CONTENTS

NUMBER 1, SEPTEMBER, 1929

I. Concerning the Alleged Antidotal Action of Sodium Thiosulfate in Mer-
curic Chloride Poisoning. By K. I. Melville and M. Bruger 1
II. The Narcosis of Muscle by Gases. By Helen Tredway Graham 9
III. The Acquisition by Isolated Muscle of Tolerance to Narcotics. By
 Helen Tredway Graham .. 35
IV. Lathyrius. By Ralph Stockman .. 43
V. The effect of Mercury on Intestinal Motility. By William Salant and
 Keeve Brodman .. 55
VI. The Mechanism of Digitalis-Emesis in Pigeons. By P. J. Hanzlik and
 D. A. Wood .. 67
VII. The Intestinal Activity in Unanesthetized Dogs as Influenced by
 Morphine and by Papaverine. By Charles M. Gruber and Paul I.
 Robinson .. 101

NUMBER 2, OCTOBER, 1929

VIII. Functional Changes in the Autonomic System and the Action of
 Mercury. By William Salant and Keeve Brodman 121
IX. The Action of Strychnine upon the Denervated Heart and upon the
 Secretion of Adrenin. By Paul M. Harmon and C. M. McFall 131
X. The Effect of Morphine upon the Denervated Heart and upon the Secre-
 tion of Adrenin. By Paul M. Harmon and C. M. McFall 147
XI. The Behavior of the Extracardiac Nerves of the Cat under Ether—A
 Potential Source of Error. By J. Lester Kobacker and R. Rigler 161
XII. Further Studies on the Relation of Heterocyclic Compounds to the
 Autonomic Nervous System. By Reid Hunt and R. R. Renshaw 177
XIII. Ethers of Formocholine and Choline. By Reid Hunt and R. R.
 Renshaw .. 193
XIV. The Absorption, Distribution and Excretion of Carbon Tetrachloride
 in Dogs Under Various Conditions. By B. H. Robbins 203
XV. Ethyl Alcohol in Fowls after Exposure to Alcohol Vapor. By Thorne
 M. Carpenter ... 217

NUMBER 3, NOVEMBER, 1929

XVI. The Effect of the Repeated Administration of Diethyl Barbituric Acid
 and of Cyclo-hexenyl-ethyl Barbituric Acid. By Nathan B. Eddy 261
XVII. The Excretion of Di-ethyl Barbituric Acid During Its Continued
 Administration. By Nathan B. Eddy .. 273
XVIII. The Rate of Elimination of Glyceryl Trinitrate from the Blood Stream after Intravenous Administration in Dogs. By L. A. Crandall, C. D. Leake, A. S. Loevenhart, and C. W. Muehlberger......................... 283
XIX. The Effect of Temperature and Drugs on the Spiral Muscle of the Renal Papilla. By Maurice Muschat................................. 297
XX. The Physiological Action of Some Homologues of Betaine and Choline Esters. By R. R. Renshaw and Reid Hunt.............................. 309
XXI. Effect of Strychnine on the Muscular Activity of the Small Intestine in Unanesthetized Dogs. By F. F. Yonkman.............................. 339
XXII. Histamine and Adrenaline in Relation to the Salivary Secretion. By Margaret E. MacKay.. 349
XXIII. Tetiothalein Sodium—N.N.R. (Tetraidophenolphthalain) as an Antiseptic and a Germicide of the Biliary Tract. By Allen C. Nickel.......... 359

NUMBER 4, DECEMBER, 1929

XXVI. Antagonization of the Narcotic Action of Magnesium Salts by Potassium, Sodium and Other Monovalent Cations, with a Contribution to the Theory of Narcosis and Analgesia. By Arthur D. Hirschfelder..... 399
XXVII. The Reaction of Lead with the Constituents of the Erythrocytes. By L. C. Maxwell and Fritz Bischoff...................................... 413
XXVIII. Studies on the Influence of Morphine, Papaverine and Quinidine upon the Heart. By Charles M. Gruber and Paul I. Robinson........ 429
XXX. The Conversion of Cyanide into Thiocyanate in Man and in Alkaline Solutions of Cystine. By Meyer Bodansky................................. 463
XXXI. The Effect of Pituitary on the Bird. By R. Morash and O. S. Gibbs. 475
XXXII. Diuresis and Individual Tolerance in Experimental Barbital Poisoning. By Walter E. Gower and Arthur L. Tatum 481
XXXIII. Index... 493
ILLUSTRATIONS

Diagram of apparatus. Muscle chamber connected with gas tank, muscle mounted and ready for stimulation (Fig. 1).. 10
Relation between tension of narcotic, and narcosis of frog sartorius (Fig. 2)... 19
Small intestines of different rats in 100 cc. of oxygenated Locke solution, 37°C (Fig. 1)... 57
The effect of mercury on intestinal motility (Fig. 2, a and b)............. 60
Experiment 791. Cat, weight 2.9 kgm. Urethane (Fig. 3)...................... 62
Escape of digitalis from the circulation and distribution of digitalis in tissues, according to emetic efficiency of tissue extracts of digitalized pigeons (Fig. 1).. 78
Typical electrocardiographic changes after a blank liver extract, containing added digitalis (1 M. Em. D.), injected intravenously (Fig. 2)........ 82
Electrocardiographic changes in pigeons after intravenous injection of liver and heart extracts of a digitalized pigeon receiving 1 m. f. d. of digitalis (Fig. 3, a to d).. 83
Electrocardiograms after liver and heart extracts of a digitalized pigeon receiving 6 m. f. d.’s of digitalis (Fig. 4, a to e).. 84
Negative result with the blood extract of a pigeon receiving 3 m. f. d.’s of digitalis (Fig. 5, a and b)... 85
Unanesthetized 17 kgm. dog (Fig. 1)... 107
Same animal as in figure 1 (Fig. 2)... 108
—— animal as used in figure 1, but this experiment was performed one week later (Fig. 3)... 109
Unanesthetized dog, 10 kgm. (Fig. 4)... 111
Female dog, 18 kgm. (Fig. 5)... 112
—— dog, 14 kgm. (Fig. 6).. 113
Same animal as used in figure 1 (Fig. 7).. 115
Unanesthetized female dog same as that used in figure 6 (Fig. 8)........ 116
Female dog, 15 kgm., unanesthetized (Fig. 9).. 118
Functional changes in the autonomic system and the action of mercury (Fig. 1, a and b)... 122
—— changes in the autonomic system and the action of mercury (Fig. 2, a and b).. 126
Cat 11, adrenals tied and liver denervated. Showing the changes in the rate of the denervated heart, in the blood pressure and the body temperature following the intravenous injection of 0.15 mgm. per kilogram strychnine sulphate (Fig. 1)... 134
—— 28, adrenals intact and liver not denervated. Showing the changes in the rate of the denervated heart, in the blood pressure and the body temperature following the intravenous injection of strychnine sulphate (Fig. 2)...... 139
Showing the changes in the rate of the denervated heart, in the blood pressure and the body temperature following the subcutaneous injection of 15 mgm. per kilogram morphine sulphate in cat 22, adrenals tied off but liver nerves not divided (Fig. 1)............................... 151
—- the changes in the rate of the denervated heart, in the blood pressure and the body temperature following the subcutaneous injection of 15 mgm. per kilogram morphine sulphate in cat 20, adrenals intact and liver innervated (Fig. 2).. 153
December 1, 1928. Decerebrate cat with divided vagi (Fig. 1a)............. 163
Immediately following 1a (Fig. 1b).. 163
December 15, 1928. Decerebrate cat with bilateral vagotomy (Fig. 2a).... 164
November 6, 1928. Decerebrate cat with bilateral vagotomy (Fig. 2b)..... 164
January 24, 1929. Chloroform anesthesia (Fig. 3a)........................ 166
Same animal as 3a (Fig. 3b).. 168
January 5, 1929. Ether induction until vagi were non-responsive (V) (Fig. 4).. 167
Same animal as figure 4 without ether twenty minutes later (Fig. 5) 167
—- animal as figures 4 and 5 (Fig. 6)... 168
January 10, 1929. Decerebrate cat (Fig. 7a).................................. 172
The behavior of the extracardiac nerves of the cat under ether—a potential source of error (Fig. 7b)... 173
—- absorption, distribution and excretion of carbon tetrachloride in dogs under various conditions (Fig. 1)................................. 209
Arrangement for the exposure of hens to the vapor of ethyl alcohol (Fig. 1). 220
Equilibrium polygons formed from the plotted concentrations of alcohol (milligrams of alcohol per gram of tissue) in the blood, heart and lungs, kidneys, and spleen of individual hens (Fig. 2).......................... 232
—- polygons formed from the plotted concentrations of alcohol (milligrams of alcohol per gram of tissue) in the blood, whole body, liver, and remainder (bones and muscles) (Fig. 3)............................. 234
—- polygons formed from the plotted concentrations of alcohol (milligrams of alcohol per gram of tissue) in the blood, whole body, brain, and eggs (immature) (Fig. 4).. 237
—- polygons formed from the plotted concentrations of alcohol (milligrams of alcohol per gram of tissue) in the blood, whole body, skin, and fat (Fig. 5)... 240
Percentage amount of barbital excreted (Fig. 1)............................ 278
Graph showing percentage fall in blood pressure and rate of disappearance of glyceryl trinitrate after intravenous injection in dogs (Fig. 1).... 294
Weightless lever (Fig. 1).. 298
Normal contractions. Time given in 5 seconds (Fig. 2)..................... 299
—- "string bead" contractions (Fig. 3)....................................... 300
Temperature increase (Fig. 4).. 301
—- decrease (Fig. 5)... 301
pH increase (Fig. 6).. 302
—- decrease (Fig. 7).. 302
Pilocarpin hydrochloride, 1:20,000 (Fig. 8).................................... 303
Top record the contractions of the excised terrapin heart; bottom record the time interval in two-second intervals and the middle record the rate of the perfusion fluid leaving the heart in drops (Fig. 3) 436

--- record shows the ventricular contractions superimposed in most instances upon the smaller auricular contractions; middle record the rate of perfusion flow in drops and bottom record the time interval in two seconds (Fig. 4) 437

--- record contractions of the excised terrapin heart; middle record the rate of perfusion flow from the heart and the bottom record the time in two-second intervals (Fig. 5) 439

Arrangement of levers the same as in the previous figures (Fig. 6) 440

Top record cardiac contraction; middle record the perfusion flow in drops and bottom record marks two-second intervals (Fig. 7) 441

Kitten (one-quarter grown cat) heart perfused through the coronary vessels, with oxygenated Locke's solution pH 7.4 modified by the addition of defibrinated blood from the animal. Top record the contractions of the heart and below it the perfusion pressure in millimeters of mercury; middle record the perfusion flow in drops; bottom record the time interval in fifteen seconds and above it the time of the injection and zero perfusion pressure (Fig. 8) 443

Rabbit heart perfused as in figure 8. Top record the cardiac contractions, and below it the perfusion rate in drops; middle record the perfusion pressure in millimeters of mercury; bottom record the time interval in fifteen seconds and zero perfusion pressure and above it the time of the injections (Fig. 9) 443

Excised rabbit heart. Protocol same as figure 9 (Fig. 10) 444

Seventeen-kilogram dog under paraldehyde anesthesia. Heart plethysmographed. Top record the changes in the volume of the heart, middle record the blood pressure with a mercury manometer and the bottom record the time in fifteen-second intervals (Fig. 11) 445

Two and one-half-kilogram cat under isethane anesthesia. Upper curve the plethysmographic record of the heart, bottom one the time in fifteen seconds and above it the blood pressure in millimeters of mercury (Fig. 12) 446

The effects of administering thiocyanate, cyanide, and cyanide together with cystine on the thiocyanate elimination in the saliva (Fig. 1) 467

Showing the diminishing effects of repeated doses of oxytocin on the blood pressure of birds (Fig. 1) 476

--- the effect of injecting vasopressin immediately after oxytocin (Fig. 2) 476

--- the typical effect of vasopressin on the blood pressure and venous return of the leg (Fig. 3) 476

--- typical effect of vasopressin on the blood pressure and venous return (leg) (Fig. 4) 476