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ABSTRACT
Addictive diseases, including addiction to alcohol, pose
massive public health costs. Addiction is a chronic relapsing
disease caused by both the direct effects induced by drugs
and persistent neuroadaptations at the molecular, cellular,
and behavioral levels. These drug-type specific neuroadap-
tations are brought on largely by the reinforcing effects of
drugs on the central nervous system and environmental
stressors. Results from animal experiments have demon-
strated important interactions between alcohol and stress-
responsive systems. Addiction to specific drugs such as

alcohol, psychostimulants, and opioids shares some common
direct or downstream effects on the brain’s stress-responsive
systems, including arginine vasopressin and its V1b recep-
tors, dynorphin and the k-opioid receptors, pro-opiomelano-
cortin/b-endorphin and the m-opioid receptors, and the
endocannabinoids. Further study of these systems through
laboratory-based and translational research could lead to the
discovery of novel treatment targets and the early optimiza-
tion of interventions (for example, combination) for the
pharmacologic therapy of alcoholism.

Introduction
The expanding literature has demonstrated that alcohol

activates the brain’s stress-responsive systems, which con-
tributes to excessive alcohol drinking and the development of
alcoholism with the relapse of alcohol use. Several reviews
from 2016 to 2018 of preclinical evidence from clinical trials
have provided details on other important stress-responsive
systems such as corticotrophin-releasing factor, neuropeptide
Y, and glucocorticoid receptor (Koob and Mason, 2016;
Mantsch et al., 2016; Blaine and Sinha, 2017; Mason, 2017;
Pomrenze et al., 2017; Robinson and Thiele, 2017; Spierling
and Zorrilla, 2017; Tunstall et al., 2017). The main focus in

this mini-review is on important stress responsive systems
that have yet to be reviewed such as arginine vasopressin/V1b
receptors (in the section V1b Receptor and Arginine Vasopres-
sin System) and pro-opiomelanocortin/b-endorphin (in the
section POMC/b-Endorphin and m-Opioid Receptor System).
For two other stress-responsive systems, endocannabinoids/
fatty acid amide hydrolase (Endocannabinoid System) and
dynorphin/k-opioid receptors (k-Opioid Receptor and Dynor-
phin System), we examine controversies in the literature and
the current state of the field for possible explanations (Parsons
and Hurd, 2015; Chavkin and Koob, 2016; Anderson and
Becker, 2017; Karkhanis et al., 2017; Tunstall et al., 2017).
This mini-review provides an overview of the recent literature
for these four stress-responsive systems in alcohol research,
using laboratory-based animal models and clinical research
to elucidate the biology of addictive diseases. We propose
that translational bidirectional research will help refine
future preclinical targets for the pharmacologic therapy of
alcoholism.
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ABBREVIATIONS: ADE, alcohol-deprivation effect; AEA, anandamide; AVP, arginine vasopressin; BNST, bed nucleus of the stria terminalis; CB,
cannabinoid receptors; CeA, central nucleus of amygdala; CNS, central nervous system; CPP, conditioned place preference; CRF, corticotrophin-
releasing factor; DID, drinking-in-the-dark; eCB, endocannabinoids; eGFP, enhanced green florescent protein; FAAH, fatty acid amide hydrolase;
HPA, hypothalamic-pituitary-adrenal; IA, intermittent access drinking; KOP-r, k-opioid receptor; LY2456302, 4-[4-[[(2S)-2-(3,5-dimethylphenyl)-
pyrrolidin-1-yl]methyl]phenoxy]-3-fluorobenzamide; MC4, melanocortin 4 receptor; MOP-r, m-opioid receptor; MSB, mesyl salvinorin B; NAc,
nucleus accumbens; nor-BNI, nor-binaltorphimine; NTN, naltrexone; POMC, pro-opiomelanocortin; PVN, paraventricular nucleus; sNP, Sardinian
alcohol-nonpreferring; sP, Sardinian alcohol-preferring rats; SSR149415, (2S,4R)-1-[5-chloro-1-[(2,4-dimethoxyphenyl)sulfonyl]-3-(2-methoxy-
phenyl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-4-hydroxy-N,N-dimethyl-2-pyrrolidine carboxamide; U50,488, (trans)-3,4-dichloro-N-methyl-N-[2-(1-pyr-
rolidinyl)-cyclohexyl]benzeneacetamide; URB597, [3-(3-carbamoylphenyl)phenyl] N-cyclohexylcarbamate.
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V1b Receptor and Arginine Vasopressin System. In
the neurobiology of stress-related behaviors, increased arginine
vasopressin (AVP) neuronal activity is involved in important
steps in several rodent models (Griebel et al., 2002; Salome
et al., 2006; Roper et al., 2011) and in humans (Katz et al., 2016;
Ryan et al., 2017). Since the 1980s, evidence has emerged
implicating AVP in the motivational properties of drugs of
abuse (see van Ree et al., 1999). Systemic administration of
desglycinamide-(Arg8)-vasopressin (DGAVP) reduced alcohol
intake in studies exploring the role of AVP in rhesus monkeys
(Kornet et al., 1991), and it also decreased alcohol intake in
Brattleboro homozygote rats lacking vasopressin (Rigter and
Crabbe, 1985) (Table 1).
Of interest, after chronic exposure to an alcohol-containing

diet, AVP mRNA levels were decreased in several stress-
responsive brain regions of C57BL/6J mice, including the para-
ventricular nucleus (PVN), supraoptic nucleus, and bed nucleus
of the stria terminalis (BNST) (Ishizawa et al., 1990; Gulya
et al., 1991; Hoffman and Dave, 1991). Further studies demon-
strated a decrease of the number of AVP-immunoreactive
neurons and reduction of AVP mRNA levels in the hypothal-
amus after chronic alcohol consumption in both humans
(Harding et al., 1996) and rats (Silva et al., 2002). In humans,
abnormal levels of serum and urine AVP were found during
alcohol withdrawal, particularly when the symptoms were
severe (Eisenhofer et al., 1985; Trabert et al., 1992).
In several selectively bred alcohol-drinking rat lines, there

are higher basal levels of AVP mRNA in the PVN of Indiana
alcohol-preferring rats, Sardinian alcohol-preferring (sP) rats,
and high-alcohol-drinking rats as compared with their re-
spective alcohol-nonpreferring and low-alcohol-drinking coun-
terparts (Hwang et al., 1998; Zhou et al., 2011). Higher basal
AVP mRNA levels were also found in the medial amygdala of
sP rats compared with Sardinian alcohol-nonpreferring (sNP)
rats; chronic (.2 weeks) alcohol drinking reduced the AVP
mRNA levels in the PVN and medial amygdala of sP rats
(Zhou et al., 2011). Of interest, individual differences in AVP
mRNA levels are positively associated with vulnerability to
high alcohol drinking in C57BL/6J mice after acute stress
(Nelson et al., 2018), so more studies are needed as individual
vulnerability to drug relapse during abstinence is a key
feature of drug addiction (Imperio et al., 2016; Sushchyk
et al., 2016).
AVP binds to two G protein-coupled receptor subtypes in the

brain: V1a and V1b. Both are expressed in the extended

amygdala, with high concentrations in the central nucleus of
amygdala (CeA), the BNST, and nucleus accumbens (NAc)
(Veinante and Freund-Mercier 1997). Specifically, V1b receptors
are mostly distributed in the PVN, hippocampus, and amygdala
as well as the anterior pituitary (Lolait et al., 1995; Vaccari et al.,
1998;Hernando et al., 2001; Young et al., 2006). In rodentmodels,
many studies have suggested that augmented AVP/V1b activity
in the amygdala plays a critical step in the stress-related
behaviors. 1) After acute stress the rat amygdala shows increased
levels of extracellular AVP (Wigger et al., 2004). 2) After acute
withdrawal stress fromdrug exposure or by foot-shock stress after
drug self-administration the rat amygdala shows increased levels
of AVP mRNA (Zhou et al., 2005, 2008). 3) Activation of V1b
receptors is involved inanxiety-like anddepression-like behaviors
(Griebel et al., 2002; Serradeil-Le Gal et al., 2002; Salome et al.,
2006; Roper et al., 2011). SSR149415 [(2S,4R)-1-[5-chloro-1-[(2,4-
dimethoxyphenyl)sulfonyl]-3-(2-methoxy-phenyl)-2-oxo-2,3-
dihydro-1H-indol-3-yl]-4-hydroxy-N,N-dimethyl-2-pyrrolidine
carboxamide], a highly selective nonpeptide antagonist for the
V1b receptor, has anxiolytic-like and antidepressant-like
properties (e.g., Overstreet and Griebel 2005).
One of the critical factors influencing individual vulnera-

bility to drug relapse is atypical stress responsivity (Kreek and
Koob, 1998; Zhou and Kreek, 2014). Using validated experi-
mental models such as the forced swim and elevated plus
maze tests, investigators have demonstrated anxiety-like and
depression-like behaviors in rodents after chronic alcohol
exposure, mostly during acute withdrawal (Colombo et al.,
2006; Bell et al., 2012). As the high degree of anxiety-like and
depression-like states is partially attenuated after voluntary
alcohol drinking, rodents may drink alcohol to improve their
emotional states (negative reinforcing mechanism) (Colombo
et al., 2006; Bell et al., 2012; Pang et al., 2013).
In our alcohol study with sP rats, the V1b antagonist

SSR149415 dose-dependently attenuated alcohol intake, sug-
gesting that a V1b receptor-mediated mechanism is involved
in modulating alcohol-drinking behaviors (Zhou et al., 2011).
Importantly, SSR149415 reduces excessive alcohol self-
administration in alcohol-dependent Wistar rats in a dose-
dependent manner, without altering the alcohol drinking
of nondependent rats (Edwards et al., 2012) (Table 1). Sys-
temic administration of V1b antagonists blocks stress and
drug priming-triggered seeking behavior (Zhou et al., 2008)
and prevents the dysphoria induced by nicotine withdrawal
(Qi et al., 2015) as well as nicotine-induced locomotor

TABLE 1
Effects of AVP or V1b antagonists on alcohol-related behaviors

Subjects Sex Model Effect Reference

Brattleboro
homozygote rats

Male 2-Bottle choice (24 h, 2%–10%) Decrease (intake) by systemic
(osmotic pump) DGAVP

Rigter and Crabbe (1985)

Rhesus monkeys Male,
female

Multiple-bottle choice (24 h,1%–8%) Decrease (intake) by systemic
(i.v.) DGAVP

Kornet et al. (1991)

Sardinian alcohol-
preferring rats

Male 2-Bottle choice (24 h, 10%) Decrease (intake and preference)
by systemic (i.p.) SSR149415

Zhou et al. (2011)

Alcohol-dependent
Wistar rats

Male Operant self-administration (10%, 30 min) Decrease (intake) by systemic (i.p.)
or intracentral amygdala SSR149415

Edwards et al. (2012)

C57Bl/6J mice Male,
female

2-Bottle choice (24 h, every other day, 15%) Decrease (intake and preference)
by systemic (i.p.) SSR149415

Zhou et al. (2018)

Humans Male,
female

Phase 2, double-blind, placebo-controlled,
randomized trial

Decrease (intake and relapse)
by systemic (oral) ABT-436

Ryan et al. (2017)

ABT-436, V1b antagonist; DGAVP, desglycinamide-(Arg8)-vasopressin; SSR149415, V1b antagonist.
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sensitization (Goutier et al., 2016). Therefore, the AVP/V1b
system is a critical component of the negative reinforcing
effects of alcohol, heroin, or nicotine, especially during drug
withdrawal. In a recent phase 2, double-blind clinical trial
(Table 1), pharmacologic blockade of the V1b receptor reduced
alcohol consumption and the relapse rate in alcohol-
dependent patients, especially those experiencing high stress
(Ryan et al., 2017). As the V1b receptor is a feasible target in
humans, there is translational potential for novel antialcohol-
ism medications.
Stress increases secretion of corticotrophin-releasing factor

(CRF) and AVP (the parvocellular division of the PVN) from
terminals of the PVN into the pituitary portal circulation. The
interaction between CRF and CRF1 receptors on corticotropes
initiates the biosynthesis of pro-opiomelanocortin (POMC)–
derived peptides and their release from the anterior pituitary
(Vale et al., 1981). AVP from the parvocellular division of the
PVN activating V1b receptors in the corticotropes enhances
ACTH secretion from the anterior pituitary (Lolait et al., 1995;
Aguilera and Rabadan-Diehl. 2000). However, AVP neurons
in the magnocellular division of the PVN project to the
posterior pituitary and then release AVP into the systemic
circulation in response to stress. Both CRF/CRF1 receptor and
AVP/V1b receptor systems are also mediators of the actions of
central stress responsive systems, as both are widely distrib-
uted in the central nervous system (CNS) (Zhou et al., 1996;
Roper et al., 2011).
Different from the hypothalamic CRF in response to acute

cocaine use, several studies have shown that AVP in the PVN
does not contribute to the acute stimulatory effects of alcohol
on hypothalamic-pituitary-adrenal (HPA) activity (Rivier and
Vale, 1988; Lee and Rivier, 1997). It is still not knownwhether
the AVP/V1b receptor systems are specifically involved in the
HPA modulation during acute or chronic withdrawal from
alcohol exposure or after relapse-like drinking in rodent
models, though AVP is potent modulator of HPA axis. While
the activation of the PVN CRF contributes to the stimulating
effect of acute alcohol on the HPA axis (e.g., Rivier and Vale,
1988), chronic alcohol exposure blunts the HPA hormonal
response to alcohol, showing the development of HPA toler-
ance with either no change or an even decreased CRF mRNA
level in the PVN (Zhou et al., 2000; Richardson et al., 2008).
Acute and protracted withdrawal from alcohol is coupled with

decreased levels of both plasma corticosterone and hypotha-
lamic CRF-like immunoreactivity in alcohol-dependent rats
(Zorrilla et al., 2001). In humans, acute exposure to alcohol
profoundly activates theHPAaxis, andmany alcoholics develop
HPA tolerance after chronic alcohol exposure (Adinoff et al.,
1990; Inder et al., 1995). In contrast, acute alcohol withdrawal
transiently activates the HPA axis (Hundt et al., 2001;
Zimmermann et al., 2003). Also, the noradrenergic system,
the known key stress mediator involved in stress and anxiety
responses (e.g., Tunstall et al., 2017), probably interacts with
AVP and CRF systems to regulate alcohol drinking and HPA
activity.
POMC/b-Endorphin and m-Opioid Receptor System.

In the pituitary, ACTH is produced from the anterior lobe
corticotrophs, whereas N-acetylated forms of b-endorphin and
a-melanocyte-stimulating hormone are produced in the in-
termediate lobe melanotrophs. In the brain, the arcuate
nucleus of the hypothalamus processes POMC to produce
the potent opioid peptide b-endorphin as well as a-, b-, and

g-melanocortins (Ragavan et al., 1983; Rubinstein et al., 1996;
Cowley et al., 2001; Romanova et al., 2015). Besides the
arcuate nucleus, the POMC mRNA molecule has also been
detected in much lower levels in several other mouse and rat
brain regions, including the NAc, amygdala, hippocampus,
and cerebral cortex (Civelli et al., 1982; Zhou et al., 1996,
2013b; Leriche et al., 2007; Bodnar, 2014; Granholm et al.,
2017). Using the POMC-enhanced green florescent protein
(eGFP) mice, we have found that POMC expression in POMC-
eGFP neurons can be visualized by GFP immunohistochem-
istry, and amodest amount of POMC-eGFP neurons is present
in both the shell and core subregions of the NAc (Zhou et al.,
2013b). In the NAc, the amount of POMC mRNA is ∼10% of
that detected in the hypothalamus, and the relatively low
POMC mRNA signal in the NAc is correlated with the
relatively small number of POMC-eGFP neurons in POMC-
eGFP mice. Though alcohol drinking for more than 2 weeks
increased POMC mRNA in the NAc shell (but not the core) of
sP rats, it remains unclear whether the POMC mRNA in the
extrahypothalamic regions (e.g., NAc shell and core) will be
processed to melanocortins, b-endorphin, or other functional
peptides.
In the rat anterior pituitary after acute or chronic alcohol

administration, an increase, a decrease, or no change of the
POMC mRNA levels as well as levels of POMC-derived
peptides was reported (Gianoulakis et al., 1988; Winkler
et al., 1995; Zhou et al., 2000, 2013b). Using a pituitary-
specific deletion of the POMC gene in Tpit transgenic mice,
our recent study found that the pituitary POMC deficiency did
not change either alcohol drinking in a drinking-in-the-dark
(DID) model (with a 4-hour limited access to alcohol in the
dark cycle) or an alcohol-induced conditioned place preference
(CPP) in male or female mice, suggesting that the pituitary
POMC cells may not involve in the rewarding action or “binge”
consumption of alcohol (Zhou et al., 2017c).
In the hypothalamus, POMC mRNA levels are either

increased or decreased after acute or chronic alcohol
(Angelogianni and Gianoulakis, 1993; Zhou et al., 2000,
2013b; Rasmussen et al., 2002; Navarro et al., 2013).
C57BL/6 mice have high basal POMC mRNA levels in the
hypothalamus with a high alcohol intake or preference as
compared with the alcohol-avoiding DBA/2 mice with low
alcohol intake or preference (Jamensky and Gianoulakis,
1999). In parallel, we found that the sP rats have higher basal
POMC mRNA levels in the hypothalamus than sNP rats;
chronic alcohol drinking for more than 2 weeks resulted in
further increases in the hypothalamic POMC mRNA levels in
sP rats (Zhou et al., 2013b). Considering the well-established
role of b-endorphin in alcohol-drinking behaviors, the genet-
ically determined POMC expression at basal levels and in
response to alcohol may contribute to the high alcohol
preference and/or consumption found in sP rats and
C57BL/6J mice.
Activation of the m-opioid receptor (MOP-r) by b-endorphin

produces rewarding (Barson et al., 2011; Koch et al., 2015) and
regulates NAc dopamine release (e.g., Spanagel et al., 1991).
Alcohol or other drugs of abusemay release b-endorphin in the
NAc (Olive et al., 2001; Marinelli et al., 2003; Roth-Deri et al.,
2008), and the effects could be involved in the reinforcing
actions and motivational behaviors of the drugs of abuse in
rodents. Indeed, intracerebroventricular administration of
b-endorphin induces CPP in rats (Amalric et al., 1987).

Alcohol-Activated Stress Systems and Potential Therapeutics 11
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Consistent evidence has been provided by numerous pharma-
cologic studies in rodents showing that opioid antagonists
reduce alcohol consumption, reward, reinstatement of seeking
behavior induced by cue, and “relapse” drinking. In human
alcoholics, the opioid antagonist naltrexone decreases alcohol
drinking, craving, and relapse (e.g., Brown and Holtzman,
1981; Hall et al., 2001; Liu and Weiss, 2002; Kuzmin et al.,
2003; Pastor et al., 2011; Lukas et al., 2013; see also reviews by
Gianoulakis, 1993; Herz, 1997; Le Merrer et al., 2009). MOP-r
knockout mice show a decrease in alcohol drinking or self-
administration (Roberts et al., 2000; Hall et al., 2001; Ben
Hamida et al., 2017) (Table 2), which further indicates that the
b-endorphin/MOP-r plays a functional role in the modulation
of alcohol drinking.
POMC neurons in the hypothalamus, the main region

producing b-endorphin in the brain, may contribute to alcohol
consumption. It is not clear, however, whether there is an
involvement of b-endorphin in regulation of alcohol drinking,
as studies using b-endorphin-deficient mice have shown
inconsistent results (Grisel et al., 1999; Grahame et al.,
2000; Racz et al., 2008) (Table 2). A limitation of this global
b-endorphin knockoutmousemodel is that it does not allow for
clarification of which specific regions of POMC cells (e.g.,
hypothalamus or possible pituitary) are involved in alcohol-
drinking behaviors. Recently, the neuronal Pomc enhancers
(nPE1 and nPE2) that are necessary for POMC expression
specifically in hypothalamic arcuate neurons have been
identified. The simultaneous transcriptional interference of
Pomc enhancer function by insertion of a neomycin selection
cassette in the enhancer vicinity abolishes POMC gene
expression in the hypothalamic arcuate nucleus of transgenic

mice, while leaving normal levels of POMC expression in the
pituitary cells (Bumaschny et al., 2012).
Therefore, to determine the role of hypothalamic POMC

neurons in alcohol-drinking behaviors, we have used trans-
genic mice with a region-specific POMC deficiency resulting
from selective deletion of Pomc enhancers (Lam et al., 2015).
Specifically, in mice of both sexes we determined the effect of
tissue-specific Pomc gene manipulation on 1) binge drinking
in a DID model (Rhodes et al., 2005), 2) acquisition and
escalation of excessive alcohol drinking in a chronic intermit-
tent access (IA) model (Wise, 1973; Simms et al., 2008; Hwa
et al., 2011), and 3) relapse drinking in an alcohol-deprivation
effect (ADE) model (Holter and Spanagel, 1999; Heyser et al.,
2003). The wild-type mice exposed to DID rapidly established
stable alcohol drinking behaviors, with more intake in fe-
males, whereas the hypothalamic POMC–deficient mice of
both sexes had lower alcohol intake and preference. Though
the hypothalamic POMC–deficient mice showed less saccha-
rin intake and preference than the wild-type mice, there was
no genotype difference in sucrose intake or preference. After
3 weeks of IA, the wild-type mice gradually escalated to high
alcohol intake and preference, with more intake in females;
the hypothalamic POMC–deficient mice showed less escala-
tion. Of interest, pharmacologic blockade of MOP-r with
naltrexone (NTN) dose-dependently reduced intake in the
wild-type mice but had blunted effect in the hypothalamic
POMC–deficient mice. The wild-type mice of both sexes dis-
played significant relapse-like ADE drinking, with more pro-
nounced ADE in females; the hypothalamic POMC–deficient
mice showed no ADE in either sex. Our results suggest
an involvement of neuronal POMC/b-endorphin in the

TABLE 2
Effects of genetic deletion of b-endorphin, POMC, and MOP-r on alcohol-related behaviors

Subjects Sex Model Effect Reference

b-Endorphin KO Male +
female

[1] 2-Bottle choice (24 h, 7%); [1] Increase (intake
and preference);

Grisel et al.
(1999)

[2] 2-Bottle choice (24 h, 10%) [2] No difference (intake
or preference)

b-Endorphin KO Male [1] 2-Bottle choice (24 h, 10%); [1] No difference (intake); Grahame et al.
(2000)[2] 2-Bottle choice (2 h, 10%); [2] Increase (intake);

[3] ADE [3] Increase (intake)
b-Endorphin KO Male,

female
2-Bottle choice (24 h, 16%); Decrease (intake and

preference) with sex
difference

Racz et al.
(2008)

Tpit KO mice with pituitary-specific POMC
deletion

Male,
female

1-Bottle (4 h, 15%) in DID No difference in intake
or preference in either
sex

Zhou et al.
(2017c)

nPE KO mice with hypothalamic-specific
POMC deletion

Male,
female

[1] 1-Bottle (4 h, 7.5%–30%) in
DID;

Decrease (intake and
preference) in all
three models, with
sex difference

Zhou et al.
(2017c)

[2] 2-Bottle choice (24 h,
every other day, 7.5%–30%)
in IA;

[3] ADE
MOP-r KO Male [1] 30-min Operant self-

administration (10%);
[1] Decrease (intake); Roberts et al.

(2000)
[2] 2-Bottle choice (24 h, 10%) [2] Decrease (intake

and preference)
MOP-r KO Male,

female
[1] 2-Bottle choice (24 h, 2%–

32%);
[1] Decrease (intake)

with sex difference;
Hall et al.

(2001)
[2] CPP [2] Decrease

MOP-r KO with striatum-specific deletion Male [1] 2-Bottle choice (24 h, 10%); [1] Decrease (intake
and preference);

Ben Hamida et al.
(2018)

[2] 2-Bottle choice (24 h,
every other day, 10%) in IA;

[2] Decrease (intake
and preference);

[3] CPP [3] Decrease

KO, knockout; nPE, neuronal Pomc enhancers.
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regulation of binge drinking, excessive drinking, and
relapse, possibly through a hypothalamic-mediated mech-
anism, and with sex differences (Zhou et al., 2017c)
(Table 2). Consistently, mice lacking MOP-r have shown
reduced excessive alcohol drinking (Ben Hamida et al.,
2017).
Consistent with previous studies in mice (Hall et al., 2001;

Racz et al., 2008; Hwa et al., 2011; Yoo et al., 2012) and rats
(recently reviewed by Becker and Koob (2016)), we have
confirmed sex differences in alcohol drinking, with higher
alcohol intake in females. The genotype differences in alcohol
intake between hypothalamic POMC–deficient and wild-type
mice are much greater in females than in males. The POMC
deficiency affects female mice more strongly than males,
suggesting that POMC may influence alcohol consumption
in a sex-specific manner (Zhou et al., 2017c). Our results are in
line with earlier studies that demonstrated decreased alcohol
intake in b-endorphin and MOP-r knockout mice with more
notable differences in females (Hall et al., 2001; Racz et al.,
2008) (Table 2). Sex differences have also been observed in a
human genetic study, which showed that the Pomc two-
marker haplotype is associatedwith alcoholism only inwomen
(Racz et al., 2008). These results also contribute to the idea of
sex differences in opioid regulation of alcohol dependence
(Becker and Koob, 2016).
Activation of POMC neurons affects food intake (which is

increased and decreased by endorphin and melanocortins,
respectively) especially at the onset of the dark cycle in mice
(Mercer et al., 2013), so we purposely monitored drinking
activity in the IA model during the 24-hour cycle with three
time points: the first 4-hour dark cycle, the second 4-hour dark
cycle, and the whole light cycle. Both male and female mice
displayed escalated alcohol intake after 3 weeks of chronic IA
exposure, mainly occurring at the first 4-hour dark cycle
(25%–30% in total daily intake), without much change in the
other two time periods (Zhou et al., 2017a,c). Of interest, in
both sexes the hypothalamic POMC–deficient mice displayed
lower alcohol intake than the wild-type mice during the first
4-hour dark cycle (Zhou et al., 2017c), suggesting a potential
contribution of hypothalamic POMC to the genetically de-
termined tendency of hypothalamic POMC–deficient mice
toward reduced alcohol consumption, with the potential in-
fluence of clock genes as found in other studies with alcohol
(Spanagel et al., 2005; Agapito et al., 2010; Partonen, 2015).
b-Endorphin is critically involved in the regulation of HPA

activity. In both animal and human studies, it has been
demonstrated that endogenous b-endorphin has tonic inhibi-
tion of the HPA axis by acting on the MOP-r (e.g., Kreek and
Koob, 1998; Wand et al., 2002; Zhou et al., 2017c). NTN is a
clinical MOP-r antagonist in the treatment of alcoholism
(O’Malley et al., 1992; Volpicelli et al., 1992). As b-endorphin
exerts tonic inhibition of CRF in the PVN (central part of the
HPA axis), NTN blocks MOP-r, disinhibits the inhibition of
the CRF, and then acutely and persistently activates the HPA
axis (O’Malley et al., 2002). In a human study, the NTN-
treated group showed higher plasma ACTH and cortisol levels
than the placebo-treated group. Of great interest, the alcohol-
craving levels in both groups were negatively correlated with
the plasma cortisol levels. As the first human laboratory
study, the results clearly demonstrated thatmodest activation
of the HPA axis by NTN contributed to either the suppression
of alcohol craving or the reduction in alcohol drinking

(O’Malley et al., 2002). Other studies in humans support for
this finding (e.g., Schuckit, 1994).
The potential role of endogenous ACTH and melanocortins

in the brain (encoded by the Pomc gene) in the regulation of
alcohol-related behavior is not clear. Recent pharmacologic
studies have demonstrated that specific melanocortin 4 re-
ceptor (MC4) agonists significantly decrease alcohol binge-like
drinking in a DID model as well as reduce appetitive and
consumption behaviors (Olney et al., 2014; Sprow et al., 2016).
In contrast, another study found that MC4 receptor antago-
nists in the ventral tegmental area reduced alcohol self-
administration in rats (Shelkar et al., 2015), suggesting that
endogenous melanocortins and MC4 activation mediate the
alcohol-reinforcing effect.
Endocannabinoid System. The endocannabinoid (eCB)

system contains endogenous cannabinoids (including ananda-
mide [AEA] and 2-arachidonoyl glycerol) and cannabinoid
receptors (CB1 and CB2). In rodents, pharmacologic studies
have demonstrated that specific blockade of CB1 receptors
decreases alcohol drinking, blocks the motivation to consume
alcohol, and reduces alcohol seeking, suggesting that the
eCB/CB1 system is important inmediating the positive reinforc-
ing properties and consumption of alcohol (Arnone et al., 1997;
Colombo et al., 1998; Gallate and McGregor, 1999; McGregor
et al., 2005). Furthermore, CB1 knockout mice show reduced
alcohol drinking or preference and alcohol reward (Hungund
et al., 2003;Wang et al., 2003;Naassila et al., 2004;Houchi et al.,
2005). Therefore, during early stages of alcohol drinking, in-
creased eCB/CB1 activitymay promote alcohol reward and then
enhance alcohol intake (Manzanares et al., 1999).
After chronic alcohol exposure and protracted withdrawal,

however, there may be an eCB/CB1 signaling deficiency,
which could also increase alcohol intake via the negative
reinforcement mechanism. This idea is supported by several
findings. 1) In rats, down-regulation of CB1 expression and
function was observed during protracted alcohol withdrawal
(Mitrirattanakul et al., 2007; Varodayan et al., 2016). 2) In
human imaging studies, decreased CB1 availability was
observed in heavy-drinking alcoholics, which persisted into
abstinence (Hirvonen et al., 2013; Ceccarini et al., 2014). 3) In
alcohol-dependent human patients, a lowered plasma AEA
level was found during recent abstinence (Mangieri et al.,
2009).
AEA-dependent signaling is regulated by an enzyme in-

volved in AEA catabolism: fatty acid amide hydrolase (FAAH)
(Cravatt et al., 1996, 2001). Numerous studies have demon-
strated that AEA is involved in the behavioral effects of
alcohol. FAAH knockout mice show a resultant increase in
AEA levels (Cravatt et al., 2001) and increased alcohol
consumption and preference (Basavarajappa et al., 2006;
Blednov et al., 2007) (Table 3). In human genetic studies,
increased alcohol abuse and dependency are associated with
the FAAH C385A polymorphism (increased eCB activity due
to impaired FAAH function) (e.g., Sipe et al., 2002; Sloan et al.,
2018) (Table 3). Consistently, we found increased alcohol
consumption in knock-in mice with human FAAH C385A
(Zhou et al., 2016), with reduced anxiety-like behavior
(Dincheva et al., 2015).
Increased stress responsivity and persistent negative affec-

tive symptoms, such as anxiety and depression, are observed
during alcohol withdrawal, and the severitymay be associated
with alcohol-relapse susceptibility (Koob and Kreek, 2007;
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Koob and Volkow 2010). The eCBs have considerable modu-
latory effects on the extended amygdala and corticostriatal
circuitries, and stress disrupts these eCB-enriched regions
that are involved in emotional control (Serrano et al., 2012;
Dincheva et al., 2015; Morena et al., 2016). Pharmacologic and
genetic manipulations (knockout or knock-in) of FAAH are
found to alter anxiety-like and depression-like behaviors
(Kathuria et al., 2003; Bortolato et al., 2007; Moreira et al.,
2008; Gunduz-Cinar et al., 2013; Carnevali et al., 2015).
Therefore, increased anxiety and depression are associated
with the relatively deficient eCB function. Thus, impaired eCB
activity may contribute to the negative affective states and
increased stress responsivity that underlie the negative re-
inforcement mechanisms driving alcohol drinking by depen-
dent individuals, which may also contribute to alcohol relapse
after abstinence (Parsons and Hurd, 2015).
Though FAAH inhibition had been found to decrease the

anxiety-like behaviors that are present during alcohol with-
drawal (Cippitelli et al., 2008), no studies had tested the effect
of FAAH inhibitors on alcohol drinking during withdrawal.
We hypothesized that FAAH inhibition would enhance eCB
signaling and then reduce the negative effect of alcohol
withdrawal, which might reduce excessive and relapse drink-
ing. To explore its potential for its therapeutic agent for
alcoholism, we have investigated whether URB597 ([3-(3-
carbamoylphenyl)phenyl]N-cyclohexylcarbamate), a selective
FAAH inhibitor, alters alcohol drinking in mice during acute
or chronic withdrawal from 3-week chronic IA excessive
alcohol drinking (Zhou et al., 2017d). We also have investi-
gated the pharmacologic effects of URB597 as a clinical FAAH
inhibitor on the ADE. Mice were allowed to access to alcohol
after 1 week of abstinence; after acute withdrawal from
chronic IA, pretreatment withURB597 reduced alcohol intake
and preference in both male and female mice. This effect was
mediated through CB1 receptors. Of interest, the ADE can be
preventedwith an effective dose of URB597 via either a single-
or multiple-dosing regimen, with no tolerance after 1 week of
the multidosing regimen. At the most effective dose for

reducing alcohol intake, URB597 had no effect on sucrose or
saccharin preference in alcohol-naïve mice but increased the
sucrose preference in mice after alcohol withdrawal (Zhou
et al., 2017d).
In previous work, URB597 was found to increase the

sucrose preference in stress-exposed animals, probably due to
its “antidepression” properties (Bortolato et al., 2007;
Rademacher and Hillard, 2007). Consistent with studies on
cocaine, nicotine, and opioid seeking behavior (Panlilio et al.,
2013; Sloan et al., 2017), our findings showed initial, promis-
ing data indicating that FAAH inhibitors decreases alcohol
excessive drinking and relapse drinking in both male and
female mice. Consistently, a new report has demonstrated
that the CeA of alcohol-preferring rats is involved in the
URB597 effect on reducing alcohol drinking (Stopponi et al.,
2018) (Table 3).
Together, these results clearly suggest that the inhibition of

FAAH plays a critical role in regulating alcohol drinking and
related behaviors. Therefore, FAAH inhibitors with improved
pharmacokinetics (long-lasting in vivo bioactivity, such as
URB597) (Fegley et al., 2005; Basavarajappa et al., 2014) and
with no rewarding effect (Gobbi et al., 2005) have the potential
to become useful compounds for treating alcoholism (Zhou
et al., 2017d; Stopponi et al., 2018).
k Opioid Receptor and Dynorphin System. Activation

of the k-opioid receptor (KOP-r)/dynorphin system is involved
in aversive, dysphoria-like, and depression-like behaviors. For
example, in dynorphin knockout mice, the aversive behaviors
triggered by repeated forced swim or foot-shock stress are
blocked byKOP-r antagonists or are absent (Land et al., 2008).
Further study using an optogenetic approach has demon-
strated that dynorphin/KOP-r in the NAc shell plays a
functional role in aversive behaviors (Al-Hasani et al., 2015).
The dysphoric properties of chronic stress are encoded by

dynorphin acting on KOP-r in specific stress-related brain
regions, as dynorphin-dependent KOP-r activation by stress is
found in these brain regions (including the basolateral
amygdala, NAc, dorsal raphe, and hippocampus). Together,

TABLE 3
Effects of genetic mutation or deletion of FAAH gene and of FAAH inhibitors on alcohol-related behaviors

Subjects Sex Model Effect Reference

FAAH KO Male,
female

2-Bottle choice (24 h, 12%–20%) Increase (intake and preference),
with sex difference

Basavarajappa
et al. (2006)

FAAH KO Male,
female

[1] 2-Bottle choice (24 h, 3%–15%); [1] Increase (intake and preference,
with sex difference;

Blednov et al.
(2007)

[2] CPP [2] No effect
FAAH KO mice Male,

female
2-Bottle choice (24 h, 3%–12%) Increase (intake and preference by

systemic (i.p.) URB597,
with sex difference

Blednov et al.
(2007)

C57Bl/6J mice Male,
female

[1] 1-Bottle (4 h, 15%) in DID for 3 wk; Decrease (intake and preference) by
systemic (i.p.) URB597 in IA and ADE
(but not DID) models, with no sex
difference

Zhou et al.
(2017d)

[2] 2-Bottle choice (24 h, every other day,
7.5%–30%) in IA;

[3] ADE
Marchigian Sardinian

alcohol-preferring rats
Male Operant self-administration (10%, 30 min) Decrease (intake) by intracentral and

basolateral amygdala URB597
Stopponi et al.

(2018)
FAAH C385A Knock-in mice Male 1-Bottle (4 h, 15%) in DID for 4 days and

2-bottle choice (4 h, 15% vs. water) on day 5
Increase (intake and preference) Zhou et al.

(2016)
Human FAAH C385A SNP Male,

female
2119 Patients Association with street drug use and

problem drug/alcohol use
Sipe

et al. (2002)
Human FAAH C385A SNP Male,

female
1434 European Americans with AD
diagnosis

Association with probability
and severity of alcohol dependence

Sloan et al.
(2018)

AD, alcohol dependence; KO, knockout; SNP, single-nucleotide polymorphisms; URB597, FAAH inhibitor.
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the dynorphin/KOP-r system is a key mediator of stress-
induced aversion, dysphoria, and anxiety- and depression-like
behaviors (Butelman et al., 2012; Lalanne et al., 2014).
Like stressors, KOP-r agonists stimulateHPA activity in rats,

and the selective KOP-r antagonist nor-binaltorphimine (nor-
BNI) blocks the stimulatory effects of KOP-r agonists on the
HPA axis (e.g., Laorden and Milanes, 2000; Pascoe et al., 2008).
Consistent with the early evidence that KOP-r/dynorphin
regulates the HPA axis, our studies confirmed that blockade of
KOP-r with nor-BNI prevents the ACTH and corticosterone
increases that are induced by acute stress (Allen et al., 2013;
Zhou et al., 2013c). In humans, KOP-r agonists or partial
agonists increase plasma ACTH and cortisol levels (Ur et al.,
1997; Schluger et al., 1998), and the short-acting KOP-r antag-
onist LY2456302 (4-[4-[[(2S)-2-(3,5-dimethylphenyl)pyrrolidin-1-
yl]methyl]phenoxy]-3-fluorobenzamide) does not cause aversive
effects or HPA activity (Reed et al., 2018).
KOP-r/dynorphin activation is associated with the negative

reinforcement aspects of alcohol addictions. It has been found
that selective blockade of KOP-r attenuates excessive drink-
ing and stress- or cue-induced alcohol-seeking inmice and rats
(Walker and Koob, 2008; Sperling et al., 2010; Deehan et al.,
2012; Schank et al., 2012; Funk et al., 2014; Rorick-Kehn et al.,
2014; Anderson et al., 2016; Zhou et al., 2017a; but also see
Mitchell et al., 2005; Sirohi et al., 2016). In line with these
pharmacologic results, alcohol drinking is decreased in KOP-r
knockout mice (Kovacs et al., 2005). These findings provide
support for the critical involvement of the KOP-r/dynorphin
system in the process of alcohol addiction, though the
literature is not consistent (Table 4).
There are sex differences in dynorphin/KOP-r systems

(Chartoff andMavrikaki, 2015) and alcohol-drinking behavior
(Becker and Koob, 2016). Indeed, we have observed a re-
duction of alcohol drinking with the selective KOP-r antago-
nist nor-BNI (slow onset and extraordinarily long-lasting
effect; Horan et al., 1992) in male mice while the same nor-
BNI treatment has had no effect on alcohol drinking in female
mice (Zhou et al., 2017a).

Microdialysis studies have demonstrated that acute alcohol
increases the extracellular levels of dynorphin A1-8 in the CeA
and NAc, two brain regions known to play important roles in
the regulation of alcohol consumption (Marinelli et al., 2006;
Lam and Gianoulakis, 2011). Dynorphin mRNA levels in the
CeA are increased in rats after acute alcohol withdrawal from
multiple binge administrations of alcohol (D’Addario et al.,
2013). The CeA is one of critical brain regions mediating
depression-like and anxiety-like behaviors (Shippenberg
et al., 2007; Knoll and Carlezon, 2010), and it is a possible
site for the potential interaction of alcohol and the KOP-
r/dynorphin. In fact, in sP rats after a large amount of alcohol
drinking, an increase in dynorphin mRNA levels is found in
the CeA. Therefore, the KOP-r/dynorphin involved in neuro-
nal structures related to stress responsivity (e.g., CeA) is
activated after high levels of alcohol consumption in sP rats
(Zhou et al., 2013a).
Chronic intermittent alcohol vapor exposure in alcohol-

dependent Wistar rats has further confirmed that there are
increases in dynorphin peptide levels and KOP-r signaling in
the CeA (Kissler et al., 2014). This enhancedKOP-r/dynorphin
activity in the CeA may present a homeostatic adaptation of
the CNS after chronic alcohol consumption or in the negative
affective state during alcohol withdrawal. Further work has
found that KOP-r activation inhibits both GABAergic synaptic
responses and alcohol effects in the CeA (and BNST), and
regulates GABA release (Li et al., 2012; Kang-Park et al.,
2013). In the NAc shell, KOP-r blockade also reduces alcohol
self-administration in alcohol-dependent rats (Nealey et al.,
2011).
On the basis of these data, increased levels of KOP-

r/dynorphin in the CeA and NAc have been confirmed as
playing a functional role in the regulation of the negative
affective state and/or reward after alcohol exposure or with-
drawal (Shippenberg et al., 2007; Wee and Koob, 2010).
Early work found that “classic” KOP-r agonists attenuated

alcohol drinking and alcohol CPP (Lindholm et al., 2001;
Logrip et al., 2009), but they also produced sedation and

TABLE 4
Effects of KOP-r agonists or antagonists on alcohol-drinking behaviors

Subjects Sex Model Effect Reference

Wistar rats Male 4-Bottle choice (24 h, 5%–20%) Increase (intake and preference) by systemic
(minipump) enadoline; no change by systemic (i.p.)
nor-BNI

Holter et al.
(2000)

Lewis rats Male 2-Bottle choice (2 h, 10%) Decrease (intake) by systemic (i.p.) U50,488 Lindholm
et al.
(2001)

Lewis rats Male 2-Bottle choice (24 h, 10%) Increase (intake) by systemic (s.c.) nor-BNI Mitchell et al.
(2005)

C57Bl/6J
mice

Male 2-Bottle choice (24 h, 3%–10%) Increase (intake) by systemic (i.p.) U50,488;
decrease (intake) by systemic (i.p.) nor-BNI in
stressed mice

Sperling et al.
(2010)

C57Bl/6J
mice

Male 2-Bottle choice (2 h, 10%–15%) Increase (intake and preference) by systemic (i.p.)
U50,488

Rose et al.
(2016)

C57Bl/6J
mice

Male 1-Bottle (1 h, 15%) Increase (intake) by systemic (i.p.) U50,488;
decrease (intake) by systemic (i.p.) LY2444296 in
stressed mice

Anderson
et al.
(2016)

C57Bl/6J
mice

Male,
female

[1] 1-Bottle (4 h, 15%) in DID for 3 wk; Decrease (intake and preference) by systemic (i.p.)
MSB in IA (but not DID) model, with no sex
difference

Zhou et al.
(2017a)

[2] 2-Bottle choice (24 h, every other day, 7.5%–

30%) in IA
Decrease (intake) by systemic (i.p.) nor-BNI in IA

model, with sex difference

Enadoline, k agonist; LY2444296, k antagonist; MSB, k agonist; nor-BNI, KOP-r antagonist; U50,488, KOP-r agonist [(trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-
cyclohexyl]benzeneacetamide].
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dysphoria—side effects that limited their potential for clinical
use (e.g., Morani et al., 2009). The development of new KOP-r
agonists with reduced side effects may produce useful com-
pounds for the treatment of alcoholism. Rapidly growing re-
search has focused on identifying functionally selective (biased)
KOP-r full agonists or partial agonists for the development of
antiaddictive compounds (Maillet et al., 2015; Simonson et al.,
2015; White et al., 2015; Brust et al., 2016; Schattauer et al.,
2017; Townsend et al., 2017; Zhou et al., 2017a).
For a good example, Mesyl Salvinorin B (MSB), an analog of

salvinorin A, is a potent KOP-r full agonist with fewer side
effects (sedation and dysphoria) compared with other classic
KOP-r agonists (Simonson et al., 2015; Zhou et al., 2017a). We
have further examined the pharmacologic effects of MSB on
excessive or relapse drinking inmice to determine its potential
for development as an antirelapse compound for alcoholism.
Acute administration of MSB significantly reduced both
excessive drinking in an IA model and relapse drinking in a
mouse ADE model in a dose-dependent manner (Zhou et al.,
2017a; 2018b). Nalfurafine, a clinically available G-biased
KOP-r agonist (Schattauer et al., 2017), also decreases
excessive alcohol drinking with few side effects in mice
(Zhou and Kreek, 2018). These promising in vivo results
indicate that biased KOP-r full agonists may offer novel
approaches to treat alcoholism without the traditional dys-
phoric properties of classic KOP-r agonists.
Many studies have demonstrated that classic KOP-r ago-

nists increase alcohol drinking (Rose et al., 2016) and induce
alcohol-seeking behavior in a reinstatement model (Funk
et al., 2014) and relapse drinking in a ADE model (Hölter
et al., 2000; see an update review by Anderson and Becker,
2017). Therefore, our new data that the KOP-r full agonist
MSB reduces, rather than triggers, relapse-like drinking
present an opposite scenario. After chronic excessive alcohol
consumption, the endogenous dynorphin (a G-protein- and
b-arrestin-dependent agonist;Maillet et al., 2015;White et al.,
2015) and KOP-r systems are activated in several neuronal
structures. Either the increased release of dynorphin
(Marinelli et al., 2006) or the enhanced KOP-r activity (Rose
et al., 2016) produces sedation, dysphoria, and anxiety- and
depression-like behaviors that may drive excessive and re-
lapse drinking (Tunstall et al., 2017). In support of this
concept, the dynorphin levels and KOP-r activity are found
to be increased in the rat CeA after chronic alcohol exposure
(D’Addario et al., 2013; Zhou et al., 2013a; Kissler et al., 2014).
Indeed, preclinical studies have demonstrated that the acti-
vation of p38 mitogen-activated protein kinase to stress-
mediated dynorphin/KOP-r stimulation is linked to the
b-arrestin-mediated transduction pathway (Bruchas et al.,
2007, 2010). Unlike dynorphin, however, MSB does not induce
sedation or anhedonia in rats or mice (Simonson et al., 2015;
Zhou et al., 2017a), and could act as a G-protein-dependent
(biased) agonist, which was suggested by our recent report
(Simonson et al., 2015). Nalfurafine, acting as a biased KOP-r
agonist, could possibly compete with excessive dynorphin to
bind the KOP-r, thereby reducing b-arrestin signaling. This
could be responsible, at least in part, for reducing excessive
alcohol intake, as nalfurafine reverses the dynorphin-
enhanced dysphoria and anxiety- or depression-like behavior
during alcohol withdrawal.
Together, these studies support the notion that biased

KOP-r agonists exhibit different molecular, cellular, and

behavioral properties than classic KOP-r agonists (Che
et al., 2018). Our study is in line with the growing research
into the development of biasedKOP-r ligands for antiaddictive
compounds (Maillet et al., 2015;White et al., 2015; Brust et al.,
2016; Townsend et al., 2017).

Conclusion and Future Directions
As presented in this mini-review, substantial progress has

been made in our understanding how alcohol exposure
disrupts the CNS stress-responsive systems to modulate
alcohol taking and seeking behaviors in several selective
animal models. It has been well known that theMOP-r/POMC
and KOP-r/dynorphin endogenous opioid systems play critical
roles in alcohol addiction, and specific alterations of their
expression levels or receptor activity may affect stress respon-
sivity and contribute to vulnerability to developing alcohol
dependency or relapse. Other stress-responsive systems dis-
cussed here (including the V1b receptor with AVP, and FAAH
with eCBs) are also potentially involved in alcohol addiction,
as new evidence has emerged in recent studies.
Combinationmedications targetingmultiple neurotransmit-

ter pathways may show increased efficacy over the traditional
single-medication strategy. As discussed previously, pharma-
cologic and neurobiologic studies have provided strong sup-
portive findings; many stress-responsive systems, including
CRF, neuropeptide Y, and glucocorticoid receptor, are pro-
foundly disrupted after chronic alcohol exposure. Further
studies on combination medications are needed to develop
more effective new pharmacotherapies for treating alcoholism.
Although NTN is more effective in individuals with alco-

holism who have MOP-r variant A118G (Bond et al., 1998;
Bart et al., 2004; Kreek and LaForge, 2007; Anton et al., 2008),
the single-target pharmacotherapy has relatively modest
therapeutic value, which suggests the need for better efficacy
(Müller et al., 2014). By targeting multiple neurotransmitters
implicated in different components of alcohol addiction,
combination medications are expected to have greater efficacy
than single-medication therapy (Karoly et al., 2015; Zhou and
Leri, 2016). Combinations of NTNwith other compounds have
several precedent in rodent models, such as acamprosate
(Heyser et al., 2003) and prazosin (Froehlich et al., 2013).
Consistently, our recent studies in mouse alcohol-escalation

drinkingmodels have suggested that the combination ofKOP-r
agonist MSB, V1b antagonist SSR149415, or bupropion with
NTNmay bemore efficacious in treating alcoholism than NTN
alone (Zhou et al., 2017a, 2018a). 1) The effect of combined, low-
dose administration of MSB/NTN, SSR149415/NTN, or bupro-
pion/NTN on alcohol drinking is greater than that of either
drug alone. 2) The combinations show persistent effects after
repeated administration. In support of this idea, the effective
medication nalmefene is a MOP-r antagonist plus a KOP-r
partial agonist (Bart et al, 2005), targeting both MOP-r and
KOP-r pathways and possibly synergistically reducing alcohol
consumption.
Indeed, most drugs tested for alcoholism treatment—

topiramate, varenicline, and gabapentin—target multiple
systems (Karoly et al., 2015). Multiple targeting may have
great advantages for treating alcoholism as a multigenic
disease. Therefore, we propose that the combination drugs
may prove more effective than drugs that are highly selective
for a single target.
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