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ABSTRACT
There is significant need to find effective, nonaddictive pain
medications. k Opioid receptor (KOPr) agonists have been
studied for decades but have recently received increased
attention because of their analgesic effects and lack of
abuse potential. However, a range of side effects have limited the
clinical development of these drugs. There are several strategies
currently used to develop safer and more effective KOPr
agonists. These strategies include identifying G-protein–biased
agonists, developing peripherally restricted KOPr agonists
without centrally mediated side effects, and developing mixed
opioid agonists, which target multiple receptors at specific
ratios to balance side-effect profiles and reduce tolerance.

Here, we review the latest developments in research related to
KOPr agonists for the treatment of pain.

SIGNIFICANCE STATEMENT
This review discusses strategies for developing safer k opioid
receptor (KOPr) agonists with therapeutic potential for the
treatment of pain. Although one strategy is to modify selective KOPr
agonists to create peripherally restricted or G-protein–biased struc-
tures, another approach is to combine KOPr agonists with m, d, or
nociceptin opioid receptor activation to obtainmixed opioid receptor
agonists, therefore negating the adverse effects and retaining the
therapeutic effect.

Introduction
The rapid increase in the use of opioid drugs in the United

States has been termed the “opioid crisis,” with over
47,000 opioid-related deaths in 2017 (Scholl et al., 2018).
Opioids prescribed for treating moderate-to-severe pain act
primarily through the m opioid receptor (MOPr) (Vallejo
et al., 2011). Activation of the MOPr stimulates the
mesocorticolimbic reward pathway, thereby increasing
dopamine levels (Di Chiara and Imperato, 1988), and
results in positive reinforcement (Maldonado et al., 1997).
In the search for nonaddictive analgesics, k opioid receptor
(KOPr) agonists are a promising alternative. In contrast to
MOPr agonists, KOPr agonists play a critical role in
regulating the reward system by contributing to the nega-
tive feedback of dopamine (Di Chiara and Imperato, 1988),

and unlike MOPr agonists, they do not cause respiratory
depression (Freye et al., 1983).

k Opioid Receptor Signaling and the Role in Pain
Activation of the KOPr is associated with regulation of

the reward pathway, antinociception, and anxiogenic and
stress-related behaviors [reviewed in Wang et al, (2010),
Lalanne et al. (2014)]. The KOPr is a class A (rhodopsin-like) g
subfamily of seven-transmembrane G-protein–coupled recep-
tors. Activation of the KOPr leads to conformational changes
and dissociation of the pertussis toxin–sensitive G-protein
subunits, thereby activating G-protein–gated inwardly recti-
fying potassium channels (Grudt and Williams, 1993) and
inhibiting voltage-gated calcium ion channels (Rusin et al.,
1997), which leads to the hyperpolarization of the neuron. The
Ga subunit inhibits adenylyl cyclase activity, leading to
a decrease in cAMP (Taussig et al., 1993) and phosphorylation
of c-Jun N-terminal kinase and extracellular signal-regulated
kinase 1 and 2 (ERK1/2) (Belcheva et al., 2005). KOPrs inhibit
pain signals in the spinal cord and the brain stem (Porreca
et al., 1984; Ruda et al., 1988; Simonin et al., 1995).
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ABBREVIATIONS: ATPM, 3-amino-thiazolo [5,4-b]-N-cyclopropylmethylmorphinan hydrochloride; 8-CAC, 8-carboxamidocyclazocine; CPA,
conditioned place aversion; DOPr, d opioid receptor; EOM, ethoxymethyl ether; ERK1/2, extracellular signal-regulated kinase 1 and 2; 69-GNTI,
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receptor; SalA, Salvinorin A; SalB, Salvinorin B; b-THP, b-tetrahydropyran.
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KOPr activation also activates a b-arrestin–dependent
signaling cascade. The C-terminal intracellular domain is
phosphorylated by G-protein receptor kinase 3, and the
b-arrestin scaffolding proteins are recruited, leading to the
phosphorylation of p38 mitogen-activated protein kinase
and activation of the transcription factor cAMP response
element binding protein (McLaughlin et al., 2003; Bruchas
et al., 2006). Prodepressive and aversive effects of KOPr
agonists have been attributed to the phosphorylation of
p38 mitogen-activated protein kinase (Bruchas et al., 2007,
2011; Ehrich et al., 2015) and cAMP response element
binding protein activity (Pliakas et al., 2001; Mague et al.,
2003). Phosphorylation of KOPr leads to the internalization
of the receptor (Schulz et al., 2002), contributing to KOPr
agonist tolerance (McLaughlin et al., 2004; Chiu et al.,
2017).
KOPr knockout mice were generated by Simonin et al.

(1998). These animals have been tested in a range of
behavioral models of pain, showing increased sensitivity
in the acetic acid writhing test, thus indicating the KOPr
system is involved in the perception of visceral pain. The
endogenous agonists for the KOPr are the dynorphin class
of opioid peptides (Goldstein et al., 1979; Chavkin et al.,
1982). The natural peptide has 17 amino acids (dynorphin
A1–17); however, the shortened 13-amino-acid fragment
(dynorphin A1–13) is often used in biologic studies (Chou
et al., 1996). Intrathecal injection of dynorphin A1–13 in the
rat spinal cord had an antinociceptive effect 6–10 times
more potent than morphine on a molar basis (Han and Xie,
1982), and morphine in combination with dynorphin A1–13

produced a synergistic antinociceptive effect in the tail-
withdrawal assay (Ren et al., 1985).
In the reward centers, such as the nucleus accumbens,

KOPr activation regulates dopamine release and increases
uptake by the dopamine transporter (Di Chiara and
Imperato, 1988; Kivell et al., 2014). This mechanism is
responsible for the antiaddiction effects of KOPr agonism;
however, aversive effects can also be induced (Wee and
Koob, 2010), and drug-taking can be escalated due to KOPr
activation (Schlosburg et al., 2013). During pain, negative
affect states may be mediated by recruitment of dynorphin
neurons and action through the KOPr system in the
nucleus accumbens (Massaly et al., 2019). In a spinal
nerve ligation model, experiments using prodynorphin
knockout mice showed dynorphin may be required for the
maintenance of neuropathic pain (Wang et al., 2001).
Further studies have shown that the KOPr system is
involved in the aversive component of neuropathic pain
(Liu et al., 2019b; Meade et al., 2020).

Traditional Arylacetamide k Opioid Receptor
Agonists

The prototypical arylacetamide KOPr agonists include
U50,488 (Von voigtlander and Lewis, 1982), U69,593 (Lahti
et al., 1985), and spiradoline (also known as U62,066E; Fig. 1)
(Vonvoigtlander and Lewis, 1988). The KOPr agonists have
demonstrated antinociceptive effects in several thermal, in-
flammatory, and neuropathic pain models (Vonvoigtlander
et al., 1983; Calcagnetti et al., 1988; La Regina et al., 1988;
Vonvoigtlander and Lewis, 1988; Kunihara et al., 1989;
Pelissier et al., 1990; France et al., 1994; Wilson et al., 1996;
Bartok and Craft, 1997; Catheline et al., 1998; Binder et al.,
2001; Bileviciute-Ljungar and Spetea, 2004; Bileviciute-
Ljungar et al., 2006; Gallantine and Meert, 2008; Negus
et al., 2008; Auh and Ro, 2012). Unfortunately, these KOPr
agonists also have side effects. U50,488 and U69,593 produce
prodepressive effects (Mague et al., 2003; Zhang et al., 2015),
aversion (Mucha and Herz, 1985; Suzuki et al., 1992; Bals-
Kubik et al., 1993; Skoubis et al., 2001; Ehrich et al., 2015),
anxiety (Privette and Terrian, 1995; Kudryavtseva et al.,
2004; Vunck et al., 2011; Wang et al., 2016), muscle weakness,
and sedation (Dykstra et al., 1987; Zhang et al., 2015). In
clinical studies, spiradoline produced diuresis, sedation, and
dysphoria (Ur et al., 1997;Wadenberg, 2003). Because of these
side effects, these arylacetamide KOPr agonists have not been
developed further in the clinical setting.

Strategies to Develop k Opioid Receptor
Agonists with Reduced Side Effects

There are several strategies used to develop novel, safer,
and more effective KOPr agonists. These strategies include
identifying G-protein–biased agonists, developing peripher-
ally restricted KOPr agonists without centrally mediated side
effects, and developing mixed opioid agonists to target multi-
ple receptors at specific ratios to balance side-effect profiles
and reduce tolerance.

G-Protein–Biased k Opioid Receptor Agonists
Evidence suggests that many KOPr side effects are medi-

ated through b-arrestin–dependent pathways (Bruchas and
Chavkin, 2010). For instance, in mice lacking G-protein
receptor kinase 3, aversion is absent (Bruchas et al., 2007).
Therefore, developing biased KOPr agonists with preferential
activation of the G-protein pathway has received significant
attention [reviewed by Mores et al. (2019)]. Biased agonism is
calculated by evaluating activation in both G-protein and

Fig. 1. Chemical structure of the traditional arylacetamide k opioid receptor agonists, U50,488, U69,593, and Spiradoline.
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b-arrestin signaling pathways and comparing affinity and
efficacy to a reference agonist with balanced signaling prop-
erties. The biased factors of common KOPr agonists are
presented in Table 1.
However, application of the theoretical idea of biased

agonism has proven more difficult than anticipated (Michel
and Charlton, 2018). When comparing studies, there is a lack
of consistency in signaling assays, cell types, and choice of
reference ligands, including use of U50,488 (Schattauer et al.,
2017; Kivell et al., 2018), U69,593 (Ho et al., 2018; Dunn et al.,
2019), Salvinorin A (SalA) (White et al., 2015), or the
endogenous peptide dynorphin A1–17 (DiMattio et al., 2015).
In addition, receptors from different species have different
signaling properties. DiMattio et al. (2015) calculated the bias
factor inN2A cells stably transfectedwith either the human or
mouse KOPr. SalA was significantly b-arrestin–biased for the
human receptor; however, the mouse KOPr had similar
activation of both pathways. On the contrary, U50,488 was
b-arrestin–biased at the mouse receptor but was unbiased at
the human KOPr.
System bias (cell background) and observational bias (assay

conditions) in experimental design create further complica-
tions (Gundry et al., 2017). Observational bias problems
include not accounting for intrinsic efficacy and using both
amplified and linear signaling measurements (Gillis et al.,
2020b). Using in vitro models, there is often high receptor
expression, thus commonly producing a ceiling effect within
the assay whereby most agonists will reach the maximal
effect, therefore not allowing for comparisons of efficacy.
When receptor pools are lowered, the intrinsic efficacy of
the agonist may be measured. G-protein measurements
often use amplified assays (such as cAMP), whereas
b-arrestin recruitment assays are not amplified. In this
situation, the results are skewed toward G-protein bias.
Furthermore, the kinetic context (Klein Herenbrink et al.,
2016), receptor occupancy, and receptor conformation
(Kenakin, 2014) are not often considered. Most experi-
ments assess an agonist at a single time point, which may
be based on the reference ligand. However, this does not
allow for the complexity of the binding kinetics and
transient signaling responses (Klein Herenbrink et al.,
2016). As seen in Table 1, the most commonly used model
to calculate bias is the operational model (Black and Leff,
1983); however, for this calculation to be correct, system
and observational bias must not be present in the data.
Many laboratories are addressing system bias issues and
are beginning to evaluate signaling in more relevant
cellular models, including primary neurons (Jamshidi
et al., 2015; Ho et al., 2018; Ehrlich et al., 2019). A major
limiting factor is the inability to evaluate signaling bias
in vivo, although advances are ongoing, such as measuring
cAMP signaling in mice (Muntean et al., 2018).
The MOPr has been extensively studied [for recent review

see Grim et al. (2020)] and may be able to guide the
development of G-protein–biased KOPr agonists. Raehal
et al. (2005) showed the respiratory depressive effects and
constipation caused by morphine were not present in
b-arrestin-2 knockout mice. This led to much attention on
developing G-protein–biased agonists. However, it was re-
cently shown in three different laboratories that the respira-
tory depressive effects of morphine were independent of
b-arrestin-2 signaling (Kliewer et al., 2020). There is a similar

story with the compound PZM21, which was originally shown
to have few side effects (Manglik et al., 2016) and has since
been shown to have respiratory depression (Hill et al., 2018).
Finally, the G-protein–biased MOPr agonist oliceridine
(TRV130 or Olinvyk) completed phase III clinical trials;
originally, the drug was not approved because of safety
concerns (https://www.fda.gov/media/121233/download). In-
terestingly, Gillis et al. (2020a) found that low intrinsic
efficacy rather than G-protein bias could explain the reduced
side effects of oliceridine and PZM21, therefore leaving the
question as to whether apparent G-protein–biased MOPr
agonists need to be reassessed under these experimental
conditions. Regardless of mechanism, evaluation of drugs at
higher doses in vivo is required to fully assess both safety and
side effects.
These discrepancies need to be resolved before conclusions

can be drawn on the role of G-protein–biased KOPr agonists
for treating pain with fewer side effects. However, several
KOPr agonists have been identified with improved side-effect
profiles.
Nalfurafine. Nalfurafine (or TRK-820, Fig. 2) is the first

selective KOPr agonist to be clinically approved for medication-
resistant pruritus in patients with hemodialysis in Japan
(Kumagai et al., 2010). Nalfurafine has antinociceptive
and antipruritic effects (Endoh et al., 1999, 2000) and does
not produce anhedonia or aversion (Liu et al., 2019a). The
success of nalfurafine has demonstrated it is possible to
develop KOPr agonists to be used in a clinical setting. Many
studies have sought to measure the bias factor to under-
stand the lack of side effects traditionally associated with
KOPr agonists; however, there have been mixed results
(Table 1). In human embryonic kidney-293 (HEK-293) cells,
nalfurafine was a G-protein–biased agonist compared with
U50,488 (Kaski et al., 2019), with moderate G-protein bias
at the rat KOPr and extreme G-protein bias at the human
KOPr (Schattauer et al., 2017). However, a recent paper
found nalfurafine was a balanced agonist compared with
U50,488 as the reference ligand (Liu et al., 2019a), and
another found nalfurafine was b-arrestin-2–biased, with
20-fold–higher b-arrestin signaling than U69,593 in U2OS
cells (Dunn et al., 2019).
Salvinorin A Analogs. The neo-clerodane diterpene SalA

(Fig. 2) is a KOPr agonist derived from Salvia divinorum,
a Sage plant native to Mexico (Valdés, 1994; Roth et al., 2002).
SalA has antinociceptive effects in thermal (John et al., 2006;
McCurdy et al., 2006; Paton et al., 2017; Sherwood et al.,
2017), visceral (McCurdy et al., 2006; Fichna et al., 2012),
inflammatory (Aviello et al., 2011; Fichna et al., 2012; Guida
et al., 2012; Paton et al., 2017), and neuropathic pain models
(Coffeen et al., 2018). However, side effects include aversion
(Zhang et al., 2005), anxiety (Braida et al., 2009), prodepres-
sive effects (Carlezon et al., 2006), motor incoordination
(Fantegrossi et al., 2005), sedation (Butelman et al., 2009),
and learning and memory impairments (Braida et al., 2011).
SalA also has a short duration of action in vivo (Butelman
et al., 2007; Ranganathan et al., 2012). All these effects have
limited the clinical usefulness of SalA. However, the struc-
tural scaffold of SalA has identified multiple analogs with
improvements in metabolic stability and side-effect profile.
Modifications at the carbon-2 position have led to increased

potency by adding metabolism-protective groups and remov-
ing the hydrolysable ester (Munro et al., 2008). These include
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TABLE 1
k Opioid receptor agonists with G-protein bias
1) White et al., 2014. 2) Dunn et al., 2019. 3) Dunn et al., 2018. 4) DiMattio et al., 2015. 5) White et al., 2015. 6) Liu et al., 2019a. 7) Schattauer et al., 2017. 8) Kaski et al., 2019.
9) Kivell et al., 2018. 10) Zhou et al., 2013. 11) Lovell et al., 2015. 12) Brust et al., 2016. 13) Ho et al., 2018. 14) Schmid et al., 2013. 15) Stahl et al., 2015. 16) Spetea et al., 2017.
17) Bedini et al., 2020.

Compound Bias Factor Ref Agonist Model KOPr G-Protein Measurement b-Arrestin Measurement Ref

(6)U50,488 8 G SalA Operational Human GloSensor-based cAMP
assay in HEK-293 cells

Tango assay in HTLA cells (HEK-293 cell
line containing tTA-dependent luciferase

reporter and b-arrestin-2–TEV fusion gene)

1

DLogRAi
= 0.3

U69,593 Modified
operational

Human [35S]GTPgS binding in
membranes from U2OS cells

b-Arrestin-2 recruitment (PathHunter kit)
in U2OS cells

2

4.0 G U69,593 Competitive Human [35S]GTPgS binding in
membranes from U2OS cells

b-Arrestin-2 recruitment (PathHunter kit)
in U2OS cells

3

1.7 I Dynorphin
A1–17

Operational Human [35S]GTPgS binding in
membranes from mouse

neuro2A cells

KOPr internalization in CHO cells 4

26 I Dynorphin
A1–17

Operational Mouse [35S]GTPgS binding in
membranes from mouse

neuro2A cells

KOPr internalization in CHO cells 4

U69,593 3 G SalA Operational Mouse GloSensor-based cAMP
assay in HEK-293 cells

Tango assay in HTLA cells 5

1 SalA Operational Human GloSensor-based cAMP
assay in HEK-293 cells

Tango assay in HTLA cells 1

2.9 I Dynorphin
A1–17

Operational Human [35S]GTPgS binding in
membranes from mouse

neuro2A cells

KOPr internalization in CHO cells 4

627 I Dynorphin
A1–17

Operational Mouse [35S]GTPgS binding in
membranes from mouse

neuro2A cells

KOPr internalization in CHO cells 4

Nalfurafine 1.6 b1 U50,488 Operational Mouse [35S]GTPgS binding in
membranes from mouse

neuro2A cells

b-Galactosidase complement assay to
measure b-arrestin-1 in HEK-293 cells

6

1.3 G U50,488 Operational Mouse [35S]GTPgS binding in
membranes from mouse

neuro2A cells

b -Galactosidase complement assay to
measure b-arrestin-2 in HEK-293 cells

6

7.2 G U50,488 Operational Rat ERK1/2 phosphorylation in
HEK-293 cells

p38 Phosphorylation in HEK-293 cells 7

300 G U50,488 Operational Human ERK1/2 phosphorylation in
HEK-293 cells

p38 Phosphorylation in HEK-293 cells 7

DLogRAi
= 21

U69,593 Modified
operational

Human [35S]GTPgS binding in U2OS
cells

b-Arrestin-2 recruitment (PathHunter kit)
in U2OS cells

2

7.7 G U50,488 Operational Human GloSensor-based cAMP
assay in HEK-293 cells

Tango assay in HTLA cells 8

SalA 2.9 G U50,488 Simplified Human Inhibition of forskolin-
induced cAMP (HitHunter

kit) in CHO cells

b-Arrestin-2 recruitment (PathHunter kit)
in U2OS cells

9

DLogRAi
= 0.3

U69,593 Modified
operational

Human [35S]GTPgS binding in
membranes from U2OS cells

b-Arrestin-2 recruitment (PathHunter kit)
in U2OS cells

2

EOM SalB 15.3 G U50,488 Operational Human GloSensor-based cAMP
assay in HEK-293 cells

Tango assay in HTLA cells 8

1.2 I Dynorphin
A1–17

Operational Human [35S]GTPgS binding in
membranes from mouse

neuro2A cells

KOPr internalization in CHO cells 4

6.9 I Dynorphin
A1–17

Operational Mouse [35S]GTPgS binding in
membranes from mouse

neuro2A cells

KOPr internalization in CHO cells 4

Mesyl SalB 1.6 G U50,488 Simplified Human Inhibition of forskolin-
induced cAMP (HitHunter

kit) in CHO cells

b-Arrestin-2 recruitment (PathHunter kit)
in U2OS cells

9

DLogRAi
= 0.4

U69,593 Modified
operational

Human [35S]GTPgS binding in
membranes from U2OS cells

b-Arrestin-2 recruitment (PathHunter kit)
in U2OS cells

2

RB-64 35 G SalA Operational Human GloSensor-based cAMP
assay in HEK-293 cells

Tango assay in HTLA cells 1

96 G SalA Operational Mouse GloSensor-based cAMP
assay in HEK-293 cells

Tango assay in HTLA cells 5

Triazole
1.1

61 G U69,593 Operational Human [35S]GTPgS binding in
membranes from in CHO

cells

b-Arrestin-2 recruitment (PathHunter kit)
in U2OS cells

10

47 G U69,593 Operational Human [35S]GTPgS binding in
membranes from in CHO

cells

b-Arrestin-2 imaging in U2OS-barr2-GFP
cells

11

28 G U50,488 Operational Human [35S]GTPgS binding in
membranes from in CHO

cells

b-Arrestin-2 recruitment (PathHunter kit)
in U2OS cells

12

(continued )
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b-tetrahydropyran (b-THP) Salvinorin B (SalB), Mesyl SalB,
and ethoxymethyl ether (EOM) SalB (Fig. 2). Mesyl SalB and
EOMareG-protein–biased at the humanKOPr usingU50,488
as a reference ligand (Kivell et al., 2018; Kaski et al., 2019).
However, EOMSalBwas also found to be b-arrestin–biased at
the mouse KOPr with dynorphin A1–17 as the reference ligand
(DiMattio et al., 2015).
Compared with SalA, EOM SalB has higher metabolic

stability in the rat liver microsome assay (Ewald et al.,
2017), and brain concentrations declined at a slower rate in
baboons and rats (Hooker et al., 2009). EOMSalB,Mesyl SalB,
and b-THP SalB all have a longer duration of action than SalA
in the warm-water tail-withdrawal assay in mice (Simonson
et al., 2015; Paton et al., 2017).b-THPSalB reducedmechanical
and cold allodynia in the chemotherapy-induced neuropathic
pain model and significantly reduced formaldehyde-induced
pain behaviors (Paton et al., 2017), whereas Mesyl SalB had
minimal effects (Kivell et al., 2018). Mesyl SalB produced no
aversion, anxiety, or learning and memory impairments
(Kivell et al., 2018). EOMSalB did not cause sedation, anxiety,
or depressive-like effects in rodents (Ewald et al., 2017).
However, in discrimination studies, EOM SalB substituted
for both U69,593 (Baker et al., 2009) and SalA in rats (Peet
and Baker, 2011).
A semisynthetic analog, RB-64 (22-thiocyanatosalvinorin A,

Fig. 2) (Yan et al., 2009), is G-protein–biased compared with
SalA as the reference ligand (White et al., 2014, 2015). In
C57BL/6J mice, RB-64 had antinociceptive effects in the hot-
plate (55°C) assay and did not show anhedonia-like effects in
the intracranial self-stimulation test or locomotor deficits in
the Rotarod performance assay or novelty-induced locomotion
test (White et al., 2015). However, RB-64 did have aversive
effects in the conditioned place aversion (CPA) paradigm, an

effect previously believed to be b-arrestin–mediated (Bruchas
and Chavkin, 2010; White et al., 2015).
Collybolide. Collybolide (Fig. 2) is a selective KOPr

agonist extracted from the mushroom Collybia maculata
(Gupta et al., 2016). The chemical structure is similar to SalA
in that both are terpene compounds containing a furyl-
d-lactone structure. In HEK-293 cells expressing the human
KOPr, displacement of the [3H]U69,593 radioligand showed
binding affinity (Ki) values of 40 6 10 nM for SalA compared
with 9 6 2 nM for Collybolide (Gupta et al., 2016). In mice,
Collybolide had similar antinociceptive effects to SalA in tail
withdrawal, was not prodepressive in the forced swim test, did
not affect locomotor activity in open field tests, and was not
anxiogenic in the elevated plus maze; however, there was
significant aversion in the CPA test (Gupta et al., 2016).
Moreover, Collybolide, unlike SalA, also attenuated chloroquine-
mediated pruritus (Gupta et al., 2016).
Triazole 1.1. A high-throughput screening process was

used to identify selective KOPr agonists in a library of 300,000
compounds (Frankowski et al., 2012). Triazole 1.1 (Fig. 2) was
identified as a G-protein–biased KOPr agonist compared
with U69,593 (Zhou et al., 2013; Lovell et al., 2015). Triazole
1.1 displayed antinociceptive effects in the warm-water tail-
withdrawal assay (Zhou et al., 2013) and antipruritic effects
in response to chloroquine phosphate (Brust et al., 2016).
Moreover, Triazole 1.1 showed an improved side-effect profile.
It did not alter locomotor activity nor induce dysphoria in the
intracranial self-stimulation assay, did not lower dopamine
levels in the nucleus accumbens (Brust et al., 2016), and did
not induce sedation or motor impairment in male rhesus
monkeys (Huskinson et al., 2020).
69-Guanidinonaltrindole. The naltrindole derivative

69-guanidinonaltrindole (69-GNTI) (Fig. 2) is a potent partial

TABLE 1—Continued

Compound Bias Factor Ref Agonist Model KOPr G-Protein Measurement b-Arrestin Measurement Ref

19 G U69,593 Operational Human [35S]GTPgS binding in
membranes from in CHO

cells

b-Arrestin-2 recruitment (PathHunter kit)
in U2OS cells

13

24 G U69,593 Operational Mouse [35S]GTPgS binding using
mouse striatal membranes

KOPr internalization in mouse primary
striatal neurons

13

69-GNTI 6 G SalA Operational Human GloSensor-based cAMP
assay in HEK-293 cells

Tango assay in HTLA cells 1

5.8 G U69,593 Operational Human [35S]GTPgS binding in
membranes from CHO cells

b-Arrestin-2 recruitment (PathHunter kit)
in CHO cells

14

4.0 G U69,593 Competitive Human [35S]GTPgS binding in
membranes from CHO cells

b-Arrestin-2 recruitment (PathHunter kit)
in U2OS cells

15

10 G U69,593 Operational Human [35S]GTPgS binding in
membranes from CHO cells

b-Arrestin-2 recruitment (PathHunter kit)
in U2OS cells

15

HS665 DLogRAi
= 0.6

U69,593 Modified
operational

Human [35S]GTPgS binding in
membranes from U2OS cells

b-Arrestin-2 recruitment (PathHunter kit)
in U2OS cells

2

42 G U69,593 Competitive Human [35S]GTPgS binding in
membranes from U2OS cells

b-Arrestin-2 recruitment (PathHunter kit)
in U2OS cells

3

389 G U69,593 Operational Human [35S]GTPgS binding in
membranes from CHO cells

b-Arrestin-2 recruitment (PathHunter kit)
in U2OS cells

16

HS666 DLogRAi
= 0.2

U69,593 Modified
operation

Human [35S]GTPgS binding in
membranes from U2OS cells

b-Arrestin-2 recruitment (PathHunter kit)
in U2OS cells

2

62 G U69,593 Operational Human [35S]GTPgS binding in
membranes from CHO cells

b-Arrestin-2 recruitment (PathHunter kit)
in U2OS cells

16

BPHA 59 G U69,593 Competitive Human [35S]GTPgS binding in
membranes from U2OS cells

b-Arrestin-2 recruitment (PathHunter kit)
in U2OS cells

3

LOR17 853 G U50,488 Operational Human cAMP ELISA assay in
HEK-293 cells

b-Arrestin-2 recruitment (PathHunter kit)
in U2OS cells

17

1) White et al., 2014. 2) Dunn et al., 2019. 3) Dunn et al., 2018. 4) DiMattio et al., 2015. 5) White et al., 2015. 6) Liu et al., 2019a. 7) Schattauer et al., 2017. 8) Kaski et al., 2019.
9) Kivell et al., 2018. 10) Zhou et al., 2013. 11) Lovell et al., 2015. 12) Brust et al., 2016. 13) Ho et al., 2018. 14) Schmid et al., 2013. 15) Stahl et al., 2015. 16) Spetea et al., 2017.
17) Bedini et al., 2020. b1, b-arrestin-1 biased; b2, b-arrestin-2 biased; G, G-protein–biased; I, biased toward internalization of KOPr; Ref, reference.TEV, tobacco etch virus;
tTA, tetracycline transactivator.
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KOPr agonist in G-protein activation assays, with no activity
inb-arrestin recruitment assays (Rives et al., 2012). In fact, 69-
GNTI inhibited both the b-arrestin recruitment and the KOPr
internalization actions of the KOPr agonist ethylketocyclazo-
cine (Rives et al., 2012). Furthermore, in striatal neurons,

69-GNTI induced the phosphorylation of Akt but not ERK1/2
compared with the traditional agonist U69,593, which acti-
vated both kinases (Schmid et al., 2013). It appears that the d

opioid receptor (DOPr) has a role in the function of 69-GNTI,
either because of actions on KOPr/DOPr heterodimers or

Fig. 2. Chemical structures of the
G-protein–biased k opioid receptor
agonists.
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convergence of downstream signaling pathways (Waldhoer
et al., 2005; Jacobs et al., 2019). 69-GNTI has antinociceptive
effects in the radiant-heat tail-withdrawal assay in male mice
(Waldhoer et al., 2005) and did not display CPA (Zangrandi
et al., 2016).
Diphenethyalmine Derivatives. The diphenethylamine

derivatives, HS665 (also known as MCBPHA) and HS666
(Fig. 2), are selective KOPr agonists (Spetea et al., 2012)
displaying G-protein bias with U69,593 as the reference
agonist (Spetea et al., 2017; Dunn et al., 2018). Both com-
pounds produced dose-dependent antinociception in the
warm-water (55°C) tail withdrawal and did not produce motor
incoordination in Rotarod assays (Spetea et al., 2017). HS665
also had antinociceptive effects in the acetic acid–induced
writhing test in mice (Spetea et al., 2012). HS665 had aversive
side effects; however, HS666 did not show either aversion or
preference in a counterbalanced conditioned place paradigm
(Spetea et al., 2017). Another derivative, N-n-butyl-N-phenyl-
ethyl-N-3-hydroxyphenylethyl-amine (BPHA), did not recruit
b-arrestin compared with HS665, which showed submaximal
b-arrestin signaling, and this was correlated with altered
motor coordination for HS665 but not BPHA (Dunn et al.,
2018, 2019). Additional diphenethylamine derivatives have
been developed with promising antinociceptive effects in the
acetic acid–induced writhing assay without causing motor
incoordination (Erli et al., 2017).
LOR17. LOR17 is a novel peptidic KOPr agonist displaying

extreme G-protein bias with U50,488 as the reference ligand
(Bedini et al., 2020). In male CD-1 mice, LOR17 had similar
antinociceptive effects to U50,488 in the warm-water tail
withdrawal and acetic acid–induced writhing test, whereas
LOR17 was more effective at reducing thermal hypersensitiv-
ity in the oxaliplatin-induced neuropathic pain model (Bedini
et al., 2020). LOR17 did not affect motor coordination in the
Rotarod test or exploratory behavior in the hole-board test and
did not have prodepressant effects in the forced swim test
(Bedini et al., 2020).

Peripherally Restricted k Opioid Receptor
Agonists

Another strategy to remove the centrally mediated side
effects is to create peripherally restricted KOPr agonists that
do not cross the blood-brain barrier. This strategy relies on the
premise that activation of peripheral KOPrs alone can pro-
duce a meaningful analgesic effect. Peripherally restricted
compounds can be beneficial to patients suffering from
visceral or neuropathic pain. However, many of the com-
pounds tested only havemoderate antinociceptive effects. One
of the first developed was ICI 204,448 (Fig. 3) (Shaw et al.,
1989). In a rat model of neuropathic pain, local injection of ICI
204,448 reduced antinociceptive behaviors after sciatic nerve
constriction injury (Keïta et al., 1995). However, ICI 204,448
had minimal effects in the formaldehyde-induced inflamma-
tory pain model in mice when administered via intraperito-
neal injection (1–2 mg/kg) (Paton et al., 2017) and minimal
antinociceptive activity after oral administration (Barber
et al., 1994).
Another KOPr agonist with low central penetration is

asimadoline (Fig. 3; also known as EMD 61753) (Barber
et al., 1994; Gottschlich et al., 1995). Asimadoline is orally
active, although it had more potent antinociceptive activity

after subcutaneous administration (Barber et al., 1994).
When it advanced into human testing, oral administration
of asimadoline (7.5 mg) had no effect in hyperalgesia models
using radiant heat and mechanical stimuli (Bickel et al.,
1998). Furthermore, when tested in patients with postopera-
tive pain, some of those administered 10 mg orally reported
increased pain levels, and therefore, asimadoline was consid-
ered to be less tolerable than placebo (Machelska et al., 1999).
Asimadoline is currently in development by Tioga Pharma-
ceuticals for the treatment of atopic dermatitis [reviewed in
Abels and Soeberdt (2019)].
CR845 (also known as FE-202845 or Difelikefalin) and

CR665 (also known as FE-200665 or JNJ-38488502) are
peripherally restricted tetrapeptide KOPr agonists (Fig. 3)
in development by Cara Therapeutics (Olesen et al., 2013).
CR845 is in phase III clinical trials as a treatment of
postoperative pain and uremic pruritus (Beck et al., 2019a).
There are promising results in animal models, with CR845
reducing writhing behaviors, abdominal pain, inflammatory
pain, and mechanical allodynia in a spinal nerve ligation
model of neuropathic pain without inducing gastrointestinal
side effects (Gardell et al., 2008). However, there is a lack of
peer-reviewed papers on the clinical efficacy of this compound
(Hesselink, 2017). CR665 has antinociceptive effects in the
complete Freund’s adjuvant-induced model of inflammatory
pain (Binder et al., 2001) and the acetic acid–induced writhing
test in mice, with a 548-fold–higher dose required to induce
centrally mediated motor incoordination effects, indicating it
does not readily cross the blood-brain barrier (Vanderah et al.,
2008). Intravenous CR665 (0.36 mg/kg) was effective at
reducing visceral pain in a human model of esophageal disten-
sion (Arendt-Nielsen et al., 2009); however, CR665 (0.42 mg/kg,
i.v.) did not reduce pain in a colonic distension model (Floyd
et al., 2009).
CR665 is not orally active, and therefore, structural alter-

ations have beenmade to improve the oral bioavailability. One
of the derivatives (compound 9) reduced acetic acid–induced
writhing behaviors in male Sprague-Dawley rats with no
effect on centrally mediated hot-plate pain after oral admin-
istration (30 mg/kg), indicating a peripheral site of action
(Hughes et al., 2013). This compound has been renamed JT09
(Fig. 3) and is currently in development by JT Pharmaceut-
icals. In the follow-up paper, the acetic acid writhing test was
repeated, showing that 20mg/kg JT09 via oral gavage had the
same effect as 10 mg/kg morphine (Beck et al., 2019b). JT09
was not self-administered by rats and showed no CPA,
indicating no rewarding effects (Beck et al., 2019b). Finally,
there were no prodepressive effects in the forced swim test
model, nor sedative effects in the spontaneous locomotor test
(Beck et al., 2019b). The authors state that further work is
planned to understand the pharmacodynamics of JT09 and to
assess the antinociceptive effects in chronic pain models.
Peripherally restricted derivatives of nalfurafine are also

in development by Toray Industries (Suzuki et al., 2017).
There are a range of compounds with an increased number of
hydrogen bond donors, including 17-hydroxy-cyclopropylmethyl
(compound 8) and 10a-hydroxy (compound 10) (Fig. 3), yielding
promising results. The two compounds are highly selective for
the KOPr over the MOPr; in fact, compound 8 had.5,200,000
times greater selectivity for the KOPr (Suzuki et al., 2017). To
assess brain penetration, the brain-plasma concentration
ratio (Kp,brain) was calculated 15 minutes after intravenous
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injection inmale ICRmice. Nalfurafine had a ratio of 0.41, and
the novel compounds had lower brain penetrations; compound
8 was 0.11, and compound 10 was 0.07 (Suzuki et al., 2017).
Finally, the compounds were tested in the acetic acid writhing

model in mice, with both producing dose-dependent antiallo-
dynic effects (Suzuki et al., 2017). These hydroxy nalfurafine
compounds have encouraging results so far; however, further
in vivo experiments are required to fully evaluate the

Fig. 3. Chemical structures of the peripherally restricted k opioid receptor agonists.
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antinociceptive potential and confirm there are no centrally
mediated side effects.
Despite the number of compounds that have been tested,

there has been some criticism of this strategy. One limitation
with developing peripherally restricted pain medications is
that the blood-brain barrier must be intact; however, the
blood-brain barrier becomes more permeable in some chronic
pain conditions (DosSantos et al., 2014). Furthermore, pe-
ripherally restricted KOPr agonists can reduce pain-related
stimulation of behavior; however, there is a lack of evidence
that these compounds block pain-related depression of behav-
ior (Negus, 2019). In Sprague-Dawley rats, two peripherally
restricted KOPr agonists, ICI 204,448 and the tetrapeptide
ffir, had weak and no antinociceptive effect, respectively,
in a lactic-acid depressed intracranial self-stimulation
assay (Negus et al., 2012), whereas the nonsteroidal anti-
inflammatory drug, ketoprofen, had significant effect in
this assay (Negus et al., 2012). Further studies are required to
understand the effect of peripherally restricted KOPr agonists
in these assays of pain-related depression of behavior.

Mixed k Opioid Receptor Agonists
The final strategy used to overcome the undesirable effects

of KOPr agonism is to target multiple opioid receptors
simultaneously. The four classes of opioid receptors MOPr,
KOPr, DOPr, and nociceptin opioid receptors (NOPrs) all
modulate pain (McDonald and Lambert, 2005; Dietis et al.,
2011; Darcq andKieffer, 2018). Mixed opioid receptor agonists
may be a viable strategy to develop analgesics with reduced
side effects (Balboni et al., 2002; Váradi et al., 2016;Majumdar
and Devi, 2018). Mixed agonists could maintain antinocicep-
tive effects, with the KOPr-mediated dysphoric or aversive-
like effects balanced by the euphoric properties of MOPr or
DOPr activation.

Mixed KOPr/MOPr Compounds

KOPr/MOPr Full Agonism. 8-Carboxamidocyclazocine
(8-CAC) is a full agonist at both KOPr andMOPr, with potent,
long-acting antinociceptive effects in male ICR mice at nano-
molar doses in warm-water tail-withdrawal and acetic acid–
induced writhing tests (ED50 = 0.21 nmol, i.c.v.) (Bidlack et al.,
2002). In addition, 8-CAC produced antinociception that
lasted for 15 hours in the writhing test (Bidlack et al., 2002).
Acute administration of 8-CAC blocked cocaine-maintained
responding and decreased food–maintained responding. In
contrast, chronic administration increased cocaine self-
administration in rhesus monkeys (Stevenson et al., 2004),
indicating that 8-CAC may have abuse potential when
administered chronically.
Combined KOPr Agonism and Partial MOPr Ago-

nism. Butorphan (MCL-101), is a KOPr agonist with partial
MOPr agonist actions that reduced the rewarding effects of
cocaine in rats (Provencher et al., 2013) and rhesus monkeys
(Bowen et al., 2003). Neumeyer et al. (2000) found that
Butorphan produced potent antinociceptive effects in male
ICR mice in warm-water tail-withdrawal (ED50 = 7.3 nmol,
i.c.v.) and acetic acid–induced writhing tests (ED50 = 0.79
nmol, i.c.v., Table 2).
The macrocyclic tetrapeptide CJ‐15,208 (cyclo [Phe‐D‐Pro‐Phe‐

Trp]) is a natural product with centrally acting multifunctional

KOPr/MOPr agonist and KOPr antagonist actions. CJ‐15,208
produced antinociception without displaying hypolocomotor
effects in the Rotarod test in mice after oral administration
(Ross et al., 2010; Aldrich et al., 2013). Its analog, cyclo [Pro‐
Sar‐Phe‐D‐Phe] also displayed similar antinociceptive effects
with reduced side effects compared with morphine (Brice-Tutt
et al., 2020; Ferracane et al., 2020). Of interest, the alanine
analogs of [D-Trp]CJ-15,208 displayed pharmacological pro-
files in vivo that were distinctly different from the parent
compound. Although the analogs exhibited varying opioid
receptor activities in vitro, they produced potent opioid
receptor–mediated antinociception (ED50 = 0.28–4.19 nmol,
i.c.v.) in vivo in mice (Aldrich et al., 2014).
Discrepancies between in vitro binding affinity and in vivo

efficacy and potency are not uncommon, and it is possible that
metabolism may account for many of these observed differ-
ences. Another possibility is allosteric modulation. For exam-
ple, BMS-986122 is a positive allosteric modulator for MOPr,
and BMS-986187 is a structurally distinct positive allosteric
modulator for DOPr (with 100-fold selectivity in promoting
DOPr over MOPr). Livingston et al. (2018) also provide
evidence that selective allosteric modulators may enhance
signaling bias.
KOPr Agonism with MOPr Antagonism. The mixed

KOPr agonist and partial MOPr antagonist nalbuphine has
potent antinociceptive effects in male (Pick et al., 1992;
Patrick et al., 1999; Ortiz et al., 2007) and female mice (Wong
and Wai, 1984), rabbits (Yoa-Pu et al., 1998), and humans
(Kshirsagar et al., 2008) in a wide range of pain models
(Table 2). Moreover, nalbuphine attenuates cocaine abuse–
related effects in men (Mello et al., 2005) with lower re-
spiratory depression and fewer psychomimetic side effects
compared with other narcotic analgesics, such as nalorphine
or pentazocine (Schmidt et al., 1985). Similarly, 3-amino-
thiazolo [5,4-b]-N-cyclopropylmethylmorphinan hydrochlo-
ride (ATPM) attenuated heroin self-administration in male
Sprague-Dawley rats (Wang et al., 2009) and, along with the
analog [(2)-3-N-ethyl]-ATPM, showed antinociceptive
effects and inhibited morphine-induced antinociceptive tol-
erance in mice (Wang et al., 2009; Sun et al., 2010) (Table 2).
Although mixed KOPr agonists and partial MOPr antago-

nists have been proposed as nonaddictive analgesics, some
have abuse potential and adverse side effects. For example,
pentazocine has analgesic effects in moderate-to-severe pain
in humanswithmild respiratory depressive effects and did not
induce nalorphine-like psychoactive or morphine-like reward
behaviors (Sadove et al., 1964). Pentazocine was also effective
in patients that underwent a nasal irritation pain model
(Lotsch et al., 1997) and in thermal and pressure pain assays
(Fillingim et al., 2004) (Table 2). However, the analgesic
effects of pentazocine were not as potent as morphine and
produced side effects, including hallucinations, disorientation,
respiratory depression (Miller, 1975), and abuse potential
(Pawar et al., 2015).
Similarly, levallorphan is a KOPr agonist and MOPr

antagonist that blocked the euphoric effects of morphine while
retaining antinociceptive effects via KOPr meditation in male
CD1 mice (Codd et al., 1995). Moreover, it was found to
be protective against respiratory depression (Pawar et al.,
2015). However, levallorphan, because of actions at KOPr, can
produce hallucinations, dissociation, and other psychotomi-
metic effects (Hall, 2012).
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Partial KOPr Agonism with Partial MOPr Agonism/
Antagonism. Nalmefene, nalorphine, and butorphanol are
weak partial KOPr agonists with partial MOPr antagonism
and have been studied extensively. A clinical study reported
that low dose of nalmefene enhanced morphine analgesia
in patients with postsurgical pain (Crain and Shen, 2000).
Likewise, nalorphine has potent antinociceptive effects in
mice (Paul et al., 1991) and analgesic effects in humans
(Lasagna and Beecher, 1954; Keats and Telford, 1956)
(Table 2); however, clinical development was ceased be-
cause of diuresis (Leander, 1983). Butorphanol is used to
treat labor pain in pregnant women (Halder and Agarwal,
2013; Haiying et al., 2018; Yadav et al., 2018). In non-
dependent heroin-using males, acute administration of
butorphanol produced little or no physical dependence
compared with morphine; however, it did cause dysphoria,
hallucinations, and sedation (Tennant et al., 1976; Green-
wald and Stitzer, 1998; Pandya, 2010).
6b-N-Heterocyclic Substituted Naltrexamine Derivative

(BNAP) is another example of anMOPr antagonist and partial
KOPr agonist. BNAP is a peripherally restricted naltrex-
amine derivative (Williams et al., 2016) with potent antinoci-
ceptive effects in male ICR-CD1 mice (Williams et al., 2016)
(Table 2). An example of a mixed partial KOPr/MOPr agonist
is proxorphan, which produced antinociceptive effects in male
albino mice in the abdominal constriction assay (Zimmerman
et al., 1987; Hayes and Birch, 1988) (Table 2).
KOPr/MOPr Heteromer. N-naphthoyl-b-naltrexamine

is a highly selective and potent activator of MOPr/KOPr
heteromer and had potent antinociceptive effects in male
ICR-CD1 mice in the tail-withdrawal assay (Yekkirala et al.,
2011) (Table 2).

Mixed KOPr/DOPr Compounds

Miaskowski et al. (1990) found that KOPr (U50,488) and
DOPr [D- Pen 2,D- Pen 5]enkephalin agonists administered
via intrathecal injection produced a synergistic antinocicep-
tive response. Although DOPr agonists can produce seizures
(Comer et al., 1993; Bilsky et al., 1995; Jutkiewicz et al.,
2006; Lutz and Kieffer, 2013) and have abuse potential
(Shippenberg et al., 2009; Pradhan et al., 2011; Mori et al.,
2015), KOPr agonists have anticonvulsant, antiseizure (Zan-
grandi et al., 2016), and antiaddiction effects (Negus et al.,
1997; Mello and Negus, 2000). Therefore, it is hypothesized
that mixed KOPr and DOPr agonism could have fewer side
effects.
A novel analog of 3-iodobenzoyl naltrexamine called

MP1104 has dual KOPr/DOPr agonist actions (Váradi et al.,
2015). MP1104 produced potent antinociceptive effects in the
radiant-heat tail-withdrawal assay in male CD1 mice (Váradi
et al., 2015) and reduced inflammatory pain in the intrader-
mal formalin test in both male and female ICR mice (Ulker
et al., 2020) (Table 2). Moreover, MP1104 has anticocaine
effects in male Sprague-Dawley rats and showed no anxio-
genic, prodepressive, or aversive side effects (Atigari et al.,
2019).
There are also compounds created to target KOPr/DOPr

heterodimers. These include KDA-16 (also known as
ICI199,441), which showed spinal antinociception via selec-
tive activation of KOPr-DOPr heterodimers in mice (Tang
et al., 2010). KDAN-18, which links KOPr agonist ICI199,441

and DOPr antagonist naltrindole, produced antinociceptive
effects in tail-withdrawal assays in male mice (Daniels et al.,
2005). As mentioned previously, 69-GNTI selectively activated
DOPr/KOPr heterodimers but not KOPr or DOPr homomers
(Waldhoer et al., 2005). Together, this suggests that opioid
receptor heterodimers are distinct functional signaling units
and could provide a target for the development of tissue-
selective analgesics with reduced side effects.

Mixed KOPr/DOPr/MOPr Compounds

Levorphanol is a full agonist at both MOPr and DOPr and
a partial KOPr agonist (Le Rouzic et al., 2019). Levorphanol
was effective in treating chronic pain resulting from malig-
nancies and bone or joint disease (Glazebrook, 1952) and
postoperative pain after abdominal surgery (Morrison et al.,
1971). In addition, as a strongN-methyl-D-aspartate receptor
antagonist (Pham et al., 2015), levorphanol has inhibitory
effects on the uptake of serotonin and norepinephrine, which
makes it suitable to be used for the treatment of neuropathic
pain (Rowbotham et al., 2003; Zorn and Fudin, 2011).
Levorphanol has been investigated for potential clinical uses
for treating chronic pain (McNulty, 2007) and opioid-induced
hyperalgesia [Stringer et al., 2000; for full review of levorpha-
nol see Gudin et al. (2016)]. Recently, it was shown that the
antinociceptive actions of levorphanol were mediated via
G-protein–biased MOPr agonism (Le Rouzic et al., 2019).
Furthermore, levorphanol produced significantly less respira-
tory depression thanmorphine at equal doses (Le Rouzic et al.,
2019).
Cyclorphan has mixed weak partial MOPr agonist and

antagonist activity in combination with KOPr and DOPr
agonism. Cyclorphan had antinociceptive effects in mice in
the hot-plate assay (Gringauz et al., 2001) with long-acting
antinociceptive effects; however, adverse psychomimetic
effects prevented its clinical development (Varghese and
Hudlicky, 2014).
Recently, a potent mixed MOPr/DOPr/KOPr agonist called

14-O-phenylpropyloxymorphone was synthesized by modify-
ing the structure of the MOPr agonist 14-O-methyloxymor-
phone (Lattanzi et al., 2018). 14-O-phenylpropyloxymorphone
produced potent antinociceptive effects in the acute hot-plate
assay in mice compared with reduced constipation compared
with morphine (Lattanzi et al., 2018). Although 14-O-phenyl-
propyloxymorphone has high affinity toward all three opioid
receptors, the antinociceptive effects were found to be medi-
ated via MOPr only (Lattanzi et al., 2018).

Mixed KOPr/DOPr/MOPr/NOPr Compounds

Cebranopadol (also known asGRT-60005) is a full agonist at
MOPr and DOPr and a partial agonist at KOPr and NOPr and
has potent antinociceptive effects in thermal, inflammatory,
chronic neuropathic, and bone cancer pain models in male and
female rats with a favorable side-effect profile (Linz et al.,
2014). Other studies in rodents have reported potent anti-
nociceptive effects in thermal (Schunk et al., 2014; Linz et al.,
2017), arthritic (Schiene et al., 2018), and neuropathic pain
models (Schunk et al., 2014; Christoph et al., 2018). Cebrano-
padol is currently in clinical trials for several indications,
including treatment of severe chronic nociceptive (Dahan
et al., 2017), postoperative (Scholz et al., 2018), chronic lower
back (Christoph et al., 2017), cancer (Koch et al., 2019), and
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neuropathic pain (Schunk et al., 2014; Lambert et al., 2015)
(Table 2).

Conclusions
There are hurdles to overcome in the development of KOPr

agonists for the treatment of pain. The KOPr activation can
drive the negative affective state during inflammatory pain
(Massaly et al., 2019) and the aversive component of neuro-
pathic pain (Liu et al., 2019b; Meade et al., 2020). However,
this review provides evidence that several KOPr agonists have
been developed with preclinical antinociceptive effects with
few side effects. These improvements often correlate to
enhanced G-protein signaling over b-arrestin recruitment,
although there are clear differences in the determination of
signaling bias. An alternative approach to overcome the
undesirable effects of selective KOPr agonism is to develop
peripherally restricted KOPr agonists or mixed opioid re-
ceptor agonists. In particular, a mixed opioid agonist with
MOPr and DOPr activation may reduce the aversive-like
effects produced by KOPr agonism.
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