5_
0
R NN B R
O'\’ T O S
E veliparib

&
Fig. 3. Susceptibility of ATO-sensitive and -resistant APL clones to the

antiproliferative effects of different PARPi. NB4 cell clones were treated
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IC5 values, calculated 3 days after drug exposure, were with-
in the range of clinically relevant concentrations previously re-
ported for these drugs (Cashen et al., 2008; Keating, 2012).
Interestingly, the growth of CL1-R and CL4-R clones was sig-
nificantly more inhibited compared with their corresponding
ATO-sensitive counterparts. Conversely, in other cases, no dif-
ferences in azacitidine or decitabine ICs, values were observed
between ATO-sensitive and -resistant clones, except for the
CL2 clone, which showed higher sensitivity to decitabine com-
pared with its ATO-resistant counterpart (Fig. 4, A and B).
These findings suggested that there was no direct correlation
between the susceptibility profile to ATO of APL clones and
the response to both hypomethylating agents.

To assess the activity of hypomethylating agents in combi-
nation with PARPi, CL2 and CL2-R cells were exposed to
increasing concentrations of azacitidine (0.125-1 uM) or deci-
tabine (0.031-0.5 pM) together with a fixed concentration of
the PARPi that, based on our analysis, were the most active
when tested as single agents (i.e., olaparib, niraparib, and ta-
lazoparib). The clone 2/2R couple was chosen because no sig-
nificant differences were observed in the susceptibility to the
PARPi tested between the ATO-sensitive and -resistant cells
(Fig. 3). Analysis of the inhibitory effects on cell proliferation
exerted by the drug combination was performed after 3 days
of treatment because of the more rapid antiproliferative effects
of the cytidine analogs compared with PARPi. Results indicat-
ed that the drug combination induced a greater inhibition of
cell growth compared with the single hypomethylating agents
in both ATO-sensitive and ATO-resistant clones (Fig. 4C). As
assessed by the CompuSyn method (Chou, 2010), synergis-
tic effects were observed regardless of the type of PARPi
associated with azacitidine or decitabine, both in ATO-
sensitive and -resistant clones (Fig. 4C), with CI values
largely below 1 (dotted line of the Fa-CI plots) (Fig. 4D).
The strong synergism observed with the combination of
these drugs in APL cells is in agreement with previous
data obtained with AML cell lines (Orta et al., 2014; Mu-
varak et al., 2016; Faraoni et al., 2019b) and primary cul-
tures of MDS samples (Faraoni et al., 2019a).

Ascorbate Induces Synergistic Antiproliferative
Effects in Combination with the PARPi Niraparib
and Talazoparib. Recent in vitro and in vivo preclinical evi-
dence indicates that high-dose ascorbate (i.e., mM concentra-
tions) has cytotoxic activity against AML and APL cells
(Mastrangelo et al., 2015; Cimmino et al., 2017; Noguera et
al., 2017). In this study, NB4 clones were treated with graded
concentrations of ascorbate (0.125-2 mM), and cell prolifera-
tion was assessed by cell count after 3 days of culture (Fig.
5A), a time point commonly used for evaluating ascorbate
antiproliferative activity in other cellular models (Cimmino et
al., 2017; Noguera et al., 2017). The obtained ascorbate ICsq
values ranged from 0.6 to 1.8 mM (F'iig. 5B), values comprising
the range of plasma concentrations detected in cancer patients
treated with high doses of this agent (Hoffer et al., 2008; Ngo

with increasing concentrations of the indicated PARPi, as described in
Materials and Methods. After 6 days, proliferation was assessed by MTS
assay, and the mean ICs, values were calculated. A) olaparib; B) nirapar-
ib; C) talazoparib; D) rucaparib; E) veliparib. The dotted line in each his-
togram represents the C,,., range for each PARPi reported in clinical
studies. Values are means + S.D. of three independent experiments. Sta-
tistical analysis was calculated by unpaired ¢ test (*P < 0.05; **P < 0.01).
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Fig. 4. Antiproliferative effects of hypomethylating agents as single
agents or combined with PARPi in ATO-sensitive and -resistant APL
cells. Susceptibility of NB4 clones to (A) azacitidine (AZA) or (B) decita-
bine (DAC) as single agents. NB4 cell clones were treated with azaciti-
dine (0.125-2 pM) and decitabine (0.125-1 uM), followed by MTS
assay. Drug ICsq values were evaluated after 3 days of treatment. Sta-
tistical analysis of the results from three independent experiments was
performed by unpaired ¢ test (*P < 0.05). (C) Antiproliferative effects of
azacitidine or decitabine with a fixed concentration of the PARPi ola-
parib, niraparib, or talazoparib. ATO-sensitive (CL2) and -resistant
(CL2-R) clones were treated with the indicated concentrations of ola-
parib (OLA, 2.5 uM), niraparib (NIR, 1.25 uM), or talazoparib (TAL, 25
nM) in combination with increasing concentrations of azacitidine (AZA,
0.125-1 pM) or decitabine (DAC, 31.25-500 nM). After 3 days, prolifer-
ation was evaluated by cell count in triplicate. Data are represented as
surviving fraction of PARPi/azacitidine (left panel) or PARPi/decitabine
(right panel) combined treatments in ATO-sensitive and -resistant CL2
clones. Values are means + S.D. of three independent experiments. (D)
PARPi/azacitidine (left panel) or PARPi/decitabine (right panel) com-
bined effects were analyzed by CompuSyn software. Each Fa-CI plot
(or Chou-Talalay plot) indicates the CI as a function of the fraction af-
fected (Fa). CI < 1, synergistic (values below the dotted line); CI = 1,
additive; CI > 1, antagonist.

et al., 2019). Interestingly, no significant differences were ob-
served between ATO-sensitive and -resistant cells, indicating
that there is no crossresistance between ascorbate and ATO.
Since ascorbate has been reported to induce a TET2-mediat-
ed increase of 5hmC levels, whose processing requires base ex-
cision repair (BER) and PARP1 intervention (Pastor et al.,
2013; Cimmino et al., 2017), we investigated the effect of its
combination with PARPi on APL cells. Fixed PARPi concen-
trations were combined with graded concentrations of ascor-
bate. The antiproliferative effects were assessed after 3 days
of treatment by cell count, and results were reported as prolif-
eration curves in Fig. 5C (top panels, ATO-sensitive clones;
bottom panels, ATO-resistant clones). The ascorbate combina-
tion with olaparib exerted synergistic effects only in three out
of the eight clones (i.e., CL2, CL2-R, CL3-R), whereas its com-
bination with niraparib resulted in additive effects in CL1 and
CL1-R clones and synergistic effects in all the other clones.
Notably, the ascorbate/talazoparib combination was highly ef-
fective in all ATO-sensitive and -resistant clones, with
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extremely low CI values (Fig. 5D), indicating this PARPi as
the best candidate to be combined with ascorbate.

PARPi in Combination with Ascorbate Increase
DNA Damage and 5-Hydroxymethylcytosine Levels.
To investigate whether cotreatment with PARPi and ascorbate
might enhance DNA damage, we first evaluated yH2AX ex-
pression by immunoblot analysis in the two ATO-resistant
CL2-R and CL3-R clones, in which the combination was syner-
gistic with all three PARPi tested (i.e., olaparib, niraparib,
and talazoparib). As single agents, ascorbate (1 mM) and the
PARPi induced low or moderate levels of yH2AX (Fig. 6A).
Conversely, the ascorbate/PARPi combination significantly in-
creased YH2AX expression compared with both single agents,
indicating a significantly higher level of unrepaired DNA dam-
age. This effect was more evident with 1 mM ascorbate: in
CL2-R cells, it was observed with all three PARPi, whereas in
CL3-R cells, it was observed mainly with talazoparib (Fig. 6A).

High-dose ascorbate was previously reported to generate
ROS (Chen et al., 2007) that contribute to DNA damage (Kim
et al., 2018). However, in our cellular model, ascorbate concen-
trations below 2 mM did not increase either DCF or DHE fluo-
rescence, tested as indicators of total intracellular ROS and
cytosolic superoxide anion, respectively (Fig. 6B). Having ex-
cluded induction of DNA damage by oxidative stress, we eval-
uated whether the increase of yH2AX expression observed
after APL cell exposure to ascorbate in combination with PAR-
Pi could be related to altered processing of 5hmC. In fact,
ascorbate is a cofactor of TET enzymes, which catalyze the oxi-
dation of 5-methylcytosine to 5hmC and other intermediates
that are processed by BER during active DNA demethylation.
Thus, when cells are treated with ascorbate, the rate of initial
oxidation of 5-methylcytosine increases with consequent aug-
mented formation of 5hmC (Gillberg et al., 2018). Since inhibi-
tion of PARP1 was suggested to block the BER-mediated
processing of the oxidized intermediates associated with DNA
demethylation (Cimmino et al., 2017), we verified whether the
increase of DNA damage detected when PARPi were added to
ascorbate was due to ineffective BER-mediated processing of
5hmC with a consequent rise of its levels. Indeed, in CL2-R
cells, 1 mM ascorbate induced higher 5hmC levels compared
with untreated or PARPi-treated cells (Fig. 6C). More interest-
ingly, the addition of 50 nM talazoparib significantly increased
5hmC accumulation compared with ascorbate alone (Fig. 6C).
Similar results were also obtained when ascorbate was com-
bined with olaparib or niraparib and in another ATO-resistant
clone (i.e., CL3-R), in which the drug combination resulted in
synergistic antiproliferative effects. Conversely, combined
treatment with ascorbate and olaparib of clone CL1-R did not
further increase 5hmC levels compared with ascorbate alone
(Fig. 6D). For this clone, the olaparib concentration tested (i.e.,
2.5 M) was markedly below the IC5¢ and did not result in
synergistic antiproliferative effects with ascorbate (Fig. 5C).
These results suggest that the synergistic cytotoxic effects ob-
served when ascorbate was associated with PARPiI are at least
in part due to the blockade of BER activity during the demeth-
ylation process with consequent accumulation of 5mhC.

Discussion

In the present study, we demonstrated for the first time
that PARPi increase the in vitro antiproliferative activity of
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Fig. 5. Antiproliferative effects of ascorbate as a single agent or combined with PARPi in ATO-sensitive and -resistant APL cells. (A and B) Sus-
ceptibility of ATO-sensitive and -resistant clones to ascorbate as a single agent. NB4 clones were treated with increasing concentrations of ascor-
bate (0.25-2 mM), and after 3 days, proliferation was evaluated by cell count. The surviving fraction (A) and ICso values (B) were calculated for
the parental NB4 cell line and ATO-sensitive clones (left panel) and ATO-resistant clones (right panel) (A). Results are the mean values + S.D. of
three independent experiments. (C) Antiproliferative effects of ascorbate in combination with a fixed concentration of the PARPi olaparib, nirapar-
ib, and talazoparib. ATO-sensitive and -resistant clones were treated with olaparib (OLA, 2.5 M), niraparib (NIR, 1.25 pM), or talazoparib (TAL,
50 nM) in combination with ascorbate (ASC, 0.25-1 mM), and after 3 days, cells viability was evaluated by cell count. Data are represented as
surviving fraction of ATO-sensitive (upper panel) and ATO-resistant (lower panel) clones after PARPi/ascorbate combined treatment. Mean values
+ S.D. of three independent experiments are represented. (D) Combined treatment effects were analyzed by CompuSyn software as indicated in



hypomethylating agents and ascorbate against APL cells, in-
cluding those resistant to ATO.

PARPi efficacy was first demonstrated in patients with
ovarian cancer harboring germline or somatic deleterious mu-
tations of BRCAI1/2 genes, but a significant clinical benefit
was also reported in the absence of BRCAI/2 mutations
(Ledermann et al., 2014; Friedlander et al., 2018). In fact, ge-
netic alterations affecting other genes involved in the repair of
DNA double-strand breaks may render cancer cells more sen-
sitive to PARPi compared with normal cells (Faraoni and Gra-
ziani, 2018). In APL cells, the presence of PML/RARA has
been reported to alter the repair of DNA single- and double-
strand breaks (Alcalay et al., 2003), sensitizing them to PARPi
(Esposito et al., 2015). On this basis, in an attempt to identify
alternative therapies for patients with APL refractory to ATO,
we have generated an APL cellular model represented by
clones sensitive or resistant to this arsenic derivative and test-
ed their susceptibility to PARPi.

Among the different PARPi tested, olaparib, niraparib, and
talazoparib, but not rucaparib and veliparib, induced antiproli-
ferative and cytotoxic effects in both ATO-sensitive and -resis-
tant APL cells at clinically relevant concentrations. Moreover,
our data suggest the lack of crossresistance between ATO and
PARPi. Indeed, crossresistance to ATO and conventional che-
motherapeutic agents is uncommon, since ATO is not a sub-
strate of the p-glycoprotein encoded by multidrug resistance
protein 1 gene or other members of the ATP-binding cassette
family of transporters, such as multidrug resistance associated
proteinl or breakpoint cluster region pseudogene 1 (Takeshita
et al., 2003; Sertel et al., 2012). However, repeated exposure of
APL cells to ATO has been reported to induce expression of
the p-glycoprotein (Takeshita et al., 2003). Regarding PARPi,
although the most frequent resistance mechanism is the emer-
gence of secondary mutations restoring BRCA1/2 function, for
olaparib or other inhibitors (e.g., rucaparib, talazoparib),
which are substrates of the p-glycoprotein or other efflux
pumps, low intratumoral drug concentrations might also con-
tribute to treatment failure in tumors overexpressing multi-
drug resistance protein 1(Lawlor et al., 2014). However, in our
cellular model, the pattern of response of APL clones did not
suggest the occurrence of common resistance mechanisms be-
tween the different PARPi tested.

The distinct susceptibility profile of APL clones to each
PARPi may be attributed to the different mechanisms in-
volved in the cytotoxic activity of the individual agents (i.e.,
catalytic inhibition vs. PARP1 trapping at DNA breaks). In-
deed, although their inhibitory effects on PARP1 catalytic ac-
tivity are not largely different (with ICsy values in the
nanomolar range), PARPi markedly differ in the trapping abil-
ity, with talazoparib and veliparib being the most and least
potent, respectively (Murai et al., 2012, 2014). Moreover,
PARPi trapping potency correlated with cytotoxicity in tumor
cells (Murai et al., 2012; Murai and Pommier, 2015). Consis-
tent with their trapping efficiency, talazoparib, niraparib, and
olaparib were, in this order, the most effective PARPi as a sin-
gle agent in inhibiting cell proliferation of the APL clones.

ATO-sensitive and -resistant APL cells were also susceptible
to clinically relevant concentrations of the hypomethylating
agents azacitidine and decitabine, showing a chemosensitivity
profile that did not parallel that of ATO. These agents are in-
hibitors of DNA methyltransferase and are used in clinical
practice, particularly in elderly patients with AML who are
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ineligible for intensive chemotherapy and in intermediate/
high-risk MDS. More recently, oral formulations of both drugs
have been FDA-approved as maintenance therapy of patients
with AML who achieve first complete remission but are not
able to complete intensive induction chemotherapy. Both
drugs are cytidine analogs that cause DNA damage as a conse-
quence of their random incorporation into DNA (azacitidine
also in RNA); covalent complex formation with DNA (cytosine-
5)-methyltransferase 1, leading to its trapping onto DNA (Pa-
tel et al., 2010; Maes et al., 2014); and loss of methylated cyto-
sines with a widespread change in gene expression (Santi et
al., 1984). The synergistic effects observed in APL cells treated
with hypomethylating agents plus PARPi (i.e., talazoparib,
niraparib, and olaparib) are consistent with those previously
reported in other experimental models, including AML, MDS,
and solid tumors (e.g., ovarian cancer and non—small-cell lung
cancer) (Muvarak et al., 2016; Zhao and So, 2017; Pulliam et
al., 2018; Faraoni et al., 2019a; Abbotts et al., 2019). These ef-
fects are likely the result of increased DNA damage, as we
and others have previously reported in several tumor models
(Muvarak et al.,, 2016; Zhao and So, 2017; Faraoni et al.,
2019a; Abbotts et al., 2019). The mechanisms underlying the
observed synergistic activity include altered processing by
BER and PARP1 of the aberrantly incorporated cytidine ana-
log and trapped DNA (cytosine-5)-methyltransferase 1 (Orta
et al., 2014), induction of a BRCAness (i.e., similar to heredi-
tary BRCA-mutated tumors) phenotype by downregulating
the expression of DNA repair enzymes (Abbotts et al., 2019),
accumulation of ROS with consequent DNA damage that trig-
gers PARP1 activation and becomes deleterious in the pres-
ence of PARPi (Pulliam et al.,, 2018), and increased drug
retention at the DNA damage sites (Muvarak et al., 2016). It
is reasonable to hypothesize that similar PARPi and hypome-
thylating agent interactions may also occur in APL cells.

ATO-sensitive and -resistant APL cells showed comparable
susceptibility to millimolar concentrations of ascorbate. At
physiologic concentrations, ascorbate acts as an antioxidant
and cofactor of metabolic enzymes; conversely, when pharma-
cological doses are administered intravenously (resulting in
plasma concentrations in the millimolar range), ascorbate be-
haves as a pro-oxidant, favoring the formation of large
amounts of ROS (Mastrangelo et al., 2015; Chen et al., 2007;
Kim et al., 2018; Gillberg et al., 2018). Treatment with ascor-
bate of patients with AML resulted in clinical benefit, especial-
ly in the presence of loss-of-function mutations of TET2 (Zhao
et al., 2018; Das et al., 2019), which are frequently detected in
AML and result in altered DNA demethylation (Abdel-Wahab
et al., 2009; Delhommeau et al., 2009). Moreover, several clini-
cal studies are testing high-dose ascorbate, as single agents or
in combination with chemotherapeutic agents, in a variety of
tumors, including AML and APL (www.clinicaltrials.gov). In
our APL experimental model, ascorbate inhibited cell prolifer-
ation at concentrations devoid of pro-oxidant effects but capa-
ble of inducing DNA damage, as indicated by H2AX
phosphorylation, which was likely the result of increased
5hmC formation (Cimmino et al., 2017; Agathocleous et al.,
2017; Wu and Zhang, 2017).

In APL cells, the combination of ascorbate with PARPi re-
sulted in a significant increase of cytotoxicity, DNA damage,
and 5hmC levels, which is likely due to ineffective BER-medi-
ated processing of the oxidized intermediates associated with
DNA demethylation. Indeed, 5hmC is detected as DNA
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Fig. 6. Combined treatment with PARPi/ascorbate increases DNA damage and 5hmC levels. Two ATO-resistant clones (CL2-R, CL3-R), in which
the PARPi/ascorbate combination was synergistic in terms of antiproliferative effects, were treated with ascorbate (ASC, 0.5 and 1 mM) in combi-
nation with olaparib (OLA, 2.5 uM), niraparib (NIR, 1.25 pM), or talazoparib (TAL 50 nM). After 24 hours, cells were collected and analyzed for
yH2AX as a marker of DNA damage, ROS production, and 5hmC levels. (A) YH2AX immunoblot analysis. Histograms represent the results of den-
sitometric analysis of yH2AX normalized with f-actin and are the means + S.D. of three independent experiments. Only the statistical signifi-
cance of cotreatments compared with single treatments is reported. (B) Total Intracellular ROS and cytosolic superoxide anion were quantified by
DCF and DHE fluorescence, respectively, in CL2-R and CL3-R cells after treatment with increasing concentrations of ascorbate. (C) DNA dot
blots for 5hmC in CL2-R cells untreated (CTRL) or treated with 1 mM ascorbate, 50 nM talazoparib, and a combination of the two drugs. The
same dot blot was stained with methylene blue as loading control. The graph shows the densitometric analysis of 5hmC normalized for methylene
blue. (D) DNA dot blots for 5hmC in CL2-R and CL2-R clones untreated (CTRL) or treated with 1 mM ascorbate, 2.5 pM olaparib, 1.25 pM nira-
parib, 50 nM talazoparib, and PARPi/ascorbate combination. *This DNA sample was slightly overloaded. (E) DNA dot blots for 5hmC in the CL1-
R clone, in which the PARPi/ascorbate combination was not synergistic in terms of antiproliferative effects, treated with 1 mM ascorbate, 2.5 \M
olaparib, and the drug combination. The mean values + S.D. of each histogram were obtained from three different experiments. Statistical analy-
sis was evaluated by unpaired one-way ANOVA (*P < 0.05; **P < 0.01; ***P < 0.001).



damage and triggers the intervention of BER and PARPI.
Thus, in the presence of PARPI, the ascorbate-mediated acti-
vation of TET2 and increased generation of 5hmC in DNA
may result in stalled repair and greater cytotoxicity (Kharat
et al., 2020). In this context, talazoparib more potently syner-
gized with ascorbate as compared with olaparib and niraparib,
in accordance with its higher ability to trap PARP1 on DNA.

A potential drawback associated with ascorbate treat-
ment relies on its complex pharmacokinetics and potential
heterogeneous distribution in tumor and normal tissues
(Giansanti et al., 2021). Although ascorbate millimolar
concentrations can be achieved in plasma after intrave-
nous injection, these high concentrations might not be eas-
ily reached at the tumor site, especially in the case of APL
involving the central nervous system. In fact, only admin-
istration of its oxidized form, dehydroascorbate (DHA),
may generate pharmacological levels of vitamin C in the
brain, since DHA more readily crosses the blood-brain bar-
rier via the glucose transporter GLUT1 (Spoelstra-de Man
et al., 2018). However, high-dose DHA cannot always be
considered a valid alternative to ascorbate, since DHA
antitumor activity depends on its conversion to ascorbate
by glutathione and glutathione transferases, and tumor
cells might have different reducing ability and not always
efficiently accumulate ascorbate (Ferrada et al., 2019).
Moreover, modulation of TET activity, likely required for
the observed synergism with PARPI, is mediated by ascor-
bate and not by vitamin C oxidized forms (Minor et al.,
2013; Dickson et al., 2013; Yin et al., 2013; Guan et al.,
2020).

A limitation of our study is represented by the use of differ-
ent clones deriving from one cell line only (i.e., NB4). However,
it should be noted that few human APL cell lines are presently
available for in vitro studies. Furthermore, bone marrow sam-
ples collected from patients with APL resistant to ATO for es-
tablishing primary cultures are not readily available. Thus,
preclinical in vivo studies in murine APL models might fur-
ther validate our data. Moreover, our cellular model of ATO-
resistant cells, lacking mutations in the PML B2 domain, did
not allow evaluating the activity of the pharmacological treat-
ment against APL cells harboring PML-A216V/T mutations.
Thus, additional studies are required to evaluate drug treat-
ment in specific genetic contexts or more complex resistance
phenotypes (e.g., double resistance to both ATRA and ATO).

The antileukemic activity of PARPi may also be increased
by their combination with agents used for APL treatment,
such as anthracyclines and gemtuzumab ozogamicin. In fact,
both agents are able to induce DNA damage, the repair of
which can be hampered by inhibiting PARP1 activity (Yamau-
chi et al., 2014; Portwood et al., 2019). Previous reports have
also suggested a potential role of PARPi in reducing the risk
of cardiotoxicity associated with the use of anthracyclines
based on the involvement of PARP1 overactivation in cardio-
myocyte damage induced by these chemotherapeutic agents
(Pacher et al., 2002; Ali et al., 2011). However, the protective
effect of PARPi on anthracycline-induced cardiotoxicity is still
debated (Damiani et al., 2018).

The favorable safety profile of PARPi, decitabine, azaciti-
dine, and ascorbate encourages further investigation on their
therapeutic potential as components of combination regimens
for relapsed/ATO-refractory APL, especially in the case of frail
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patients who cannot tolerate the proarrhythmic effects of ATO
or the adverse effects of more aggressive therapies.
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