




















hepatocytes. Whereas cell membrane composition difference
across the systems may contribute to the observed poor
correlation (Simons and Ikonen, 1997), the role of uptake
transporters cannot be ruled out in the transcellular perme-
ability model (Dobson and Kell, 2008; Ahlin et al., 2009; Kell
et al., 2011). Overall, potential role of uptake transporters in
hepatic clearance should be duly evaluated for the acids and
zwitterions irrespective of the membrane permeability across
cell culture models (e.g., MDCK or Caco-2).
We observed a minimal overlap in the substrate specific-

ity for OAT2 versus OATP1B1, which is in general agree-
ment that OATPs preferentially accept high-MW (.400 Da)
acids/zwitterions (class 1B) as substrates (Varma et al.,
2012a). Of the four OATP1B1 substrates identified in the
ECCS 1A space, nateglinide and fluorescein were previously
reported to be OATPs substrates (De Bruyn et al., 2011;
Takanohashi et al., 2012; Izumi et al., 2016), whereas this is
the first report suggesting that bromfenac, an nonsteroidal

anti-inflammatory drugs for ocular inflammation, and
entacapone, an catechol-O-methyltransferase inhibitor used
in Parkinson disease, involve OATP1B1-mediated hepatic
uptake clearance. Clinical drug-drug interaction studies
with OATP inhibitors rifampicin and cyclosporine may be
helpful to further define uptake-determined clearance in these
cases. The MW of these four OATP1B1 substrates ranges
from 305 to 334 Da. While the occurrences are low, this
study suggests that low-MW acids/zwitterions may involve
OATP1B1-mediated clearance.
Although a plethora of drug-drug interaction and pharma-

cogenetic studies have shown the relevance of CYP2C and
UGT mechanisms, our findings will open the field to consider
OAT2-mediated hepatic uptake as a source of variability in
the pharmacokinetics and pharmacodynamics of drugs in the
ECCS 1A class. According to extended clearance concept
(Shitara et al., 2013; Patilea-Vrana and Unadkat, 2016; Li
et al., 2014; Varma et al., 2015), the extended clearance model

TABLE 3
Summary of predictive performance of various in vitro-in vivo extrapolation approaches employed
Bias was calculated for only OAT2-alone drugs (eq. 13).

Parameters
Intrinsic Hepatic Clearance Plasma Hepatic Clearance

Hepatocyte
Total
Uptake

Liver
Microsomes
Metabolism

Extended
Clearance
Model

Hepatocyte
Substrate
Depletion

Hepatocyte
Total
Uptake

Liver
Microsomes
Metabolism

Extended
Clearance
Model

Hepatocyte
Substrate
Depletion

OAT2-alone
n 17 13 13 15 17 13 13 15
AFE 8.2 5.2 1.9 2.3 6.6 4.9 1.9 2.2
Bias 6.4 0.20 0.90 0.63 5.4 0.21 0.93 0.65
Within 2-fold error (%)a 18 8 62 47 24 8 62 47
Within 3-fold error (%)a 35 38 85 73 41 38 85 73

OAT2/OATP1B1 dual substrates
n 4 4 4 3 4 4 4 3
AFE 5.2 7.4 10.7 6.5 4.1 5.8 8.1 4.8

No active hepatic uptake
n 4 2 2 3 4 2 2 3
AFE 20.5 1.4 4.1 3.3 9.7 1.4 3.9 2.9

All
n 25 19 19 21 25 19 19 21
AFE 8.8 4.9 3.0 2.8 6.5 4.4 2.7 2.6

n, number of compounds; AFE, average fold error (eq. 12).
aNumber of predictions within 2- and 3-fold of the observed values.

Fig. 5. Comparison of hepatic clearance predicted from intrinsic clearance measured using substrate depletion in human hepatocytes with the observed
in vivo hepatic clearance. Left and right plots represent hepatic intrinsic clearance and hepatic plasma clearance, respectively. Circles represent OAT2-
alone substrates, triangles represent OAT2/OATP1B1 dual substrates, and squares represent drugs with no measurable active uptake in human
hepatocytes. Solid, dotted, and dashed diagonal blue lines indicate unity, 2-fold, and 3-fold range, respectively. AFE and bias (red diagonal lines) of
OAT2-alone substrates are shown.
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(eq. 10) is reduced such that the hepatic clearance can be
approximated by PSuptake � CLmet/PSpassive, when PSpassive .
CLint, met, which is often the case for the compounds in the
current data set (Fig. 3B). Therefore, functional variability in
OAT2 and enzymatic metabolism can lead to variability in
pharmacokinetics for these drugs. For instance, genetic poly-
morphism in CYP2C8 and CYP2C9 was associated with
systemic clearance of many ECCS 1A drugs, including ibu-
profen, piroxicam, tolbutamide, and S-warfarin (Rettie et al.,
1994; Kirchheiner et al., 2002; García-Martín etal., 2004;Perini
et al., 2005). For the last two drugs, we previously demonstrated
that a PBPK model with permeability-limited hepatic disposition
(transporter-enzyme interplay) quantitatively describes the phar-
macogenetic effects when considering genotype, phenotype,
and fraction metabolism by CYP2C9 (Bi et al., 2018a,b). Our
preliminary literature search, however, revealed limited
knowledge about the clinically relevant OAT2 inhibitors and
functional polymorphic variants of SLC22A7 (gene-encoding
OAT2) (Bi et al., 2018a). Further studies are needed in these
areas to assess the role of OAT2 in clinical settings. This
assessssment is important because changes in uptake or
metabolic clearancewill have a proportional impact on hepatic
clearance, and a simultaneous change in both mechanisms in
same direction can result in a marked change in clinical
pharmacokinetics.Moreover, OAT2-mediated uptake can lead
to high free liver-to-plasma concentrations (Kpuu), which may
contribute to the liver-specific pharmacologic and/or toxico-
logic activities. It will be of interest to understand the
association between liver Kpuu and drug-induced hepatotox-
icity noted for several of the OAT2-alone substrates in our
data set (e.g., diclofenac, ibuprofen. pioglitazone, piroxicam,
rosiglitazone, tolcopone, etc.) (Boelsterli, 2003; Morgan et al.,
2010; Chen et al., 2011).
In conclusion, our systemic evaluation provided robust

evidence for the role of a previously unrecognized OAT2-
mediated hepatic uptake in the clearance of several high-
permeability–low-molecular-weight acid and zwitterion drugs.
For this class of drugs or new chemical entities (ECCS class
1A), uptake transport characterization and considerations to
transporter-enzyme interplay are important for predicting
clinical pharmacokinetics and assessing variability owing to
drug-drug interactions and other intrinsic and extrinsic
factors.
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