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ABSTRACT
In vitro-in vivo extrapolation (IVIVE) of renal excretory clearance
(CLR) using the physiologically based kidney models can provide
mechanistic insight into the interplay of multiple processes
occurring in the renal tubule; however, the ability of thesemodels
to capture quantitatively the impact of perturbed conditions (e.g.,
urine flow, urine pH changes) on CLR has not been fully evaluated.
In this work, we aimed to assess the predictability of the effect of
urine flow and urine pH on CLR and tubular drug concentrations
(selected examples). Passive diffusion clearance across the
nephron tubule membrane was scaled from in vitro human
epithelial cell line Caco-2 permeability data by nephron tubular
surface area to predict the fraction reabsorbed and the CLR
of caffeine, chloramphenicol, creatinine, dextroamphetamine,

nicotine, sulfamethoxazole, and theophylline. CLR values predicted
using mechanistic kidney model at a urinary pH of 6.2 and 7.4
resulted in prediction bias of 2.87- and 3.62-fold, respectively. Model
simulations captured urine flow–dependent CLR, albeit with minor
underprediction of the observedmagnitude of change. The relation-
ship between drug solubility, urine flow, and urine pH, illustrated in
simulated intratubular concentrations of acyclovir and sulfame-
thoxazole, agreed with clinical data on tubular precipitation and
crystal-induced acute kidney injury. This study represents the
first systematic evaluation of the ability of themechanistic kidney
model to capture the impact of urine flow and urine pH on CLR and
drug tubular concentrationswith the aim of facilitating refinement of
IVIVE-based mechanistic prediction of renal excretion.

Introduction
Together with the liver, the kidneys play a principal role in

the excretion of a wide variety of xenobiotics, including drugs,
metabolites, and toxins, as well as endogenous compounds.
Renal excretion can be defined as the elimination of un-
changed solutes from the blood into the urine as a net result of
the processes of glomerular filtration, tubular secretion, and
tubular reabsorption (Tucker, 1981).
Passive tubular reabsorption is a major process that controls

the extent of renal excretion of many substances (Varma et al.,
2009; Scotcher et al., 2016b). The magnitude of passive reab-
sorption depends on the lipophilicity and extent of ionization of a
drug and physiologic properties, such as urine flow rate and the

pHof the luminal fluid in the renal tubule (Tang-Liu et al., 1983).
Urine flow and urine pH-dependent CLR have been reported for
several drugs (Beckett et al., 1969; Sharpstone, 1969; Tang-Liu
et al., 1982; Blanchard and Sawers, 1983; Birkett and Miners,
1991). Such trends are often mechanistically rationalized by
the Henderson-Hasselbalch equation as arising from perturbed
tubular reabsorption (Tucker, 1981; Molander et al., 2001).
In addition, urine flow and urine pH can be important

contributors to renal toxicity risk. Sulfamethoxazole and
acyclovir are low-solubility compounds, and crystalluria
leading to acute kidney injury (AKI) reported for these
drugs has been attributed to changes in urine flow and
urine pH (Perazella, 1999). Direct measurement of the
concentration of drugs in renal tubules compared with
compound solubility properties may be beneficial in manag-
ing such risk. In the absence of direct measurements of
intratubular concentrations in humans, use of mechanistic
models representing pharmacokinetic processes within the
proximal tubules in a physiologically meaningful context
may provide useful insights and inferences in a quantitative
manner.
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To predict human renal excretion clearance (CLR), an
in vitro-in vivo extrapolation (IVIVE)–based approach using
a mechanistic renal tubular reabsorption model was pre-
viously reported and validated with a set of 45 drugs that
undergo limited secretion (Scotcher et al., 2016b). Advantages
of this model include separation of drug- and physiologic/
system-specific information, which allows potential extrapo-
lation to populations with different pathophysiologic features.
Despite its physiologic nature, an important limitation of this
static model was that urine flow–dependent CLR could not be
adequately described, which also limits simulation of intra-
tubular drug concentrations.
Theoretically, mechanistic kidney models developed within

a physiologically based pharmacokinetic (PBPK) modeling
framework can resolve the preceding limitations; however,
these models typically include a large number of parameters,
and measured data to inform some of the system (physiologic)
parameters may not exist (e.g., proximal tubule cellularity) or
are associated with uncertainty (e.g., renal transporter abun-
dances) (Neuhoff et al., 2013; Scotcher et al., 2016a). In
addition, some parameters may exhibit biologic variability
that is not controlled or monitored in a typical clinical study;
for example, urinary pH can range from 4.5 to 8, but it is
generally slightly acidic (i.e., 5.5–7.0) because of metabolic
activity (Simerville et al., 2005). Another challenge with such
complex models is ensuring the identifiability of parameters
as plasma concentration-time data may not always be in-
formative for all model parameters (Hsu et al., 2014; Huang
and Isoherranen, 2018), as discussed previously (Tsamandouras
et al., 2015; Scotcher et al., 2017; Guo et al., 2018). All the
preceding challenges are also applicable in the case of renal
elimination, especially when attempting to separate quanti-
tatively the roles of active transport and passive permeability
to overall secretion and/or reabsorption (e.g., salicylic acid,
creatinine). Therefore, independent verification of specific
model assumptions relating to passive permeability of drugs
in the kidneywould be of benefit since this is currently lacking.
The overall aim of this study was to assess the accuracy of a

mechanistic kidney model for simulation of CLR and intra-
tubular concentrations under perturbed conditions, particu-
larly changes in urine flow and urine pH, when only effects
relating to passive permeability were considered. Mechanistic
description of active processes was not addressed; readers
interested in this topic are directed elsewhere (Hsu et al.,
2014; Posada et al., 2015; Ball et al., 2017). The accuracy of
IVIVE-based predictions of both CLR and fold changes in CLR

from urine flow or pH changes was evaluated for caffeine,
chloramphenicol, creatinine, dextroamphetamine, nicotine,
sulfamethoxazole, and theophylline. Criteria for their selec-
tion included the availability of clinical data under perturbed
conditions for CLR, particularly changes in urine flow and
urine pH. Subsequently, the ability of the kidney model to
simulate intratubular concentrations was investigated for
low-solubility drugs acyclovir and sulfamethoxazole. The
effects of variations in urine flow and urine pH were assessed
to evaluate the likelihood of precipitation risk associated with
crystalluria. Clinical reports on the effect of urine flow or pH
changes on the occurrence of crystalluria for these two drugs
were used for indirect validation of the simulated intratubular
drug concentrations. Implications of the findings on the
mechanistic prediction of tubular reabsorption and CLR using
IVIVE-PBPK modeling are discussed.

Materials and Methods
Development of Initial PBPK Model without Mechanistic

Kidney Model. A literature search in PubMed identified seven drugs
for which CLR and urine flow rates were simultaneously reported in the
same subjects; these drugs were caffeine, chloramphenicol, creatinine,
dextroamphetamine, nicotine, sulfamethoxazole, and theophylline. In
addition, acyclovir and sulfamethoxazole were selected to assess the
relationship between tubular concentrations and solubility owing to their
association with crystalluria. Mean plasma concentration-time profiles
and pharmacokinetic parameters were collated from the reported clinical
studies (Table 1). Pharmacokinetic parameters of interest were the area
under the curve for the plasma concentration-time profile, the intrave-
nous clearance and apparent oral clearance, volume of distribution at
steady state (Vss) and CLR. Where necessary, data were digitized
using WebPlotDigitizer (versions 3.12 and 4.0, https://automeris.io/
WebPlotDigitizer). Where necessary, CLR values were calculated from
the urinary excretion rate (urine concentration � urine flow rate)
divided by its plasma concentration or total urine excretion amount
divided by the area under the curve.

All simulations presented herein were performed using the Simcyp
simulator, version 16, release 1 (Certara, Sheffield, UK) (Jamei et al.,
2009, 2013). Drug-dependent parameters for the initial PBPKmodels
without implementation of the MechKiM are listed in Supplemental
Tables S1 and S2. All simulations were performed using the default
“healthy volunteers” population template file in the Simcyp simulator.
The workflow used for the refinement and verification of compound
files in the full PBPKmodel, as required for use of MechKiM, is shown
in Fig. 1.

For thewhole-body PBPKmodels, distribution parameters—including
Vss and tissue-to-plasmapartition coefficients (Kp)—were predicted using
the modified Rodgers and Rowland method (Rodgers et al., 2005;
Rodgers and Rowland, 2006; Gaohua et al., 2016). Predicted Kp values
were optimized by an empirical scalar (same factor used for all tissues)
to recover the observed Vss, as estimated from observed plasma-
concentration profiles using parameter estimation module in the
simulator (weighted least-squares fitting, weighted by the reciprocal
of the predicted value squared). No refinement of predicted Kp was
necessary for creatinine (Kp scalar5 1). Metabolic clearance and CLR

input parameters for the caffeine and theophylline PBPKmodels were
not changed from the default values. The intrinsic hepatic metabolic
clearance parameters (for amphetamine, chloramphenicol, and nico-
tine were obtained using back-calculation of CLint from available
intravenous clearance data using the well stirred model and correct-
ing for CLR.

After verification of the clearance and distribution parameters,
first-order oral absorption model parameters, fraction absorbed (Fa),
and the absorption rate constant (ka) were optimized and verified for
caffeine, creatinine, dextroamphetamine, and theophylline. Since the
production rate of creatinine is reported to be 18.72 mg/kg per day in
human (Boroujerdi, 1982), an i.v. infusion dosing of 18.72 mg/kg per
day was implemented to mimic the production rate of creatinine. The
cooked-meat meal is suggested to contain about 340 mg of creatinine
(Mayersohn et al., 1983); therefore, oral administration of 340 mg of
creatinine was assumed for this condition. Data used for verification
were from independent clinical studies different from those used for
parameter refinement and developing themodel; details of clinical studies
collated are listed in Table 1. During verification and refinement of PBPK
models, simulations in 10 trials of virtual subjects were performed after
trial designs (dosing route, amount, and frequency; number of individuals;
and age of subjects) reported in the respective publications.

Prediction of Tubular Reabsorption in MechKiM: Physio-
logic Parameters and Scaling Approach. Previously reported
IVIVE-based static tubular reabsorptionmodel (Scotcher et al., 2016b)
is a five-compartment mechanistic model comprising segments rep-
resenting the glomerulus proximal tubule (PT), the loop of Henle
(LoH), the distal tubule (DT), and the collecting ducts (CD) (Scotcher
et al., 2016b). In contrast, MechKiM comprises eight segments
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representing the glomerulus, three subregions of PT (PT-1, PT-2, and
PT-3), the LoH, theDT, and the cortical andmedullary collecting ducts
(MCDs) (Neuhoff et al., 2013). The MechKiM parameterizes passive
permeability of drugs across the tubular epithelium as permeabil-
ity clearances through the apical (CLPD, apical) and basolateral
(CLPD, basal) membranes rather than a “drug-specific” apparent
permeability (Papp) and a “system-specific” tubular surface area.

In this study, an IVIVE approachwas adapted from the staticmodel
for prediction of passive tubular reabsorption (Scotcher et al., 2016b).
Papp values across Caco-2 cell monolayers were obtained from various
literature sources, and details for each individual drug investigated
are listed in Supplemental Table S3. The passive permeability in
MechKiM is applied to the unbound and un-ionized species. According
to Henderson-Hasselbalch equations, chloramphenicol, dextroam-
phetamine, nicotine, and sulfamethoxazole are estimated to have a
smaller fraction in un-ionized form at apical (donor side, pH 6.5) and
basolateral side (receiver side, pH 7.4) in the pH gradient format of the
Caco-2 permeability assay (Supplemental Fig. S1; Supplemental
Table S4). In vitro Papp measurements across Caco-2 cell monolayers
can be affected by the drug characteristics (e.g., lipophilicity, pKa,
unbound fraction in buffer and cells, and unspecific adsorption to
in vitro systems) and assay conditions (e.g., buffer pH, rotation speeds,
transporters, and density of cell monolayer). Full details of the assay
conditions were not consistently reported alongside the Caco-2
Papp data that were collected from the literature. Therefore, to
calculate the CLPD used in MechKiM, the assumption was made that

literature reported Caco-2 Papp values were representative of the
passive permeability of unbound and un-ionized drug.

The apparent membrane permeability was calculated on the basis
that resistance is the inverse of permeability and by assuming that the
membrane resistance associated with the Caco-2 cell monolayer is
attributable to the sum of resistances associated with the apical and
basolateral membranes (eq. 1) (Avdeef, 2012; Kramer, 2016). This
method makes several assumptions: the permeability of drugs across
the apical membrane is equal to that of the basolateral membrane; no
significant accumulation or binding of drug within the cell; assay is
performed under sink conditions and no relevant effects of the filter
support, aqueous boundary layer or para-cellular pathway:

1
Papp

5
2

Pmem
(1)

The apparent membrane permeability was scaled to CLPD, apical and
CLPD, basal using regional tubular surface area (TSA), as IVIVE scaling
factor for each ith tubular section represented by the model (eq. 2):

CLPD;i 5Pmem � TSAi (2)

Tubular surface areas for each tubular section were recalculated to
adapt to MechKiM from the reported values for the five-compartment
model (Supplemental Table S5) (Scotcher et al., 2016b) and are listed
in Table 2. The CLPD values for each drug are shown in Supplemental
Table S6.

TABLE 1
Details of clinical studies used for verification and refinement of the physiologically based pharmacokinetics models for selected compounds

Compound Reference Optimization/Verification Dose Information Subject Information

Caffeine Lelo et al. (1986) Refinement 270-mg oral SD 6 M, 19–21 yr
Newton et al. (1981) Verification 50-mg oral SD 5 M, 21–36 yr
Newton et al. (1981) Verification 300-mg oral SD 5 M, 1 F, 21–36 yr
Newton et al. (1981) Verification 500-mg oral SD 5 M, 1 F, 21–36 yr
Newton et al. (1981) Verification 750-mg oral SD 5 M, 1 F, 21–36 yr

Chloramphenicol Burke et al. (1982) Refinement CAPS 502– to 1324-mg i.v. infusion
for average of 18 min SD

3 M, 5 F, 19–64 yr

Mikami et al. (1975) Verification 1000-mg i.v. SD, bolus (1 min) 15 M, 40–53 yr
Nahata and Powell (1981) Verification CAPS 100-mg/kg per day i.v. infusion over 0.5 h 1 M, 20 yr

Creatinine Mayersohn et al. (1983) Verification Baseline 6 M, 26–38 yr
Mayersohn et al. (1983) Verification Cooked meat (340-mg oral) 6 M, 26–38 yr

Dextroamphetamine Watanalumlerd et al. (2007) Refinement 20- or 30-mg oral Not reported
Beckett et al. (1969) Refinement 8.7-mg oral SD 2 M, 21 and 23 yr
Dolder et al. (2017) Verification 29.6-mg oral SD 12 M, 12 F, 21–34 yr
Wan et al. (1978) Verification 10-mg oral SD 4 M, 1 F, 22–26 yr

Nicotine Molander et al. (2001) Refinement 0.028-mg/kg i.v. infusion for 10 min SD 10 M, 10 F, 22–43 yr
Benowitz and Jacob (1993) Refinement 0.015-mg/kg i.v. infusion for 30 min SD 9 M, 2 F, 22–58 yr
Zevin et al. (1997) Verification 0.015-mg/kg i.v. infusion for 30 min SD 6 M, 6 F, 18–47 yr

Sulfamethoxazole Mannisto et al. (1982) Refinement 1000-mg i.v. infusion for 60 min SD 4 M, 2 F, 22–31 yr
Welling et al. (1973) Refinement 800-mg oral SD 6 subjects
Welling et al. (1973) Refinement 800-mg oral SD 5 subjects
Hutabarat et al. (1991) Verification 10-mg/kg i.v. infusion for 60 min SD 7 M, 1 F, 22–27 yr
Kaplan et al. (1973) Verification 2000-mg oral SD 24 M
Kaplan et al. (1973) Verification 2000-mg oral SD 8 M

Theophylline Lelo et al. (1986) Refinement 250-mg oral SD 6 M, 19–21 y
Rovei et al. (1982) Verification 125-mg oral SD 4 M, 4 F, 22–35 yr
Rovei et al. (1982) Verification 250-mg oral SD 4 M, 4 F, 22–35 yr
Rovei et al. (1982) Verification 375-mg oral SD 4 M, 4 F, 22–35 yr
Rovei et al. (1982) Verification 500-mg oral SD 4 M, 4 F, 22–35 yr

Acyclovir Blum et al. (1982) Refinement 0.5- to 15-mg/kg, 1- or 6-h infusion Not reported
Soul-Lawton et al. (1995) Refinement 350-mg, 1-h infusion 4 M, 8 F, 23–50 yr
Brigden et al. (1981) Verification 50-mg i.v. bolus SD 6 M, 26–38 yr
Brigden et al. (1981) Verification 50-mg i.v. 1 h infusion 2 M, 26–38 yr
Brigden et al. (1981) Verification 50-mg i.v. 10 min infusion 2 M, 26–38 yr
de Miranda et al. (1981) Verification 0.5- to 2.5-mg/kg, i.v. infusion over 1 h 1 M, 4 F, 25–68 yr
Laskin et al. (1982a) Verification 5-mg/kg i.v. infusion over 1 h 1 M, 2 F, 24–67 yr
Laskin et al. (1982b) Verification 2.5-mg/kg, i.v. infusion over 1 h 5 M, 8 F, 23–76 yr
Laskin et al. (1982b) Verification 5.0-mg/kg, i.v. infusion over 1 h 5 M, 8 F, 23–76 yr
Laskin et al. (1982b) Verification 10-mg/kg, i.v. infusion over 1 h 5 M, 8 F, 23–76 yr
Laskin et al. (1982b) Verification 15-mg/kg, i.v. infusion over 1 h 5 M, 8 F, 23–76 yr

CAPS, chloramphenicol succinate; F, female; M, male; SD, single dose.
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Predictive performance of the model against Freab and CLR

parameters was assessed for several compounds. The focus of the
work was on renal elimination and corresponding changes in CLR;
therefore, the predictive performance of plasma concentration-time
profiles was not assessed. Transporter contribution was assumed to
be negligible for the compounds investigated. Although in vitro data
indicate involvement of renal transporters in some instances (e.g.,
creatinine), the roles of filtration and/or passive permeability to
renal elimination are expected to be dominant. Simulations were
performed according to the reported clinical study designs in 10 trials
of virtual subjects from the healthy volunteer population provided
in the software. The effect of different assumed values for urinary
pH on prediction of CLR was investigated by fixing the urine pH
parameter to 7.4 (Simcyp default value) or 6.2 (Rose et al., 2015).
Owing to the lack of measured data on segmental filtrate pH in
humans (Neuhoff et al., 2013), tubular pH was assumed to be the
same as urinary pH in this study. To compare the predictability of
different models, the prediction of CLR by the static model was also
assessed, as described previously (Scotcher et al., 2016b). The
tubular surface area and tubular flow rate values used for the static
model are listed in Supplemental Table S7.

Development of PBPK Model for Acyclovir in MechKiM and
Consideration of Active Secretion. Acyclovir is rapidly excreted
in the urine via glomerular filtration and tubular secretion via
renal transporters, including organic anion transporter (OAT)1,
OAT2, OAT3, multidrug and toxin extrusion (MATE)1, andMATE2-K
(Takeda et al., 2002; Tanihara et al., 2007; Ito et al., 2010; Cheng et al.,
2012; Ye et al., 2012, 2013; Mathialagan et al., 2017). The predicted
CLR value of acyclovir in MechKiM without considering renal
transporters (i.e., filtration clearance only) was 115 ml/min, thereby
underpredicting the observed CLR value of 283 ml/min (Soul-Lawton

et al., 1995) (Supplemental Table S8). Accurate mechanistic repre-
sentation of transporter kinetics for acyclovir was out of the scope of
this study, and therefore an operational model was developed to
simulate this compound’s active secretion. The operational model,
featuring a single basolateral transporter–mediated uptake clearance
and a single apical efflux clearance, was developed using a previously
described stepwise approach (Hsueh et al., 2018). First, a CLint, uptake

value for uptake transport in the renal proximal tubules was de-
termined by fitting the in vivo plasma concentration-time profile
(Soul-Lawton et al., 1995) (weighted least-squares fitting, weighted by
the reciprocal of the predicted value squared); a CLint, efflux value
of 1 ml/min per million proximal tubule cells was fixed as a refer-
ence value (Hsueh et al., 2018). Second, using the resultingCLint, uptake

value (14.0 ml/min per million proximal tubule cells), the CLint, efflux

value (1.15 ml/min per million proximal tubule cells) was obtained
by sensitivity analysis of the observed CLR data (283 ml/min
(Soul-Lawton et al., 1995)) (Supplemental Fig. S2). The simulated
concentration-time profiles were in good agreement with observed
data (Supplemental Fig. S3). Finally, observed acyclovir CLR data
reported by other clinical studies were used for model verification
(Supplemental Table S8).

Simulation of Urine Flow–Dependent CLR. Effects of varia-
tions of urine flow on CLR were simulated for each drug using the
virtual population representative (male, age 20 years, body weight
81 kg) in a healthy volunteer population. Dosage information used for
simulations is listed in Supplemental Table S9. Urine and tubule pH
values of 4.5, 6.2, and8.0wereused to investigate the impact of the fraction
of drug as un-ionized species. The relative change in CLR was
calculated using CLR predicted when urine flow rate 5 1 ml/min as
baseline. Focus of the work was on relative changes as a result of
perturbed renal elimination, analogous to approaches applied for

Fig. 1. Workflow of the development and qualification of
the PBPK kidney model.
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the evaluation of drug-drug or drug-disease interactions (e.g.,
(Yoshida et al., 2017). Changes in plasma drug concentrations from
urine flow variations are typically small and not frequently reported
and so were not evaluated in the current study. Baseline CLR at urine
flow rate of 1 ml/min was calculated from reported clinical data over a
flow range; details for individual drugs and clinical studies are shown
in Supplemental Table S10.

Tubular flow-rate input parameter values used in the MechKiM
and the static model are listed in Supplemental Tables S11 and S12,
respectively. To maintain mass balance, Simcyp MechKiM tubular
outflow rates were matched to the inflow rates of the subsequent
tubule compartment. Therefore, the inflow rate to the first proximal
tubule compartment was defined as the glomerular filtration rate and
was set to 120 ml/min. Bladder urine flow rates in MechKiM ranged
from 0.1 to 20.0 ml/min to cover the range observed in clinical studies
measuring CLR; the adjusted flow-rate values were calculated by the
Simcyp software for the remaining tubular compartments. In clinical
observations, patients with reported acyclovir-induced AKI showed
low urine output of approximately 0.1–0.2 ml/min (Giustina et al.,
1988; Eck et al., 1991). Although higher urine flow rate values (up to
approximately 28 ml/min) have been reported in humans under
extreme water diuresis, clinical CLR data under this condition were
not found in literature (Supplemental Table S13).

In the case of the static tubular reabsorption model, midpoint flow
rates were assumed for each tubular region; the highest flow rate
investigated (11.6 ml/min) was determined by the assumed flow rate
at the beginning of the collecting duct, and the urine flow rate range
from 0.1 to 11.6 ml/min. The flow rates for the remaining tubular
regionswere not changed in the staticmodel assuming that changes to
urine flow rate are mediated by changes to water permeability in only
the collecting duct. This assumption is in accordance with current
understanding of the physiologic regulation of water balance via a
feedback mechanism involving osmoreceptor, arginine vasopressin,
and aquaporin (Knepper et al., 2015).

Simulation of Urine pH-Dependent CLR. Effects of variations
of urine pH on CLR were simulated for each drug using a generic
virtual study design of 10 trials of 10 subjects (proportion of females,
0.5; age, 20–50 years) in a healthy volunteer population. Dosage
information for simulations is shown in Supplemental Table S9. The
fluid pH at each tubule (PT, LoH, DT, and CD) varied from 4 to 9,
assuming the same for urine pH. Glomerular filtration rate values for
virtual subjects were calculated using the Cockcroft-Gault equation,
based on serum creatinine, age, and weight of the defined virtual
population, and bladder urine flow rates were 1 ml/min. Observed
data obtained from the literature are listed in Supplemental
Table S10. Data were presented graphically as fold changes in CLR

from baseline values at either 1 ml/min urine flow rate or pH 6.2. As
with the urine flow simulations, primary focus was on the magnitude
of changes rather than the absolute values.

Simulation of Tubular Concentration for Acyclovir and
Sulfamethoxazole. Acyclovir and sulfamethoxazole are associated

with the precipitation of crystals in the distal tubular lumen, including
collecting ducts in patients and nonhuman animals (Brigden et al.,
1982; Tucker, 1982; Tucker et al., 1983; Sawyer et al., 1988; Perazella,
1999). To evaluate the relationship between tubular concentration
and solubility, tubular concentrations of acyclovir and sulfamethox-
azole were simulated using the population representative (a 20-year-
old man; body weight, 81 kg) in a healthy volunteer population. In
addition, urine concentration was calculated from simulated ex-
creted urine amount and urine flow rate by sampling at regular
intervals for 0.25, 1, 3, or 6 hours. The solubility of acyclovir is
2.5mg/ml in water at 37°C (Arnal et al., 2008), and sulfamethoxazole
shows pH-dependent solubility (0.51mg/ml at pH 4.11, 0.61mg/ml at
pH 5.48, 8.25 mg/ml at pH 7.16, 37.7 mg/ml at pH 7.79) in aqueous
buffer at 37°C (Dahlan et al., 1987). Urine flow rate for simulation
was fixed to 1 (control), 0.2 (assuming volume depletion), or 5 ml/min
(assuming fluid therapy). Urine pH used for acyclovir simulation
was set at the median value of pH 6.2, whereas a pH range between
4 and 8 was investigated for sulfamethoxazole due to urine pH
sensitive CLR.

Data Analysis. The predictability of the PBPK model and the
other approaches was assessed by calculating the average fold error
(AFE), the absolute average fold error (AAFE), and root mean square
error, according to eq. 3–5:

AFE510ð1n+​ logðPredictedObservedÞÞ (3)

AAFE510ð1n+ ​ jlogðPredictedObservedÞjÞ (4)

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
+​ ðlogðObservedÞ2 logðPredictedÞÞ2

r
; (5)

where n is the number of assessed studies for each drug. In
addition, the percentage of studies within 2-fold and 3-fold was
assessed by comparison of the predicted and observed pharmaco-
kinetic parameters.

Results
PBPK Models without Mechanistic Kidney Model.

Compound-specific input parameters for the developed PBPK
models of the investigated drugs are listed in Supplemental
Table S1 and S2. The simulated concentration-time profiles
before activation of mechanistic kidney model were generally
in good agreement with observed data for all drugs (Supple-
mental Fig. S4). Although some misspecification of the
absorption phase may be apparent for some drugs (or could
not be fully verified with available clinical data), accurate
description of oral absorption was not considered an essential
feature of the model for the purpose of the current study, and
therefore further refinement of oral absorption was not
performed.
Prediction of CLR Using Mechanistic Kidney Model.

Subsequently, CLR was predicted using IVIVE of tubular
reabsorption for seven drugs/endogenous molecules, namely,
caffeine, chloramphenicol, creatinine, dextroamphetamine,
nicotine, sulfamethoxazole, and theophylline. Predictions
were performed using a mechanistic kidney model and
following different urinary pH assumptions (Supplemental
Fig. S5; Table 3). Urinary and tubular pH levels at average
condition (i.e., without coadministration of ammonium chloride
or sodium bicarbonate for urine acidification or alkalification,
respectively) were assumed to be either 7.4 (Simcyp default
value) or 6.2 (Rose et al., 2015). Overall predictability of
CLR using the MechKiM model was poorer compared with
the static model, reflected in the AAFE of 3.62, 2.87, and 1.97

TABLE 2
Tubular surface area used to calculate passive permeability clearance
(CLPD) in mechanistic kidney model
Values recalculated from those reported for the five-compartment model (Scotcher
et al., 2016b).

Tubular Surface Area
(cm2/million tubule cells)

PT-1 2.98
PT-2 2.98
PT-3 2.98
LoH 0.0796
DT 0.101
CCD 0.0184
MCD 0.00374

CCD, Cortical collecting duct; DT, distal tubule; LoH, loop of Henle; MCD,
medullary collecting duct; PT, proximal tubule.
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for the MechKiM model at pH 7.4 and 6.2, and the static
reabsorption model, respectively (Table 3). Use of urinary pH
of 6.2 improved the predictability of CLR using the mechanis-
tic kidney model relative to pH 7.4; however, these differences
typically arose from relatively small differences in predicted
Freab (Supplemental Table S15). Urinary pH had no impact on
simulated CLR for caffeine, creatinine, dextroamphet-
amine, and theophylline (Supplemental Fig. S5). Simulated
CLR at pH 6.2 was in better agreement with the observed
data for chloramphenicol and sulfamethoxazole compared
with pH 7.4, whereas opposite trends were seen for nicotine.
Based on this analysis, pH 6.2 was used as baseline urine
pH in MechKiM for subsequent simulations of the average
condition.
As expected, simulation of acyclovir CLR without consider-

ation of renal transporters resulted in a substantial under-
prediction of CLR (Supplemental Table S8). When renal
transporters were accounted for using an operational model,
simulated CLR of acyclovir was in close agreement with
observed values (predicted/observed ratio: 0.93), and no
impact of pH was noted. The simulated concentration-time
profiles usingMechKiM at urine pH of 6.2 are shown in Fig. 2.
The simulations of systemic profiles were generally in agree-
mentwith themodel where prediction of CLRwas not done in a
mechanistic manner.
Simulation of Urine Flow–Dependent CLR. The im-

pact of changes in urine flow rate on the simulated CLR of
eight selected drugs was assessed (see Fig. 3) by changing the
relevant tubular flow rate parameters in the mechanistic
kidney model while keeping urine pH constant at 4.5, 6.2, and
8.0. Overall, prediction of changes in CLR at different urine
flow rates by MechKiM showed better consistency with ob-
served data than predictions using the static model. The model
predictions identified caffeine, sulfamethoxazole, and theoph-
ylline as the compoundswith the largest relative change inCLR

resulting from changes in urine flow rate, in agreement with
observed data; however, an overall underprediction of the
magnitude of urine flow–dependent changes in CLR was
apparent. This underprediction trend was particularly evident
for sulfamethoxazole in the acidic urine condition. In the
current data set, use of urinary pH 6.2 resulted in the best
agreement with predicted change in CLR for caffeine,
creatinine, and theophylline. The simulated trend in CLR

for chloramphenicol at urinary pH 4.5 was generally in
agreement with observed data. Although simulations for
nicotine under acidic condition (pH 4.5) predicted a urine
flow–dependent CLR, the magnitude of this predicted effect
was small. The large variability in the observed nicotine

CLR data and the small range of corresponding urine flow
rates made it difficult to determine the true extent of
covariability for this drug. No effects of urine flow on predicted
CLR of creatinine and acyclovir were seen; these are low-
permeability compounds (Papp 5 1.08 and 0.291 � 1026 cm/s,
respectively).
Simulation of Urine pH–Dependent CLR. Simulated

impact of changes in urine pH on the CLR of the eight drugs
was also assessed (Fig. 4) by changing the urine and tubular
fluid pH in MechKiM while keeping the urine flow rate
constant at 1 ml/min in 100 virtual healthy subjects. Simu-
lated CLR rates of chloramphenicol, nicotine, and sulfame-
thoxazole were sensitive to urine pH over the range of 4.5–8.0,
whereas no effect was seen for remaining compounds. The
trends in simulated pH-dependent changes in CLR for sulfa-
methoxazole were largely in agreement with the observed
data, although the observed trends for nicotine and dextroam-
phetamine were not recovered. In the cases of chloramphenicol,
theophylline, and acyclovir, the accuracy of prediction could not
be assessed because of a lack of clinical CLR values reportedwith
corresponding urine pH data.
Simulation of Renal Tubular Concentrations of

Acyclovir and Sulfamethoxazole. High-dose acyclovir
was reported to result in crystal-induced AKI (Sawyer et al.,
1988; Perazella, 1999). A low dose of this drug is typically well
tolerated but can also cause AKI in the presence of severe volume
depletion (urine output: 350 ml/24 hours) (Giustina et al., 1988).
Analogous to acyclovir, sulfamethoxazole can cause AKI in the
presence of acidic urine (pH , 7.15) (Perazella, 1999). Tubular
concentrations of acyclovir and sulfamethoxazole were simulated
by using doses for which crystal-induced AKI have been reported.
Simulations of acyclovir PK and CLR at high doses (500 mg/m2

i,v. infusion, three times daily for 14 days) indicated that MCD
was the tubular region with the highest Cmax (Fig. 5A). The
predicted acyclovir MCD tubular filtrate Cmax was 4.69 mg/ml
at normal urine flow rate (1 ml/min), which exceeds the
reported aqueous solubility of 2.5 mg/ml. Urinary concentra-
tions calculated from simulated data for urine sampling every
0.25 hour were comparable to the simulated MCD tubule
concentrations, whereas urine sampling at 3-hour intervals or
longer showed less agreement (Fig. 5B). At a low dose (5 mg/kg
i.v. infusion, daily for 2 days) predicted concentrations of
acyclovir in MCD tubule were below aqueous solubility at
normal urine flow, but above aqueous solubility cut-off when
urine flow was low (0.2 ml/min, Fig. 6A). Similarly, simulation
of high dose (25 mg/kg four times daily for 14 days) of
sulfamethoxazole with normal urine flow rate (1 ml/min)
predicted Cmax in MCD tubules equal to its solubility when
pH , 7 (Fig. 6B). In addition, low urine flow rate increased
tubular concentration of sulfamethoxazole beyond its aqueous
solubility limit. Simulation of high urine flow of 5 ml/min
markedly decreased theCmax of acyclovir and sulfamethoxazole
in MCD tubules; in this condition, their simulated tubular
Cmax levels were below the solubility limit.

Discussion
Several mechanistic pharmacokinetic kidney models have

been reported in the literature, with some recent efforts
focusing predominantly on describing in vivo roles of trans-
porter kinetics withoutmechanistically accounting for passive
permeability (Felmlee et al., 2013; Neuhoff et al., 2013; Dave

TABLE 3
Prediction accuracy of renal clearance of seven drugs predicted using
mechanistic kidney model (MechKiM) and mechanistic renal tubular
reabsorption model (static model)
For simulation using MechKim, urine/tubular pH at average condition was used as
7.4 (Simcyp default value) and 6.2 (Rose et al., 2015). Details of predictions are listed
Supplemental Material, Supplemental Table S14.

AFE AAFE RMSE % 2-fold % 3-fold

MechKiM (pH 7.4) 3.39 3.62 29.1 26.3 57.9
MechKiM (pH 6.2) 2.69 2.87 37.9 52.6 68.4
Static modela 1.42 1.97 18.4 68.4 73.7

AAFE, absolute average fold error; AFE, average fold error; RMSE, root mean
square error.

aScotcher et al. (2016b).
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and Morris, 2015; Burt et al., 2016; Scotcher et al., 2017).
Models developed for the purpose of describing passive tubular
reabsorption have allowed simulation of urine flow–dependent
CLR of drugs with different permeability properties (Tang-Liu
et al., 1983; Komiya, 1986; Mayer et al., 1988); however, these
models did not account for the varying physiology of the renal
tubule in a mechanistic and quantitative manner and therefore
lack the ability to simulate intra-tubular drug concentrations.
Whereas a mechanistic kidney model implemented within the
whole-body PBPK model in the Simcyp simulator could, in
principle, overcome such limitations, the utility of this model
for prediction of tubular reabsorption and effects of physiologic
changes in urine flow and pH has not been demonstrated so far
(Neuhoff et al., 2013).
In the current study, passive permeability parameters of the

mechanistic kidney model were informed by IVIVE by adapt-
ing the scaling approach and regional tubular surface areas,
as described previously (Scotcher et al., 2016b). Although

analysis of the current data set showed a tendency for under-
prediction of observed CLR, such mis-predictions are expected
to have marginal consequence on the systemic exposure, as
extensively reabsorbed drugs are often cleared mainly by
nonrenal routes. Furthermore, apparently large differences in
predicted and observed CLR rates for extensively reabsorbed
compounds can arise from only minor mispredictions of the
fraction reabsorbed (Supplemental Table S15). For example,
underprediction of Freab of 0.99 by 1% (i.e., predicted Freab of
0.98) results in 2-fold overprediction of CLR for a completely
unbound drug. For average conditions, overall CLR predic-
tions at pH 6.2 (AAFE of 2.87) were more accurate than the
assumption of urinary pH of 7.4 (AAFE of 3.62; Table 3),
although nicotine was an exception to this trend (Supple-
mental Table S14). A more thorough evaluation of the IVIVE
predictive performance of the mechanistic kidney model,
with a larger data set of drugs, is required to confirm the
trends observed here. Despite this discrepancy, predicted

Fig. 2. Representative simulated plasma con-
centration-time profiles using PBPK models
with MechKiM at a urine pH of 6.2. Bold black
lines and dashed lines represent mean and
5th–95th percentile of 10 trials, respectively.
Symbols indicate observed data.
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CLR for nicotine at both pH levels were within 3-fold of
observed data.
Prediction of CLR using the static reabsorption model

showed lower bias compared with MechKiM, despite using
the same IVIVE scaling factors. The difference between the
models may arise from different physiologic assumptions of
each model, for example, MechKiM accounts for permeability
across cell membranes, whereas static model considers per-
meability across epithelial cell monolayer; however, the static
model has limited ability to simulate concentration-time
profiles in renal tubules or account for compound ionization
and permeability of different ionized species (Scotcher et al.,
2016b).
The choice of in vitro permeability assay may be another

consideration when evaluating the ability of kidney models to
predict CLR and Freab (Kunze et al., 2014; Scotcher et al.,
2016b; Mathialagan et al., 2017). Colon-derived Caco-2 and

other in vitro cell lines differ from heterogeneous epithelial
cells constituting the nephron tubule in terms of tight
junctions (affecting para-cellular drug permeability), trans-
porter expression, and presence of microvilli. To address the
latter, one study used an empirical surface-area scaling factor
to recapitulate CLR from in vitro permeability data using a
35-compartment model (Huang and Isoherranen, 2018). No
empirical scaling factor was applied in the current study;
instead, the IVIVE approach relied on physiologic assump-
tions, although verification of each of the specific parameter
values has not yet been achieved.
The mechanistic kidney model accurately identified drugs

that exhibit urine flow– dependent CLR, despite underprediction
trends of the magnitude of the effect evident in some cases
(Fig. 3). These underpredictions are likely related to the
underprediction of the Freab as discussed already herein. The
model predicted that the CLR for drugs with higher

Fig. 3. Effect of urine flow on predicted CLR in
virtual population representative at a tubule pH
of 4.5 (red line), 6.2 (green line), and 8.0 (blue
line) using MechKiM. Purpled dashed line repre-
sents predicted CLR using the static model for
comparison. Symbols indicate observed data with a
urine pH of normal (green), acidic (red), and
alkaline (blue) conditions. Fold change in simu-
lated CLR (lines) of drugs was calculated using
simulated CLR at urine flow = 1 ml/min as
baseline for each drug. The literature references
for observed data are listed in Supplemental
Table S10.
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permeability would be the most sensitive to changes in urine
flow, in agreement with previous studies (Tang-Liu et al.,
1983; Komiya, 1986; Mayer et al., 1988). Conversely, a
negligible effect of urine flow on CLR was predicted for low-
permeability compounds creatinine and acyclovir, in agree-
ment with clinically reported data for creatinine (Tang-Liu
et al., 1983). Although previously published kidney models
have been able to capture the relationship between urine flow
and CLR by fitting the model to observed data (“top-down”
approach), they lacked the ability to simulate local concentra-
tions in tubules (Tang-Liu et al., 1982, 1983).
According to Henderson-Hasselbalch equations, dextroam-

phetamine (pKa 10.1 for base) shows a low un-ionized fraction
(,1%) within a pH range of 4.5–8.0 (Supplemental Table S4).
Simulated CLR for dextroamphetamine was sensitive to
changes in urine pH only at pH . 8, in contrast to observed
data in which pH sensitivity occurs across a broader range

(Fig. 4). Similar outcomes were found for nicotine, highlight-
ing some uncertainty in the fraction of un-ionized across urine
pH range and/or permeability of the ionized species. Measure-
ment of intrinsic permeability of both un-ionized and ionized
drug species may provide advantages over use of Papp;
however, the former requires a more thorough experimental
design and delineation of effects of assay conditions, in
addition to factors like the binding of drugs to cellular proteins
and lipids, organelle-specific partitioning of drugs, and trans-
porter activities via mechanistic modeling (Neuhoff et al.,
2003; Volpe, 2008; Avdeef, 2012; Zamek-Gliszczynski et al.,
2013). This approach was not considered in the current study
because of the disparate experimental conditions of the
literature Papp data collated. It is also recommended that
such experiments be performed in the presence of a passive
permeability marker and that transporter inhibitors be used
in the assay media.

Fig. 4. Effect of urine pH on predicted CLR in a
virtual healthy population (10 trials of 10 sub-
jects) using MechKiM. Black and gray lines
represent mean and 5th–95th percentile of
100 subjects, respectively. Purpled dashed line
represents predicted CLR using the static model
for comparison. Symbols indicate observed data
for individuals or each study (mean 6 S.D.). The
literature references for observed data are listed
in Supplemental Table S10.
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In the current study, regional differences in filtrate pHwere
not considered because of the scarcity of relevant physiologic
data. Micropuncture studies in rats have reported that the
urine (pH 6.1) is more acidic than the proximal tubule filtrate
(pH 6.7) in control conditions, but each of these can vary under
different pathophysiologic states, such as acidosis (Malnic
et al., 1972). Factors leading to an acidic urinary pH include a
larger body weight, old age, and increased intake of meat
(Rose et al., 2015), whereas alkaline urine was observed in
patients with a urinary tract infection (Simerville et al., 2005).
Clinical data show that urine pH can decrease to ,5.5 in
patients with chronic kidney disease (Kraut and Kurtz, 2005).
In addition to tubular reabsorption, changes in filtrate pH
may also affect activity of some transporters in vivo (e.g.,
MATE transporters); however, previous studies that used
PBPKmodeling to simulate the effect of renal insufficiency on
pharmacokinetics of renally eliminated drugs assumed that
pH of urine and tubular fluid were unaffected by disease (Hsu
et al., 2014; Hsueh et al., 2018). All these findings highlight
the importance of consideration of changes in urine pH and
their impact on individual renal elimination processes when
carrying out modeling and simulation within a PBPK frame-
work, in particular for the prediction of drug exposure in
specific patient populations.
The current study provides supporting evidence for the

application of a mechanistic kidney model for simulation of
drug concentrations in tubular filtrate in different regions of
the nephron. Whereas data for preclinical species can be
evaluated using experimental data obtained by invasive
methods (e.g., micropuncture) (Senekjian et al., 1981), such
data are not available for humans for ethical reasons.
Therefore, indirect verification was performed using reported
cases of drug-induced crystalluria-AKI. The relationship

between solubility and simulated renal tubular concentration
of acyclovir and sulfamethoxazole was in agreement with
current clinical practices of managing the precipitation risk
and the likelihood of crystal formation in MCD tubules by
varying the urine flow rate and urine pH. The analysis of
simulated acyclovir concentrations inMCD tubule in different
scenarios indicated that urine sampling every 0.25 hour would
sufficiently capture the dynamic changes of MCD tubular
concentrations, in contrast to urine sampling at every 3 hours
(Fig. 5B). Considering the practical difficulties of collecting urine
at such short intervals, simulation of tubular concentration
using the PBPK modeling can be a useful tool for identify
compounds and dosing regimens that would be at risk of
crystalluria-AKI. Supporting information could also be obtained
from further development and application of high spatial
resolution bioimaging techniques (Notohamiprodjo et al., 2011).
In conclusion, the current study implemented an IVIVE-

PBPK approach for predicting the CLR of renally excreted
drugs that undergo tubular reabsorption and after changes in
urine flow and urine pH. In addition, the mechanistic kidney
model simulated the relationship between solubility and renal
tubular concentration to rationalize and mitigate the risk of
crystal-induced AKI. This comprehensive evaluation repre-
sents an additional step toward the qualification of mecha-
nistic kidney models for studying the pharmacokinetic
variability arising from different clinical scenarios and patient
characteristics; however, uncertainty in the interindividual
and intraindividual variability of regional tubular urine flow
and tubular fluid pH remains. After further development,
coupling of mechanistic kidney models for the prediction of
pharmacodynamic and toxicity effects and the risk or proba-
bilities of clinical outcomes under various scenarios are
envisaged.

Fig. 5. Effect of urine flow on simulated renal tubular
concentration of acyclovir at high-dose using MechKiM
in virtual population representative. (A) Simulation of
the maximum concentration of acyclovir in renal tubules
after intravenously multiple administration of acyclovir
at 500 mg/m2 i.v. infusion over 60 minutes every 8 hours
for 7 days at urine flow of 0.2, 1.0, and 5.0 ml/min. (B)
Simulated concentration-time profiles of medullary collect-
ing duct tubule and urine at urine flow of 1 ml/min. Urine
concentrations were calculated for urine collection intervals
of 0.25, 1, 3, or 6 hours. Horizontal dashed line represents
the solubility of acyclovir (2.5 mg/ml).
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