CONTENTS

NUMBER 1, SEPTEMBER, 1929

I. Concerning the Alleged Antidotal Action of Sodium Thiosulfate in Mercuric Chloride Poisoning. By K. I. Melville and M. Bruger......... 1
II. The Narcosis of Muscle by Gases. By Helen Tredway Graham....... 9
III. The Acquisition by Isolated Muscle of Tolerance to Narcotics. By Helen Tredway Graham... 35
IV. Lathyrism. By Ralph Stockman.. 43
VI. The Mechanism of Digitalis-Emesis in Pigeons. By P. J. Hanzlik and D. A. Wood... 67
VII. The Intestinal Activity in Unanesthetized Dogs as Influenced by Morphine and by Papaverine. By Charles M. Gruber and Paul I. Robinson... 101

NUMBER 2, OCTOBER, 1929

VIII. Functional Changes in the Autonomic System and the Action of Mercury. By William Salant and Keeve Brodman.................. 121
IX. The Action of Strychnine upon the Denervated Heart and upon the Secretion of Adrenin. By Paul M. Harmon and C. M. McFall....... 131
X. The Effect of Morphine upon the Denervated Heart and upon the Secretion of Adrenin. By Paul M. Harmon and C. M. McFall....... 147
XI. The Behavior of the Extracardiac Nerves of the Cat under Ether—A Potential Source of Error. By J. Lester Kobacker and R. Rigler...... 161
XII. Further Studies on the Relation of Heterocyclic Compounds to the Autonomic Nervous System. By Reid Hunt and R. R. Renshaw...... 177
XIII. Ethers of Formocholine and Choline. By Reid Hunt and R. R. Renshaw... 193
XIV. The Absorption, Distribution and Excretion of Carbon Tetrachloride in Dogs Under Various Conditions. By B. H. Robbins............. 203
XV. Ethyl Alcohol in Fowls after Exposure to Alcohol Vapor. By Thorne M. Carpenter... 217

NUMBER 3, NOVEMBER, 1929

XVI. The Effect of the Repeated Administration of Diethyl Barbituric Acid and of Cyclo-hexenyl-ethyl Barbituric Acid. By Nathan B. Eddy........ 261
XVII. The Excretion of Di-ethyl Barbituric Acid During Its Continued Administration. By Nathan B. Eddy................................. 273
CONTENTS

XVIII. The Rate of Elimination of Glyceryl Trinitrate from the Blood Stream after Intravenous Administration in Dogs. By L. A. Crandall, C. D. Leake, A. S. Loevenhart, and C. W. Muehberger 283

XIX. The Effect of Temperature and Drugs on the Spiral Muscle of the Renal Papilla. By Maurice Muschat 297

XX. The Physiological Action of Some Homologues of Betaine and Choline Esters. By R. R. Renahaw and Reid Hunt 309

XXI. Effect of Strychnine on the Muscular Activity of the Small Intestine in Unanesthetized Dogs. By F. F. Yonkman 339

XXII. Histamine and Adrenaline in Relation to the Salivary Secretion. By Margaret E. MacKay 349

XXIII. Tetiothalein Sodium—N.N.R. (Tetraidophenolphthalein) as an Antiseptic and a Germicide of the Biliary Tract. By Allen C. Nickel 359

XXVI. Antagonization of the Narcotic Action of Magnesium Salts by Potassium, Sodium and Other Monovalent Cations, with a Contribution to the Theory of Narcosis and Analgesia. By Arthur D. Hirschfelder 399

XXVII. The Reaction of Lead with the Constituents of the Erythrocytes. By L. C. Maxwell and Fritz Bischoff 413

XXVIII. Studies on the Influence of Morphine, Papaverine and Quinidine upon the Heart. By Charles M. Gruber and Paul I. Robinson 429

XXX. The Conversion of Cyanide into Thiocyanate in Man and in Alkaline Solutions of Cystine. By Meyer Bodansky 463

XXXI. The Effect of Pituitary on the Bird. By R. Morash and O. S. Gibbs 475

XXXII. Diuresis and Individual Tolerance in Experimental Barbital Poisoning. By Walter E. Gower and Arthur L. Tatum 481

XXXIII. Index 493
ILLUSTRATIONS

Diagram of apparatus. Muscle chamber connected with gas tank, muscle mounted and ready for stimulation (Fig. 1).......................... 10
Relation between tension of narcotic, and narcosis of frog sartorius (Fig. 2).. 19
Small intestines of different rats in 100 cc. of oxygenated Locke solution, 37°C (Fig. 1)... 57
The effect of mercury on intestinal motility (Fig. 2, a and b).......... 60
Experiment 791. Cat, weight, 2.9 kgm. Urethane (Fig. 3)............. 62
Escape of digitalis from the circulation and distribution of digitalis in tissues, according to emetic efficiency of tissue extracts of digitalized pigeons (Fig. 1)... 78
Typical electrocardiographic changes after a blank liver extract, containing added digitalis (1 M Em D.), injected intravenously (Fig. 2)........ 82
Electrocardiographic changes in pigeons after intravenous injection of liver and heart extracts of a digitalized pigeon receiving 1 m.f.d. of digitalis (Fig. 3, a to d).. 83
Electrocardiograms after liver and heart extracts of a digitalized pigeon receiving 6 m.f.d.'s of digitalis (Fig. 4, a to e)...................... 84
Negative result with the blood extract of a pigeon receiving 3 m.f.d.'s of digitalis (Fig. 5, a and b).. 85
Unanesthetized 17 kgm. dog (Fig. 1)... 107
Same animal as in figure 1 (Fig. 2).. 108
—— animal as used in figure 1, but this experiment was performed one week later (Fig. 3).. 109
Unanesthetized dog, 10 kgm. (Fig. 4)... 111
Female dog, 18 kgm. (Fig. 5)... 112
—— dog, 14 kgm. (Fig. 6).. 113
Same animal as used in figure 1 (Fig. 7).................................... 115
Unanesthetized female dog same as that used in figure 6 (Fig. 8).... 116
Female dog, 15 kgm., unanesthetized (Fig. 9)............................ 118
Functional changes in the autonomic system and the action of mercury (Fig. 1, a and b).. 122
—— changes in the autonomic system and the action of mercury (Fig. 2, a and b)... 126
Cat 11, adrenals tied and liver denervated. Showing the changes in the rate of the denervated heart, in the blood pressure and the body temperature following the intravenous injection of 0.15 mgm. per kilogram strychnine sulphate (Fig. 1).......................... 134
—— 26, adrenals intact and liver not denervated. Showing the changes in the rate of the denervated heart, in the blood pressure and the body temperature following the intravenous injection of strychnine sulphate (Fig. 2).... 139
ILLUSTRATIONS

Showing the changes in the rate of the denervated heart, in the blood pressure and the body temperature following the subcutaneous injection of 15 mgm. per kilogram morphine sulphate in cat 22, adrenals tied off but liver nerves not divided (Fig. 1) .. 151
— the changes in the rate of the denervated heart, in the blood pressure and the body temperature following the subcutaneous injection of 15 mgm. per kilogram morphine sulphate in cat 20, adrenals intact and liver innervated (Fig. 2) .. 153

December 1, 1928. Decerebrate cat with divided vagi (Fig. 1a) 163
Immediately following 1a (Fig. 1b) 163
December 15, 1928. Decerebrate cat with bilateral vagotomy (Fig. 2a) 164
November 5, 1928. Decerebrate cat with bilateral vagotomy (Fig. 2b) 164
January 24, 1929. Chloroform anesthesia (Fig. 3a) 166
Same animal as 3a (Fig. 3b) .. 168
January 5, 1929. Ether induction until vagi were non-responsive (V) (Fig. 4) .. 167
Same animal as figure 4 without ether twenty minutes later (Fig. 5) 167
— animal as figures 4 and 5 (Fig. 6) 168
January 10, 1929. Decerebrate cat (Fig. 7a) 172
The behavior of the extracardiac nerves of the cat under ether—a potential source of error (Fig. 7b) 173
— absorption, distribution and excretion of carbon tetrachloride in dogs under various conditions (Fig. 1) 209

Arrangement for the exposure of hens to the vapor of ethyl alcohol (Fig. 1). 220
Equilibrium polygons formed from the plotted concentrations of alcohol (milligrams of alcohol per gram of tissue) in the blood, heart and lungs, kidneys, and spleen of individual hens (Fig. 2) 232
— polygons formed from the plotted concentrations of alcohol (milligrams of alcohol per gram of tissue) in the blood, whole body, liver, and remainder (bones and muscles) (Fig. 3) 234
— polygons formed from the plotted concentrations of alcohol (milligrams of alcohol per gram of tissue) in the blood, whole body, brain, and eggs (immature) (Fig. 4) ... 237
— polygons formed from the plotted concentrations of alcohol (milligrams of alcohol per gram of tissue) in the blood, whole body, skin, and fat (Fig. 5) ... 240
Percentage amount of barbital excreted (Fig. 1) 278
Graph showing percentage fall in blood pressure and rate of disappearance of glyceryl trinitrate after intravenous injection in dogs (Fig. 1) 294
Weightless lever (Fig. 1) ... 298
Normal contractions. Time given in 5 seconds (Fig. 2) 299
— "string bead" contractions (Fig. 3) 300
Temperature increase (Fig. 4) ... 301
— decrease (Fig. 5) .. 301
pH increase (Fig. 6) .. 302
— decrease (Fig. 7) .. 302
Pilocarpin hydrochloride, 1:20,000 (Fig. 8) 303
ILLUSTRATIONS

Barium chloride, 1:100,000 (Fig. 9) .. 303
Adrenalin chloride, 1:100,000 (Fig. 10) ... 304
Pituitrin, 0.1 cc. in 100 cc. of Locke’s solution (Fig. 11) 304
Urea, in 1:1000 and 1:100 concentration (Fig. 12) 304
—, 1:1000. Starting up contractions in a non-active muscle (Fig. 13) 305
—, 1:1000. Increasing the contractile vigor in a weakly contracting muscle preparation (Fig. 14) .. 305
The effect of temperature and drugs on the spiral muscle of the renal papilla (Fig. 15) ... 306
Effect of strychnine sulphate on muscular activity of the ileum in the same dog (Fig. 1) ... 344
A, Effect of atropine sulphate, 0.2 mgm. per kilogram, hypodermic injection, on the activity of the ileum. B, Effect of strychnine sulphate, 0.07 mgm. per kilogram, intravenous injection, after the administration of 0.195 mgm. per kilogram of atropine sulphate, on the activity of the ileum (Fig. 2) ... 345
Cat, chloralose, showing the rise in blood pressure following the injection of histamine (Fig. 1) .. 351
Histamine and adrenaline in relation to the salivary secretion (Fig. 2) ... 352
Cat, decerebrate, showing the action of histamine on secretion and blood pressure following removal of the adrenals (Fig. 3) 353
—, decerebrate, showing the abolition of the secretory effect of histamine by adrenaline (Fig. 4) .. 353
Effect of liver extract upon blood pressure of a rabbit (Fig. 1) 371
— of liver extract upon blood pressure of atropinized rabbit (Fig. 2) ... 372
— of purified and concentrated liver extract upon the blood pressure of rabbit (Fig. 3) ... 373
— of liver extract first treated with lead and then as described by method of Best, Dale, Dudley and Thorpe (Fig. 4) 375
— of brain extract upon blood pressure of rabbit (Fig. 5) 376
The effect of hypogastric-nerve stimulation on the movements of the uterus in situ (Fig. 1) ... 384
A, ovariectomized cat after administration of placental extract; B, ovariectomized cat after administration of follicular liquid extract (Fig. 2) 388
—, ovariectomized cat after administration of lipoidal corpus-luteum extract; B, ovariectomized cat after administration of aqueous corpus-luteum extract in combination with placental extract (Fig. 3) 389
Degree of uterine hypertrophy commonly induced by administration of placental, follicular-liquid and lipoidal corpus-luteum extracts (Fig. 4) 392
Sections of uteri of ovariectomized animals (× 134) (Fig. 5) 393
— of ovary (♂) and uterus (♀) of cat which received lipoidal corpus-luteum extract (× 20) (Fig. 6) .. 394
Excised terrapin ventricle perfused with normal saline through a cannula inserted in the coronary artery. Top record, that of the heart, bottom record the time interval in two second intervals and the middle record the rate of perfusion in drops (Fig. 1) .. 435
Same heart as that used in figure 1 (Fig. 2) .. 435
Top record the contractions of the excised terrapin heart; bottom record the time interval in two-second intervals and the middle record the rate of the perfusion fluid leaving the heart in drops (Fig. 3) 436
— record shows the ventricular contractions superimposed in most instances upon the smaller auricular contractions; middle record the rate of perfusion flow in drops and bottom record the time interval in two seconds (Fig. 4) 437
— record contractions of the excised terrapin heart; middle record the rate of perfusion flow from the heart and the bottom record the time in two-second intervals (Fig. 5) 439
Arrangement of levers the same as in the previous figures (Fig. 6) 440
Top record cardiac contraction; middle record the perfusion flow in drops and bottom record marks two-second intervals (Fig. 7) 441
Kitten (one-quarter grown cat) heart perfused through the coronary vessels, with oxygenated Locke's solution pH 7.4 modified by the addition of defibrinated blood from the animal. Top record the contractions of the heart and below it the perfusion pressure in millimeters of mercury; middle record the perfusion flow in drops; bottom record the time interval in fifteen seconds and above it the time of the injection and zero perfusion pressure (Fig. 8) 443
Rabbit heart perfused as in figure 8. Top record the cardiac contractions, and below it the perfusion rate in drops; middle record the perfusion pressure in millimeters of mercury; bottom record the time interval in fifteen seconds and zero perfusion pressure and above it the time of the injections (Fig. 9) 443
Excised rabbit heart. Protocol same as figure 9 (Fig. 10) 444
Seventeen-kilogram dog under paraldehyde anesthesia. Heart plethysmographed. Top record the changes in the volume of the heart, middle record the blood pressure with a mercury manometer and the bottom record the time in fifteen-second intervals (Fig. 11) 445
Two and one-half-kilogram cat under anesthesia. Upper curve the plethysmographic record of the heart, bottom one the time in fifteen seconds and above it the blood pressure in millimeters of mercury (Fig. 12) 446
The effects of administering thiocyanate, cyanide, and cyanide together with cystine on the thiocyanate elimination in the saliva (Fig. 1) 467
Showing the diminishing effects of repeated doses of oxytocin on the blood pressure of birds (Fig. 1) 476
— the effect of injecting vasopressin immediately after oxytocin (Fig. 2) 476
— the typical effect of vasopressin on the blood pressure and venous return of the leg (Fig. 3) 476
— typical effect of vasopressin on the blood pressure and venous return (leg) (Fig. 4) 476