Cordycepin Inhibits Cancer Cell Proliferation and Angiogenesis through a DEK Interaction via ERK Signaling in Cholangiocarcinoma

Tesi Liu, Guang Zhu, Wendi Yan, You Lv, Xue Wang, Guang Jin, Minghua Cui, Zhenhua Lin, and Xiangshan Ren

Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); and Otorhinolaryngology Institute at Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, P.R. China (T.L.)

Received October 15, 2019; accepted February 10, 2020

ABSTRACT

Cholangiocarcinoma (CCA) is a malignant tumor that arises from the epithelial cells of the bile duct and is notorious for its poor prognosis. The clinical outcome remains disappointing, and thus more effective therapeutic options are urgently required. Cordycepin, a traditional Chinese medicine, provides multiple pharmacological strategies in antitumors, but its mechanisms have not been fully elucidated. In this study, we reported that cordycepin inhibited the viability and proliferation capacity of CCA cells in a time- and dose-dependent manner determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and colony formation assay. Flow cytometry and Hoechst dye showed that cordycepin induced cancer cell apoptosis via extracellular signal-regulated kinase (ERK) deactivation and DEK inhibition, and apoptosis induction determined by Western blot and flow cytometry. Furthermore, cordycepin significantly inhibited tumor growth and angiogenic capacities in a xenograft model by downregulating the expression of DEK, phosphorylated ERK1/2 CD31 and von Willebrand factor (vWF). Taken together, we demonstrated that cordycepin inhibited CCA cell proliferation and angiogenesis with a DEK interaction via downregulation in ERK signaling. These data indicate that cordycepin may serve as a novel agent for CCA clinical treatment and prognosis improvement.

SIGNIFICANCE STATEMENT

Cordycepin provides multiple strategies in antitumors, but its mechanisms are not fully elucidated, especially on cholangiocarcinoma (CCA). We reported that cordycepin inhibited the viability of CCA cells, induced apoptosis via extracellular signal-regulated kinase 1/2 deactivation and DEK inhibition, and reduced the angiogenic capabilities of CCA both in vivo and in vitro.

Introduction

Cholangiocarcinoma (CCA) is a malignant tumor that originated from the epithelial cells of the bile duct and accounts for 15% of primary liver cancers (Banales et al., 2016). Because surgery is the only potential curative operation for CCA patients, the clinical outcome remains disappointing, and the survival time is less than 2 years (Blechacz and Gores, 2008). In the last two decades, with the further development of efficient therapeutic strategies, surgical treatment of this disease has become optional. However, CCA is insensitive to radiochemotherapy, and there are serious side effects with combined treatment, thus clinical outcome needs to be improved. Considering the rather unspecific presentation of CCA patients and the aggressiveness of CCA, more specific molecular agents and drugs with low toxicity are urgently required.

Cordycepin, a traditional Chinese medicine extracted from Cordyceps militaris (Fig. 1A), has been reported to exert significant antitumor activities in a wide spectrum of cancers.

ABBREVIATIONS: BM, basal medium; CCA, cholangiocarcinoma; CM, condition medium; DMEM, Dulbecco’s modified Eagle’s medium; ERK, extracellular signal-regulated kinase; H&E, hematoxylin and eosin; HUVEC, human umbilical vein endothelial cell; IHC, immunohistochemical; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide; p-, phosphorylated; PARP, poly (ADP-ribose) polymerase; PCR, polymerase chain reaction; siRNA, small interfering RNA; VEGF, vascular endothelial growth factor; VEGFR, VEGF receptor; vWF, von Willebrand factor.
Fig. 1. Cordycepin inhibits CCA cell growth and Erk1/2 phosphorylation. (A) The structure of cordycepin. (B) MTT assay of HuCCT1 and CCKS1 treated with cordycepin at 24-, 48-, and 72-hour time points in a dose-dependent manner; cordycepin significantly inhibited the viability of both cancer cell lines (**P < 0.01 vs. 24 hours 0 μM group; ##P < 0.01 vs. 48 hours 0 μM group; ^^P < 0.01 vs. 72 hours 0 μM group, n = 6). (C) Colony formation assay of HuCCT1 and CCKS1 treated with cordycepin in a dose-dependent manner. Cordycepin significantly inhibited the colony formation ability of both cancer cell lines (**P < 0.01 vs. 0 μM group). (D) Apoptosis assay of HuCCT1 and CCKS1 treated with cordycepin in a dose-dependent manner. Cordycepin significantly increased the apoptosis rate of both cancer cell lines (**P < 0.01 vs. 0 μM group). (E) Western blot analysis of HuCCT1 and CCKS1 treated with cordycepin in a dose-dependent manner. Cordycepin significantly inhibits Cl-caspase 9, Cl-caspase 3, Cl-PARP, and Erk1/2 phosphorylation. (F) Western blot analysis of HuCCT1 and CCKS1 treated with cordycepin in a dose-dependent manner. Cordycepin significantly inhibits Cl-caspase 9, Cl-caspase 3, Cl-PARP, and Erk1/2 phosphorylation.
Cordycepin exerts antiproliferative and antimetastatic and induces apoptosis in cancer cells in vitro (Lee et al., 2010; Jeong et al., 2011). More importantly, cordycepin was reported to have a potential role in RNA/DNA biosynthesis inhibition, angiogenesis, and immunomodulation (Lu et al., 2014; Nakamura et al., 2015). Although there are many studies on cordycepin inhibition of cancer, little is known about its molecular mechanisms in CCA.

DEK is an oncogene protein that is overexpressed in aberrant proliferating and malignant cells (Rivero-Falkenbach and Soengas, 2010). Since its first description, DEK has been demonstrated playing roles in DNA repair, replication, and transcription (Soekarman et al., 2011; Kappes et al., 2015). Recent studies showed a pro-oncogenic role of DEK in promoting cell proliferation, survival, and transformation (Wise-Draper et al., 2009; Adams et al., 2015; Privette Vinnedge et al., 2015). DEK functions are well-established in cellular processes, but the regulation of DEK is not fully understood. EZ factor, nuclear transcription factor Y, Yin Yang 1, and estrogen receptor α are thought to directly modulate DEK gene transcription (Müller et al., 2001; Privette Vinnedge et al., 2012). DEK was also characterized as a critical regulator of G1/S transition in mammalian cells and was reported play a role in angiogenesis (Zhang et al., 2016). Since DEK is frequently upregulated in various human malignancies and exhibits oncogenic activities, therapeutic strategies that target DEK may form a new approach to cancer treatment.

There are few published reports of the use of cordycepin in CCA treatment, thus we decided to investigate whether cordycepin suppresses CCA progression and to elucidate its molecular mechanisms. MTT and colony formation assays were performed to investigate the impact of cordycepin treatment on cell proliferation, and tube formation assays were conducted to examine its roles in angiogenesis.

In this study, we provide a mechanistic insight into the inhibition of CCA progression and angiogenesis by cordycepin and reveal an intersection between cordycepin and DEK. Our data indicate that cordycepin may serve as a novel therapeutic target for CCA.

Materials and Methods

Ethics Statement. This research complied with the Helsinki Declaration and was approved by the Human Ethics Committee and the Research Ethics Committee of Yanbian University Medical College. Patients were informed that the resided specimens were stored by the hospital and potentially used for scientific research and their privacy could be maintained.

Cell Culture and Cordycepin Treatment. Human normal biliary epithelial cell line HIBEpic and human CCA cell line QBC939 cells were purchased from American Type Culture Collection (Manassas, VA). The RBE CCA cell line was purchased from Cell Bank of the Type Culture Collection of the Chinese Academy of Sciences (Shanghai, China). CCA cell lines HuCCT1, CCKS1, and TFK1 were provided by the Department of Pathology of Kanazawa University (Kanazawa, Japan). HIBEpic, QBC939, RBE, HuCCT1, and TFK1 were grown in RPMI-1640 culture medium, and CCKS1 was cultured in Dulbecco’s modified Eagle’s medium: nutrient Mixture F-12 containing 10% FBS, 1% glutamine, and 1% penicillin-streptomycin. Human umbilical vein endothelial cells (HUVECs) were purchased from American Type Culture Collection and grown in endothelial cell growth medium. Cells were maintained in a 37°C incubator supplied with 5% CO2.

For the cordycepin treatment, cordycepin was dissolved in DMSO to a stock solution of 400 mM and further diluted to different concentrations with culture medium. For extracellular signal-regulated kinase (Erk) 1/2 inhibitor GDC-0994 treatment, HuCCT1 cells were treated with 1 and 5 μM GDC-0994 for 48 hours.

Reagents and Antibodies. Cell culture medium (RPMI-1640, DMEM-F12) were purchased from CORNING. FBS was purchased from BI. For condition medium (CM), cancer cells were seeded after 24 hours and then treated with or without cordycepin for another 48 hours, and the supernatant was collected for tube formation assay (described in the Tube Formation Assay section). For basal medium (BM) used for HUVECs is a medium that can meet the basic needs for endothelial cell growth. The BM was used to treat HUVECs without cancer cell preincubation. The purpose of using different media was to avoid the impact on HUVECs caused by the media. Cordycepin was purchased from Sigma Chemical Co. (St Louis, MO). Erk1/2 inhibitor was purchased from ApexBio. The primary antibodies against cleaved caspase 9, cleaved caspase 3, cleaved PARP, p-Erk1/2, and Erk1/2 were purchased from Cell Signaling Technology (Danvers, MA). Vascular endothelial growth factor (VEGF), VEGFR-2, and DEK antibodies were purchased from ProteinTech. CD31 and β-actin was purchased from Abcam. Von Willebrand factor (vWF) was purchased from Santa Cruz.

MTT Assay. Cells were seeded 5000 cells/well in 96-well plates and cultured. The cells were then treated with cordycepin at various doses. After 24, 48, and 72 hours, cells were added into MTT solution for 4 hours in the incubator. Then, adding DMSO dissolved MTT and detecting at a full-wavelength spectrophotometer (Tecan, Switzerland).

Colony Formation Assay. Cells were seeded at a density of 2000 cells on six-well plates and cultured. Then cells were treated with cordycepin, respectively. Two weeks later, when colonies were visible, cells were then fixed in formaldehyde 4%, stained by Gimsa 0.5%, and counted manually.

Hoechst33342 Staining. Cells were seeded in six-well plates and cultured until 70%–80% confluence. The cells were then treated with cordycepin after 48 hours, fixed in 4% formaldehyde for 30 minutes at room temperature with Hoechst33342, and photographed under microscope (SP5II, Leica).

Flow Cytometry Assay. CCA cells were treated with cordycepin after 48 hours, harvested, washed with cold PBS, and resuspended in binding buffer. The cells were stained with annexin V and/or phosphatidylserine for 15 minutes, respectively, and this was performed using BD Accuri C6 Software (BD Biosciences, San Jose, CA).

Western Blot Analyses. Cells were collected and lysed with T-PER buffer (Invitrogen) supplemented with protease inhibitors. BCA protein assay (Beyotime Biotechnology, China) was used to measure protein concentration. Proteins were separated using 8%–10% SDS-PAGE electrophoresis and transferred to polyvinylidene fluoride membranes. The membranes were blocked and probed with appropriate antibodies. Dilutions of cleaved caspase 9, cleaved caspase 3, cleaved PARP, p-Erk1/2, Erk1/2, VEGF, VEGFR-2, and phosphatidylinositol.
DEK antibodies were 1:1000; β-actin was 1:3000. Plus horseradish peroxidase–labeled secondary antibody was used for incubation, and then electrochemiluminescence color luminescence (Beyotime Biotechnology) was used for detection. β-actin was used as a loading control.

Tube Formation Assay. Each well of prechilled 96-well plates was bedded with a layer of Matrigel and polymerized at 37°C for 1 hour. HUVECs were then resuspended in FBS-free medium with cancer cell culture supernatant. HUVECs were seeded on the polymerized Matrigel and then incubated for 2 hours. The wells were photographed on an inverted phase contrast microscope, and the tube formation ability was evaluated by counting the number of tubes in three random fields.

Small Interfering RNA Transfection. DEK siRNA 4 (5′-TGT CCTCATTAAAGAAGAA-3′) and control siRNA were purchased from RBIOBIO (Guangzhou, China). Cells were transfected with 100 nM siRNA using LipofectAMINE 3000 (Invitrogen) according to the manufacturer’s instructions.

Immunohistochemical Staining. A total of 10 human CCA patient specimens collected from 2005 to 2013 were provided by the Affiliated Hospital of Kanazawa University in Japan. Human specimens and xenograft tumor tissues fixed with 4% paraformaldehyde–PBS, embedded in paraffin, and sectioned into 4 μm–thin slices. After antigen retrieval with citric acid (pH 6.0), endogenous peroxidase activity was blocked with 1% hydrogen peroxide. Primary antibody p-Erk1/2 antibody (1:200) and DEK antibody (1:250), CD31 antibody (1:100), and vWF (1:200) were applied. CD31 antibody and vWF were incubated with secondary antibodies against goat IgG, sections were washed with diaminobenzidine and counterstained with hematoxylin. The staining was imaged by microscopy.

Reverse-Transcription Polymerase Chain Reaction. The total RNA was extracted using kit (QIAGEN, Germany). cDNA was reversely transcribed from 500 ng of total RNA using reverse transcription kit (TaKaRa, Japan). The cDNA was amplified with the following primers:

5′-AAGGGTGGGATTAAGTACAAGCACA-3′ (forward), 5′-ATCCA CGATTGCCTGACA-3′ (reverse) for DEK; and 5′-GAGTCAACCGGA TTGGTCTGT-3′ (forward), 5′-TGATTTGAGGGATCTC-3′ (reverse) for glyceraldehyde-3-phosphate dehydrogenase.

The real-time PCR was carried out with using kit (TaKaRa, Japan). Glyceraldehyde-3-phosphate dehydrogenase was used as an internal control for each sample.

Xenograft Model. This study was approved by the ethics committee of the Yanbian University Medical College. Four-week-old male nude mice were obtained from Hua Fu Kang bioscience company Beijin, China, and HuCCT1 (5 × 10^5 cells/mouse) in 100 μl of PBS-free medium was subcutaneously injected. Tumor nodules were examined every day and were evaluated using the following formula: tumor volume = (width^2 × length)/2. Seven days after tumor cell inoculation, 10 mice with different tumor volumes were divided randomly into two groups (five animals per group). The treatment group received cordycepin treatment via intraperitoneal injection every day (50 mg/kg), and the control group received the same volume of PBS. The body weight and tumor volume of each mouse were assessed every 2 days using caliper measurements. On day 45, the mice were sacrificed, and the livers and tumors were excised and fixed for immunohistochemistry staining and hematoxylin and eosin (H&E) staining. This experiment was accomplished in Changchun Shengyu cell biotechnology co. LTD, China.

Statistics. Statistical analysis was conducted by SPSS 17.0 software (SPSS Inc.) and GraphPad Prism version 5.0 (GraphPad, San Diego, CA). Measurements were indicated as mean ± S.D. and evaluated using Student’s t test and one-way ANOVA. A P value <0.05 was used as a measure of statistically significance.

Results

Cordycepin Inhibits Cancer Cell Growth and Erk1/2 Phosphorylation in CCA. Cordycepin is reported to exert significant antitumor activities (Yang et al., 2017a; Zhou et al., 2017; Chaicharoenadomrung et al., 2018). To investigate
whether cordycepin influences the progression of CCA, HuCCT1 and CCKS1 cells were treated with cordycepin in a time- and dose-dependent manner. Different doses of cordycepin used for cancer cell treatment was based on the different IC50 value of the cell, as shown in Fig. 1B. The IC50 value of HuCCT1 was 100 μM and the value for CCKS1 was 150 μM. Cell viability was determined by MTT assay. Cordycepin significantly reduced cell viability in both HuCCT1 and CCKS1 cells (Fig. 1B). The colony formation ability of both HuCCT1 and CCKS1 was reduced in a dose-dependent manner after cordycepin treatment of 2 weeks (Fig. 1C). These results demonstrated that cordycepin inhibits CCA progression by inhibiting CCA cell proliferation. Because mounting data has demonstrated that cordycepin provides multiple pharmacological strategies for apoptosis induction in various kinds of cancers, we examined whether cordycepin exerts apoptosis induction in both CCA cell lines (Fig. 1B). The colony formation ability of both HuCCT1 and CCKS1 was reduced in a dose-dependent manner after cordycepin treatment of 2 weeks (Fig. 1C). These results demonstrated that cordycepin inhibits CCA progression by inhibiting CCA cell proliferation. Because mounting data has demonstrated that cordycepin provides multiple pharmacological strategies for apoptosis induction in various kinds of cancers, we examined whether cordycepin exerts apoptosis induction in both CCA cell lines. We found that after 48 hours of treatment with cordycepin in both HuCCT1 and CCKS1 cell lines, Hoechst33342 staining revealed a significant increase in cell apoptosis (Fig. 1D). Quantitative measurement of annexin V and propidium iodide positivity was performed by flow cytometry. Both cell lines showed a significant increase in apoptosis after 48 hours of cordycepin treatment (Fig. 1E). We then analyzed the expression of apoptosis markers by Western blot assay. Cordycepin treatment resulted in a significant increase in cleaved caspase-9, cleaved caspase-3, and cleaved PARP (Fig. 1F). Previous reports showed that the ERK pathway is involved in tumor initiation and progression, and a reduction in ERK activation resulted in CCA growth inhibition (Chen et al., 2018; Yokoi et al., 2018). Thus, Western blot assays were performed to evaluate ERK expression. Protein expression was evaluated following treatment of both cell lines with various doses of cordycepin for 24 hours. In both cancer cell lines, p-ERK1/2 levels were significantly decreased (Fig. 1G). These results demonstrated that cordycepin attenuates CCA cell proliferation by apoptosis induction and ERK1/2 inhibition.

Cordycepin Inhibits the Tube Formation Capacities of HUVECs. Earlier studies indicated that cordycepin has an antiangiogenic role in cancer suppression (Lu et al., 2014). Given that angiogenesis is essential for cancer progression and metastasis, we employed tube formation assays in HUVECs to determine whether cordycepin influences CCA angiogenesis. First, to abolish the influence of cell viability of HUVECs in tube formation assays and to further elucidate how cordycepin inhibits CCA angiogenesis, ASSPT assays were performed. HUVECs were incubated in DMEM, HUVEC BM, RPMI-1640/DMEM-F12 cancer cell culture BM, RPMI-1640/DMEM-F12 plus 100/150 μM cordycepin, CM from both cancer cell lines, and the CM from both cancer cell lines after 48 hours cordycepin treatment. ASSPT assays revealed that only incubation with CM obtained from both cancer cell lines after 48 hours cordycepin treatment significantly reduced the
viability of HUVECs. We speculated that cordycepin may inhibit CCA angiogenesis and that the CM obtained from cancer cell lines after cordycepin treatment may contain some apoptotic factors that further influence HUVEC cell viability (Fig. 2A). Next, we incubated HUVECs with the CM obtained from both cancer cell lines after 48 hours of cordycepin treatment. We found that the tube formation ability of HUVECs was attenuated in the cordycepin-treated group in both cell lines (Fig. 2B). We then assessed the expression of VEGF and VEGFR-2 by Western blotting. Cordycepin treatment lowered VEGF and VEGFR-2 expression, which further confirmed the tube formation results (Fig. 2C). Our results indicated that cordycepin slowed CCA progression by angiogenesis inhibition.

Cordycepin Downregulated DEK Overexpression in CCA Cell Lines. DEK is reported as an oncogene in many types of cancers, like acute myeloid leukemia, bladder cancer, hepatocellular cancer, and breast cancer (Liu et al., 2017). Recent reports showed that DEK interact with lung cancer metastasis-related protein 1 to enhance cancer cell growth and suppress apoptosis (Xu et al., 2017). A previous study also showed that DEK has critical roles in angiogenesis and phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin pathway modulation (Yang et al., 2017b). Considering these findings, and compared with our previous studies of cordycepin, we hypothesized that cordycepin may influence DEK expression. Evaluation of DEK expression in both cancer cell lines was undertaken by Western blotting. We found an inverse relationship between cordycepin and DEK expression, as shown in Fig. 3A; DEK demonstrated significantly lower expression after cordycepin treatment. DEK expression in various cancer types was also confirmed. Data obtained from the UALCAN data base (UALCAN data base: http://ualcan.path.uab.edu) showed that DEK is overexpressed in CCA (Fig. 3B). To further confirm our results, IHC staining was undertaken. Compared with peri-tumor tissue, DEK showed strongly positive staining in CCA tumor tissue (Fig. 3C). We then analyzed DEK mRNA expression...
levels by reverse-transcription PCR in HIBEpic cells, a normal epithelial cell line of the bile duct, and five CCA cell lines: HuCCT1, CCKS1, QBC939, TFK1, and RBE. As shown in Fig. 3D, the expression levels of DEK in five cancer cell lines were much higher than those in HIBEpic cells. Together, these data imply that DEK is overexpressed in CCA cell lines, and cordycepin suppression of DEK expression may contribute to its roles in CCA inhibition.

DEK Silencing Inhibits CCA Growth. To further confirm the oncogenic roles of DEK in CCA and the correlation between cordycepin and DEK, we next silenced DEK expression using siRNA. Western blotting analysis enabled selection of siRNA sequence 4 for further investigation (Fig. 4A). MTT assay showed a significant decrease in cell viability in HuCCT1 cells after DEK silencing (Fig. 4B), and colony formation assays also revealed a reduction in colony formation capacity (Fig. 4C). To gain a mechanistic understanding of the potential role of DEK in modulating tumorogenesis, flow cytometry and Hoechst33342 staining were used to investigate the roles of DEK in apoptosis. As shown in Fig. 4, D and E, no significant changes were observed in apoptosis induction, and Western blotting also confirmed no changes in apoptosis markers (Fig. 4F). Herein, we indicate that DEK increased tumor cell growth by enhancing its proliferation rate, and DEK knockdown is irrelevant to apoptosis induction.

DEK Silencing Attenuated the Tube Formation Capacities of HUVECs and Inhibited Erk1/2 Signaling. We next analyzed the role of DEK in angiogenesis, and tube formation assays revealed that DEK silencing significantly inhibited the ability of HUVECs to form tubes (Fig. 5A). Intriguingly, VEGF and VEGFR-2 demonstrated no significant changes in expression (Fig. 5B). Therefore, further investigation is required. MTT assays showed that, compared with the other four groups, HUVECs incubated with CM obtained from DEK-silenced HuCCT1 cells underwent viability attenuation (Fig. 5C). Previous studies demonstrated that DEK has critical roles in tumorigenesis via ERK1/2 modulation, hence Western blot assays were used to analyze p-ERK1/2 expression after DEK silencing. Compared with the control group, DEK silencing inhibited the phosphorylation of ERK1/2 (Fig. 5D). We next applied GDC-0994, an ERK1/2 inhibitor to further confirm the role of DEK in ERK1/2 activation. Western blot assay showed that there were no significant changes in DEK expression (Fig. 5E), suggesting that DEK exerts oncogenic functions via ERK1/2 modulation.

Cordycepin Inhibits CCA Progression by Targeting DEK via ERK1/2 Signaling in a Xenograft Model. To further confirm the antitumor effects of cordycepin in vivo, 5 × 10^6 HuCCT1 cells were subcutaneously transplanted into nude mice (n = 5 biologically independent mice per group). Seven days after cancer cell injection, cordycepin at a dose of 50 mg/kg was administered every 24 hours for 45 days by intraperitoneal injection, and then the mice were killed, and the transplanted tumors were excised (Fig. 6A). There were no significant changes in body weight (Fig. 6B), and tumor volumes underwent a significant reduction compared with the control group (Fig. 6C). We then evaluated the subcutaneously transplanted tumors at the end of experiment; after cordycepin treatment, tumor weight and tumor volume were both reduced (Fig. 6, D and E). It was also obvious that there were far fewer microvessels on the tumor surface compared with the control group and indicated that angiogenesis was inhibited by cordycepin (Fig. 6F). H&E staining of the portal tract was undertaken to evaluate the toxicity of cordycepin and revealed no significant changes (Fig. 6G), indicating that little damage was done by cordycepin at a dose of 50 mg/kg.
Next, we applied IHC and H&E staining of the xenograft tumor tissue. IHC staining showed a significant inhibition of p-ERK1/2 and DEK expression compared with the control group (Fig. 6H). The IHC staining of two angiogenic markers CD31 and vWF showed that the newly formed endothelial cells and microvessels were significantly reduced after cordycepin treatment (Fig. 6I). Thus, our data indicated that cordycepin inhibited CCA progression by targeting angiogenic capacities and DEK via ERK1/2 signaling in vivo.

Discussion

Multiple studies have shown that cordycepin exerts antitumor effects in hepatocellular carcinoma, colorectal cancer, and gastric cancer (He et al., 2010; Nasser et al., 2017; Zeng et al., 2017). Researches have indicated that cordycepin suppresses tumor growth by apoptosis induction and angiogenesis inhibition. However, in CCA, the effects of cordycepin were not fully elucidated. Therefore, we performed MTT and colony formation assays to investigate the impact of cordycepin treatment on cell proliferation. MTT assays revealed attenuated cell viability and colony formation ability in both CCA cell lines. Further investigations utilizing Hoescht dye and flow cytometry revealed apoptosis induction in both cell lines following cordycepin treatment. Parallel with Western blot results, the apoptosis markers, cleaved caspase-3, cleaved caspase-9, and cleaved PARP, were upregulated, which further confirmed the apoptosis induction effects of cordycepin. Previous studies have suggested that cordycepin induces apoptotic effects by downregulating ERK signaling (Wang...
et al., 2017), and ERK1/2 activation promotes CCA cell proliferation, chemoresistance, and progression (Ewald et al., 2014; Yokoi et al., 2018). Thus, analysis of p-ERK1/2 expression after cordycepin treatment was performed. Compared with the control group, cordycepin treatment significantly inhibited ERK1/2 phosphorylation, suggesting that cordycepin inhibits CCA cell proliferation dependent upon ERK1/2 downregulation.

Angiogenesis, another aspect that promotes cancer progression, was also investigated in this study. Given that angiogenesis provides various benefits and comforts microenvironment for tumor growth (Okkenhaug et al., 2016; Xiang...
Cordycepin have been demonstrated targeting various oncogenes to achieve antitumor effects (Liang et al., 2017; Zeng et al., 2017; Cui et al., 2018). DEK acts as an oncogene and is overexpressed in various cancer types, including CCA. DEK was proven to enhance tumorigenesis and tumor-associated angiogenesis. In this study, notably, we found DEK expression was downregulated by cordycepin treatment. To further elucidate the roles of cordycepin and DEK interplay, we silenced DEK using siRNA and examined its roles in tumor growth and angiogenesis. According to our studies, DEK silencing significantly reduced cell viability and colony formation capacities. However, DEK silencing was found to be irrelevant with apoptosis induction in CCA. In contrast, DEK silencing was found to promote apoptosis in cervical cancer and lung cancer (Liu et al., 2012; Feng et al., 2017); we speculated that cordycepin-modulated cell death may mainly be due to Erk1/2 deactivation but not DEK silencing. DEK silencing revealed no changes in cell apoptosis induction, which may be due to cancer specificity, and further studies are required.

Finally, DEK silencing was also associated with tube formation in HUVECs and downregulation of ERK1/2 signaling. These data revealed that cordycepin functions correspond with DEK silencing and that DEK may act as a potential target of cordycepin. We next generated a xenograft model to further confirm our findings. Cordycepin treatment significantly downregulated the relative volume of subcutaneously transplanted tumors, and IHC staining of tumor tissue revealed that p-ERK1/2 and DEK were inhibited. In conclusion, our study provides mechanistic insights into the inhibition of CCA progression and angiogenesis by cordycepin and revealed an interaction with DEK (Fig. 7). Our data indicate that cordycepin may serve as a novel therapeutic target for CCA.

Acknowledgments
The authors would like to thank Dr. Kenichi Harada and Dr. Yasunori Sato (Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan) for their valuable suggestions for this experiment design and their technical support during the preparation of this manuscript.

Authorship Contributions

Participated in research design; Lin, Ren.

Patient sample collection: Jin, Cui.

Data analysis: Liu, Zhu.

Wrote or contributed to the writing of the manuscript: Liu, Zhu.

References

Cordycepin Inhibits Cholangiocarcinoma

Address correspondence to: Xiangshan Ren, Department of Pathology and Cancer Research Center, Yanbian University Medical College, No. 977, Gongyuan Road, Yanji 133002, China. E-mail: renxsh@ybu.edu.cn; or Zhenhua Lin, Department of Pathology and Cancer Research Center, Yanbian University Medical College, No. 977, Gongyuan Road, Yanji 133002, China. E-mail: zhlin720@ybu.edu.cn