Discovery of Novel Small-Molecule Inducers of Heme Oxygenase-1 That Protect Human iPSC-Derived Cardiomyocytes from Oxidative Stress

Sanford Burnham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
Received July 4, 2017; accepted October 31, 2017

ABSTRACT

Oxidative injury to cardiomyocytes plays a critical role in cardiac pathogenesis following myocardial infarction. Transplantation of stem cell-derived cardiomyocytes has recently progressed as a novel treatment to repair damaged cardiac tissue but its efficacy has been limited by poor survival of transplanted cells owing to oxidative stress in the post-transplantation environment. Identification of small molecules that activate cardioprotective pathways to prevent oxidative damage and increase survival of stem cells post-transplantation is therefore of great interest for improving the efficacy of stem cell therapies. This report describes a chemical biology phenotypic screening approach to identify and validate small molecules that protect human-induced pluripotent stem cell cardiomyocytes (hiPSC-CMs) from oxidative stress. A luminescence-based high-throughput assay for cell viability was used to screen a diverse collection of 48,640 small molecules for protection of hiPSC-CMs from peroxide-induced cell death. Cardioprotective activity of “hit” compounds was confirmed using impedance-based detection of cardiomyocyte monolayer integrity and contractile function. Structure-activity relationship studies led to the identification of a potent class of compounds with 4-(pyridine-2-yl)thiazole scaffold. Examination of gene expression in hiPSC-CMs revealed that the hit compound, designated cardioprotectant 312 (CP-312), induces robust upregulation of heme oxygenase-1, a marker of the antioxidant response network under oxidative stress. CP-312 therefore represents a novel chemical scaffold identified by phenotypic high-throughput screening using hiPSC-CMs that activates the antioxidant defense response and may lead to improved pharmacological cardioprotective therapies.

Introduction

Ischemic heart disease is one of the leading causes of death worldwide, with healthcare costs associated with cardiovascular disease projected to reach 1 trillion US dollars by 2025 (Moran et al., 2014). In the United States alone, approximately 1 million myocardial infarctions (“heart attack”) occur per year, and roughly 40% of patients survive 1 year after suffering a heart attack.

Recent advances using stem cell-derived cardiomyocytes to repair the cardiac tissue injured during myocardial infarction have been encouraging. Transplantation of stem cell-derived cardiomyocytes have been reported to partially repair cardiac damage in rat, pig, and primate myocardial infarction models (Kawamura et al., 2012; Luo et al., 2014a,b; Higuchi et al., 2015; Wendel et al., 2015; Shiiba et al., 2016; Wang et al., 2016a). Therapeutic efficacy of this approach, however, has been limited by the fact that a majority of the exogenous cells delivered to the myocardium die in the first 24 hours owing to ischemic and oxidative stress in the transplant environment. The loss of these cells may further initiate immune and inflammatory responses in the injured heart. Thus, therapies that provide protection during cardiac oxidative stress post-transplantation are the focus of significant biomedical and clinical research.

Strategies to stimulate stem cell survival in the post-transplantation environment include cellular preconditioning by physical, genetic, and pharmacological manipulation (Laflamme et al., 2007; Fischer et al., 2009; Haider and Ashraf, 2010; Mohns et al., 2011). Ischemic conditioning, the application of one or more cycles of ischemia and reperfusion to the heart, is the most powerful method known for reducing cardiac damage following myocardial infarction (Hausenloy and Yellon, 2010; Mohsin et al., 2011). Ischemic conditioning, the application of one or more cycles of ischemia and reperfusion to the heart, is the most powerful method known for reducing cardiac damage following myocardial infarction (Hausenloy and Yellon, 2010; Mohsin et al., 2011). Ischemic conditioning, the application of one or more cycles of ischemia and reperfusion to the heart, is the most powerful method known for reducing cardiac damage following myocardial infarction (Hausenloy and Yellon, 2010; Mohsin et al., 2011). Ischemic conditioning, the application of one or more cycles of ischemia and reperfusion to the heart, is the most powerful method known for reducing cardiac damage following myocardial infarction (Hausenloy and Yellon, 2010; Mohsin et al., 2011). Ischemic conditioning, the application of one or more cycles of ischemia and reperfusion to the heart, is the most powerful method known for reducing cardiac damage following myocardial infarction (Hausenloy and Yellon, 2010; Mohsin et al., 2011). Ischemic conditioning, the application of one or more cycles of ischemia and reperfusion to the heart, is the most powerful method known for reducing cardiac damage following myocardial infarction (Hausenloy and Yellon, 2010; Mohsin et al., 2011). Ischemic conditioning, the application of one or more cycles of ischemia and reperfusion to the heart, is the most powerful method known for reducing cardiac damage following myocardial infarction (Hausenloy and Yellon, 2010; Mohsin et al., 2011). Ischemic conditioning, the application of one or more cycles of ischemia and reperfusion to the heart, is the most powerful method known for reducing cardiac damage following myocardial infarction (Hausenloy and Yellon, 2010; Mohsin et al., 2011). Ischemic conditioning, the application of one or more cycles of ischemia and reperfusion to the heart, is the most powerful method known for reducing cardiac damage following myocardial infarction (Hausenloy and Yellon, 2010; Mohsin et al., 2011). Ischemic conditioning, the application of one or more cycles of ischemia and reperfusion to the heart, is the most powerful method known for reducing cardiac damage following myocardial infarction (Hausenloy and Yellon, 2010; Mohsin et al., 2011). Ischemic conditioning, the application of one or more cycles of ischemia and reperfusion to the heart, is the most powerful method known for reducing cardiac damage following myocardial infarction (Hausenloy and Yellon, 2010; Mohsin et al., 2011). Ischemic conditioning, the application of one or more cycles of ischemia and reperfusion to the heart, is the most powerful method known for reducing cardiac damage following myocardial infarction (Hausenloy and Yellon, 2010; Mohsin et al., 2011). Ischemic conditioning, the application of one or more cycles of ischemia and reperfusion to the heart, is the most powerful method known for reducing cardiac damage following myocardial infarction (Hausenloy and Yellon, 2010; Mohsin et al., 2011). Ischemic conditioning, the application of one or more cycles of ischemia and reperfusion to the heart, is the most powerful method known for reducing cardiac damage following myocardial infarction (Hausenloy and Yellon, 2010; Mohsin et al., 2011). Ischemic conditioning, the application of one or more cycles of ischemia and reperfusion to the heart, is the most powerful method known for reducing cardiac damage following myocardial infarction (Hausenloy and Yellon, 2010; Mohsin et al., 2011). Ischemic conditioning, the application of one or more cycles of ischemia and reperfusion to the heart, is the most powerful method known for reducing cardiac damage following myocardial infarction (Hausenlo...
2016); however, translation to human clinical efficacy is lacking. Other approaches, including pretreatment of cardiac progenitor cells with a microRNA prosurvival cocktail (Hu et al., 2011) or genetic modulation of cells for overexpression of growth factors (Askari et al., 2003; Pasha et al., 2008; Haider and Ashraf, 2010) have shown improvement in donor cell survival, engraftment, differentiation, and cardiac function. A drawback of genetic modifications, however, is the risk of inducing oncological disease (Anisimov et al., 2010). Pharmacological preconditioning represents a novel strategy to protect cells under post-engraftment ischemic stress and may be devoid of long-term side effects (Afzal et al., 2010; Luo et al., 2014b).

Using a phenotypic chemical biology screening approach, we sought to identify a small-molecule agent able to block oxidative stress in cardiomyocytes. A small molecule that prevents, inhibits, or delays the death of cardiomyocytes by priming the cells before transplantation to increase the time window for cells to acclimate and engraft would provide better understanding of mechanisms of cardiomyocyte cell survival during oxidative stress and might lead to improved pharmaceutical approaches to cardiac cell therapy.

Human induced pluripotent stem cell cardiomyocytes (hiPSC-CMs) provide a new model for studying cardiac stem cell survival for drug discovery and safety pharmacology that can be extended to cell therapy approaches. Autologous transplantation of these cells is a particularly attractive approach to cardiac cell therapy, and development of small molecules that protect hiPSC-CMs from the acute oxidative stress exposure following transplantation will significantly improve the efficacy of this procedure. In addition, hiPSC-CMs are an ideal screening platform for the study of cardioprotective mechanisms because they are commercially available as cryopreserved products and provide a consistently pure cell population that exhibits normal cardiomyocyte physiology and expression of specific cardiac myocyte biomarkers (Khan et al., 2013; Mordwinkin et al., 2013; Peters et al., 2015).

We executed a high-throughput phenotypic screen of nearly 50,000 small molecules from the Sanford Burnham Prebys (SBP) compound collection using hiPSC-CMs targeting protection against hydrogen peroxide-induced cell death as quantified by ATP content to identify small-molecule protectors against cardiomyocyte oxidative stress. Exposure of hiPSC-CMs to hydrogen peroxide models the oxidative stress of the post-transplantation environment. Cardioprotective activity of screening “hits” was further confirmed using an impedance-based measurement of cell monolayer integrity and contractile function. Our chemical biology approach successfully identified a novel chemical scaffold with low micromolar potency that protected hiPSC-CMs from peroxide-induced cell death. Subsequent structural activity and target identification studies by quantitative reverse transcriptase–polymerase chain reaction (qRT-PCR) indicate that CP-312 and its analogs impart protection to hiPSC-CMs against peroxide-induced cell death by upregulation of the hypoxia-responsive gene heme-oxigenase-1 (HMOX1), a potent mediator of the antioxidant defense response.

Materials and Methods

Cell Preparation

Cryopreserved hiPSC-CMs (CMC-100-010-001) derived from a female donor were purchased from Cellular Dynamics International (CDI, Madison, WI). H9c2 and human hepatoma-derived 3b (Hep3b) cells were purchased from American Type Culture Collection (CRL-1446 and CRL-2695, respectively). Dulbecco’s modified Eagle’s medium (DMEM) (Mediatech, Manassas UT) was obtained from Thermo Fisher Scientific (Waltham, MA). Fetal bovine serum (FBS) was from HyClone (Logan, UT). L-Glutamine, penicillin/streptomycin solution, and Tryptsin were from Thermo Fisher Scientific/Invitrogen (Carlsbad, CA).

Human iPS-CMs were thawed and maintained in CellBind T-25 vented tissue culture flasks (Corning, Corning, NY) in proprietary plating media (CDI) at 37°C and 5% CO2 according to manufacturer’s instructions. Thawing media was replaced with maintenance media after 48 hours and was changed every 48 hours for a minimum of 7 days before harvesting. On the day of the assay, hiPSC-CMs were harvested with 0.5% trypsin, washed with phosphate-buffered saline (PBS), and suspended in assay media (DMEM without phenol red, 2% FBS, 10 mM galactose, pH 7.3) at 1.25 × 10^6 cells/ml.

Cellular Screening Assays

Control compounds (±)-chloro-APB hydrobromide, SKF 83959 hydrobromides, R(-)-Propynorapomorphine hydrochloride, and ciclopirox were purchased (Sigma-Aldrich, St. Louis, MO). Twenty nanoliters of test compounds in dimethyl sulfoxide (DMSO) (0.5% final concentration) were transferred to 1536-well plate assay plates (Aurora Biotechnologies, Carlsbad, CA) using acoustic dispensing by an Echo 555 (Labcyte, San Jose, CA). Cells were suspended in assay media containing 1 mM sodium pyruvate for high-throughput screening (HTS) assays to maintain cell viability prior to peroxide treatment. Assay media without pyruvate was used for all other cell viability assays. Cells were added to compound plates in 4 µL of suspension volume using a BioRAPTR dispenser (Beckman Coulter, Pasadena, CA) at a density of 500 cells/ well. Plates were spun at 500 rpm and incubated with Kalgapsys metal lids (Waco Automation, San Diego, CA) at 37°C and 5% CO2 incubator for 2 hours. Following preincubation, cells were treated with 1 µL of 5× hydrogen peroxide (Sigma-Aldrich) diluted fresh in assay media without sodium pyruvate and incubated for an additional 30 minutes at 37°C and 5% CO2. Assay plates were equilibrated to room temperature for 10 minutes followed by addition of 3 µL of ATPfluo 1step luminescence assay system (Perkin Elmer, Waltham, MA). Plates were spun at 2000 rpm. After an additional 10 minutes at room temperature in the dark, plates were read for luminescent signal on an EnVision microplate reader (Perkin Elmer). Results were normalized to positive controls treated with 0.5% DMSO only and negative controls treated with DMSO and peroxide concentration resulting in 80–90% cell death (300 µM for HTS assay with pyruvate; 60 µM without pyruvate).

The effect of compounds on H9c2 cell viability in the presence of peroxide was screened under the same conditions as hiPSC-CMs with the exception of assay media without pyruvate contained 4.5 g/l of glucose instead of galactose. Amplex Red hydrogen peroxide assay kit was purchased from Thermo Fisher Scientific and the assay was performed according to manufacturer’s instructions. Thirty micromolar H2O2 prepared in assay media without pyruvate was determined to be in the linear range of detection. Test compounds were incubated for 30 minutes with 30 µM H2O2 in assay media followed by peroxide detection. Glutathione was titrated as a standard control for reactive oxygen species scavenger activity and exhibited expected activity for elimination of H2O2 (EC50 = 0.13 mM).

Cellular Impedance

hiPSC-CMs were thawed in plating media (CDI) and 2 × 10^4 cells/well plated directly onto 96-well E-Plate Cardio (ACEA Biosciences, San Diego, CA) precoated with 0.01 mg/ml fibronectin in PBS for 3 hours at 37°C. Cells were cultured for 14 days at 37°C, 5% CO2, and maintenance media (CDI) was changed every 2 days after plating and 24 hours prior to dosing using a VIAFLO 96-channel pipettor (INTEGRA Biosciences, Hudson, NH) placed in
the tissue culture hood. Viability and contractility of cardiomyocytes were monitored by impedance using the xCELLigence RTCA (real-time cell analyzer) cardiac system (ACEA Biosciences). Impedance was measured for 60-second sweeps (recorded at a sampling rate of 12.9 milliseconds) at selected time points and reported as cell index (CI). Prior to compound treatment, a baseline was recorded to ensure the cells established a regular beat rate of 40–60 beats/min. Test compounds were prepared at 10 mM stock concentration and serially diluted in 100% DMSO for concentration response, then further diluted in assay media in a separate 96-well plate at 6× target concentration. Compound plates were equilibrated to 37°C prior to dilution to 1/6 in the E-plate using the VIAFLO 96-channel pipettor to give a final medium volume of 150 μl/well in 0.1% DMSO. After preincubation with compounds for indicated time, hydrogen peroxide was prepared at 7× target concentration in assay media and 25 μl/well was added using the VIAFLO 96-channel pipettor. Cell indexes were normalized to the time point just prior to treatment with compounds and/or peroxide using the ACEA xCELLigence cardiac software platform. Contractile impedance traces were obtained by a high-speed scan for 1 minute at 12.9-millisecond intervals. EC50 values for concentration-response curves were calculated from two separate experiments performed in triplicate by nonlinear regression analysis (four parameters) and least squares fit using GraphPad Prism version 7.0 for Windows (GraphPad, La Jolla, CA).

Hypoxia-Inducible Factor Reporter Assays

Hypoxia-inducible factor (HIF) transcriptional response was examined in HIF1-specific MIA PaCa-2 and HIF2-specific human pancreatic carcinoma, epithelial-like cell line 1 (PANC-1) luciferase reporter cell lines as previously described (PubChem AID 651581; https://pubchem.ncbi.nlm.nih.gov/assay651581#section=Top). Briefly, cells were grown overnight in 1536-well white plates, treated with test compounds for 24 hours, and luciferase activity was measured using One-Glo reagent (Perkin Elmer). Test compounds were compared with known HIF inducers, FG-4592 (Roxadustat, Selleck Chemicals, Houston, TX) and BAY 85-3934 (BioVision, Milpitas, CA).

Iron Chelation

Chelation of Fe2+ was measured in solution by fluorescence assay using calcein (Esposito et al., 2002). Test compounds were mixed in 384-well black nonbinding plates (Greiner, Kremünster, Austria) with 10 μl of 1.2 μM ammonium iron (II) sulfate (Sigma-Aldrich) prepared fresh in deionized water and incubated for 10 minutes at room temperature. 0.6 μM calcein (Sigma-Aldrich) was prepared in 40 mM HEPES; 150 mM NaCl. Ten microliters was added to each well format on a Roche LightCycler 480 II using Taqman Gene Expression Master Mix (Applied Biosystems). Target gene expression was normalized to HPRT1 and relative expression was calculated using the 2^(-ΔΔCt) method (Livak and Schmittgen, 2001). P values were determined by two-tailed Student's t test.

Iron Chelation

Chelation of Fe2+ was measured in solution by fluorescence assay using calcein (Esposito et al., 2002). Test compounds were mixed in 384-well black nonbinding plates (Greiner, Kremünster, Austria) with 10 μl of 1.2 μM ammonium iron (II) sulfate (Sigma-Aldrich) prepared fresh in deionized water and incubated for 10 minutes at room temperature. 0.6 μM calcein (Sigma-Aldrich) was prepared in 40 mM HEPES; 150 mM NaCl. Ten microliters was added to each well and incubated for 30 min at room temperature in the dark. Fluorescence was measured (ex = 485 nm; em = 535 nm) on an EnVision microplate reader (Perkin Elmer). Test compounds were compared with known HIF inducers, FG-4592 (Roxadustat, Selleck Chemicals, Houston, TX) and BAY 85-3934 (BioVision, Milpitas, CA).

qRT-PCR

Erythropoietin (EPO) expression was measured in Hep3b cells grown to confluence in 96-well plates and treated with test compounds for 5 hours. Expression of HMOX1, pyruvate dehydrogenase kinase 1 (PDK1), hexokinase 2 (HK2), and NAD(P) H quinone dehydrogenase (NQO1) was assessed in hiPSC-CMs grown for 7–10 days in fibronectin-coated 96-well plates and treated with test compounds for 3–24 hours. Prior to compound treatment, media was changed to DMEM containing 2% FBS; 10 mM galactose and cells were equilibrated for 1 hour. Cells were then treated with compounds or DMSO vehicle, incubated for indicated duration, washed twice with PBS, and RNA was isolated using RNaseasy Mini Kit (Qiagen, Germantown, MD). Bardoxolone methyl (CDDO-Me) and cobalt protoporphyrin (CoPp) were obtained from Sigma-Aldrich. RNA was quantitated using a NanoDrop spectrophotometer (Thermo Fisher Scientific) and cDNA was produced using Qiagen’s reverse transcriptase kit. Taqman primer-probe sets for human HPRTI1 (HS_028006955), PDK1 (HS_00176853), HK2 (HS_00606086), HMOX1 (HS_0110250), NQO1 (HS_01045993), and EPO (HS_01071097) were from Applied Biosystems (Foster City, CA). PCR reactions were performed in 384-well format on a Roche LightCycler 480 II using Taqman Gene Expression Master Mix (Applied Biosystems). Target gene expression was normalized to HPRT1 and relative expression was calculated using the 2^(-ΔΔCt) method (Livak and Schmittgen, 2001). P values were determined by two-tailed Student's t test.

Medical Chemistry

CP-312 and its analogs were typically prepared via a four-step synthetic protocol as outlined below. All building blocks, reagents, and necessary solvents were purchased from Sigma-Aldrich. Nuclear magnetic resonance characterization data were recorded on a Bruker BioSpin instrument operating at 500-MHz proton frequency.

General Procedure. CP-312 was prepared starting from 1-(pyridin-2-yl)ethan-1-one. Bromination at the methyl group was performed at 65°C for 1 hour via treatment with bromine in concentrated hydrobromic acid. The reaction was quenched with ice, and the product, an α-bromo ketone, was isolated via lyophilization and used “as is” for the next step. The α-bromo ketone was dissolved in ethanol and treated with thiourea at room temperature. After 1 hour of reaction time the solvent was evaporated and the resulting mass was dissolved in water, washed with dichloromethane, and basified to form the final product, 4-(pyridin-2-yl)thiazol-2-amine, as a precipitate (58% yield over two steps). Treatment of thus prepared amine in dimethylformamide (DMF) and pyridine with chloroacetyl chloride at 0°C produced the last intermediate in 63% yield. Substitution of the chloride with the corresponding 4-chlorothiophenol was achieved in DMF in the presence of sodium hydride. The final product, CP-312, was purified via high-performance liquid chromatography and isolated in 45% yield (16% overall). 1H NMR (500 MHz, chloroform-d), δ: 10.31 (br s, 1H), 8.66 (s, 1H), 7.97 (d, J = 8.0 Hz, 1H), 7.89 (t, J = 7.7 Hz, 1H), 7.80 (s, 1H), 7.38–7.27 (m, 5H), 3.86 (s, 2H).

Liquid chromatography–mass spectrometry (LC-MS) analysis was completed on a Waters AutoPurification System, which consists of a 2767 sample manager, a 2545 binary gradient module, a system fluids optimizer, a 2489 UV/vis detector, and a 3100 mass detector, all controlled with MassLynx software (Waters). A Sunfire Analytical C18 5-μm column (4.6 × 50 mm) and stepwise gradient (10% [MeCN + 0.1% TFA] in water to 98% [MeCN + 0.1% TFA] in water) was used for analytical LC-MS of test samples. Any effect of H2O2 on the structural integrity and oxidation of CP-312 following exposure to a 100-fold excess of peroxide in the relevant cell culture medium was also evaluated. No chemical change in the structure of the compound after 40 minutes of incubation was observed.

Results

As a model of oxidative stress, hiPSC-CMs were exposed to hydrogen peroxide (H2O2) at a concentration that decreased cell viability by 80–90% in 30 minutes and compounds were then tested for their ability to protect cells from cell death under acute conditions as measured by the amount of remaining ATP present in cells pretreated with compound compared with untreated cells. Human iPSC-CMs were grown in media containing sodium pyruvate and galactose. Although pyruvate is a scavenger of peroxide, cells were maintained in media containing 1 mM sodium pyruvate for HTS to provide robust and stable cell viability readouts over several hours in the absence of peroxide. Secondary cell viability assays were performed in the absence of pyruvate. In this case, the
The concentration of peroxide was reduced from 300 to 60 μM peroxide to maintain an equivalent decrease in cell viability as determined by titration with peroxide in the presence or absence of pyruvate, respectively. The concentration-response curve for H₂O₂-induced cell death in the presence of 1 mM pyruvate is shown in Fig. 1A.

A pilot screen of the Library of Pharmacologically Active Compounds (LOPAC) collection and US Food and Drug Administration (FDA) Drug Collection identified three dopamine receptor agonists including (±)-chloro-APB hydrobromide, SKF 83959 hydrobromide, and R-(−)-propynorapomorphine hydrochloride, as well as ciclopirox, an antifungal agent, as protective with EC₅₀ values of 9.8, 5.7, 6.6, and 6.3 μM, respectively. These pharmaceutical agents are documented in the literature as cardioprotective and nonscavengers of H₂O₂ (Choi et al., 2002; Lee et al., 2005; Khaliulin et al., 2006; Gero et al., 2007). We screened an additional 48,640 small molecules from SBP’s internal collection in 1536-well format resulting in a Z′ for the screen of 0.63 ± 0.07 and a signal-to-background of 9.0 ± 3.5 when cells were exposed to 300 μM hydrogen peroxide compared with DMSO-treated cells (Fig. 1B). Employing ≥35% activity as cutoff criterion, we identified 220 hits (Fig. 1, C and D). These compounds were retested in triplicate under the same conditions as the HTS and 112 compounds were confirmed, representing a confirmation rate of 52%. The confirmation rate employing cutoff criterion of ≥50% was 74%; however, we chose a lower confirmation rate because even a 35% improvement in cardiomyocyte viability is significant.

We describe CP-312, representing a distinct chemical scaffold that emerged as a hit from our screen of the SBP internal library, which was confirmed in concentration-response (Fig. 2). To determine whether CP-312 acted as a direct scavenger of reactive oxygen species, we measured the amount of peroxide remaining in media containing the compound without cells using a colorimetric assay and determined that the compound had no effect on peroxide level at any concentration tested (Fig. 2B). CP-312 exhibited good potency in protecting hiPSC-CMs from acute peroxide-induced cell death in our 1536-well suspension assay using an ATP endpoint readout, with EC₅₀ = 6.7 μM (pEC₅₀ = −5.19 ± 0.05); protection was confirmed in the absence of pyruvate and presence of 60 μM peroxide with similar potency (EC₅₀ = 4.6 μM; pEC₅₀ = −5.3 ± 0.1) as compared in Fig. 2C. Cells cotreated with CP-312 and peroxide exhibited decreased potency (EC₅₀ > 10 μM) and efficacy (Eₘₐₓ < 50%) relative to cells pretreated with CP-312 prior to peroxide exposure (Fig. 2C), suggesting that the protection we observe by compound pretreatment is dependent on a cellular adaptive response. To determine the extent of protection provided by CP-312, we titrated peroxide in the presence and

![Fig. 1.](image-url) Compounds protective of peroxide-induced hiPSC-CMs cell death were identified by 1536-well HTS. (A) Cell viability of hiPSC-CMs determined by ATP content following 30-minute exposure to increasing concentrations of hydrogen peroxide. Data are mean ± S.D. (n = 3). (B) HTS assay conditions provided a robust response window between positive (0.5% DMSO) and negative controls (0.5% DMSO, 300 μM peroxide) displayed per screening test plate. (C) Cutoff criterion for HTS was set at ≥35% response (dashed line). (D) On the basis of the cutoff criterion, 220 “hits” were identified.
absence of the compound. Two-hour pretreatment of hiPSC-CMs with 10 μM CP-312 decreased the peroxide toxicity by an order of magnitude (Fig. 2D).

Cardioprotective activity of CP-312 in hiPSC-CMs was further confirmed using an adherent real-time label-free assay measured on the ACEA xCELLigence RTCA cardio system. Average impedance measurements reported as cell index provide real-time, continuous monitoring of cell viability and monolayer integrity. In addition, microscale measurement of impedance changes with a 12.9-millisecond resolution provide detailed monitoring of cell morphology, allowing examination of cardiomyocyte contraction and relaxation. We monitored the change in cell index and contractility for hiPSC-CMs after 14 days in culture followed by peroxide exposure in the presence and absence of CP-312. Decreased cell index, reflective of cell death, and disruption of the cardiomyocyte monolayer was observed over 1 hour following treatment with increasing concentrations of peroxide (Fig. 3A); whereas normalized cell index was maintained over time in cells pretreated with 10 μM CP-312 (Fig. 3B). Cells pretreated with varying CP-312 concentrations demonstrate a concentration response in the protection provided after 1-hour exposure to 40 μM peroxide, with EC50 = 1.6 μM (pEC50 = −5.79 ± 0.02) (Fig. 3C).

Contractile function was maintained following peroxide exposure in hiPSC-CMs pretreated with CP-312 (Fig. 3D). Human iPSC-CMs exhibit consistent synchronized beating as shown by impedance traces of vehicle-treated control cells. Following exposure to 40 μM peroxide, cardiomyocyte contractility ceased after 1 hour. Cells pretreated with CP-312, however, continued beating with no observed change in beat pattern at 1 hour, and contractile function was maintained for 24 hours after peroxide exposure, although beat amplitude was diminished (Fig. 3D).

The 4-(pyridin-2-yl)thiazole class of compounds (CP-312 and congeners) was advanced as a potent hiPSC-CM cardioprotective scaffold. More than 60 analogs of CP-312 were synthesized; a subset is presented in Table 1. Structure-activity relationship (SAR) analysis revealed the significance of the biaryl core and the connectivity between the pyridine and thiazole rings. The substituent R1 affected the protection of the scaffold, favoring the relatively electron-withdrawing groups, such as CF3 (entry 1) versus electron-donating groups (entry 6, OMe causes 5-fold decrease in activity).

The placement of R1 on the phenyl ring was also found to be important, with para position being the most favorable and ortho the least (data not shown). The heteroatom X in the linker X-Y was essential, perhaps because of its role in positioning the right-hand side of the molecule precisely in the binding pocket of the target. When NH and SO2 were introduced in place of S, the activity and Emax diminished substantially (entries 7 and 8, respectively). The substituent Y, however, influenced the activity to a lesser extent (entries 9 and 10), suggesting that this moiety could be explored.

Fig. 2. CP-312 provides dose-dependent protection of hiPSC-CM viability in the presence of peroxide. (A) Chemical structure of CP-312. (B) Peroxide concentration remaining in hiPSC assay media determined by colorimetric assay following incubation of 30 μM peroxide with CP-312 for 30 minutes. (C) Concentration response of protection provided by CP-312 against peroxide-induced cell death. Cells were either pretreated with compounds for 2 hours in assay media containing 1 mM pyruvate equivalent to HTS conditions followed by addition of 300 μM peroxide (open circles), pretreated in media without pyruvate, followed by addition of 60 μM peroxide (closed circles), or cotreated with CP-312 at the time of peroxide addition (closed squares). Cell viability was determined by ATPLite luminescence 30 minutes following peroxide exposure. (D) Cell viability of hiPSC-CMs following 2-hour pretreatment with 10 μM CP-312 or 0.1% DMSO in media without pyruvate and 30-minute exposure to varying concentrations of peroxide. Greater than 50% viability was maintained in hiPSC-CMs pretreated with SBI-312 at peroxide concentrations up to 240 μM. Data are mean ± S.D. (n = 3).
further and expanded in subsequent lead optimization efforts. An introduction of a substituent either on the thiazole (entries 11 and 12) or on the pyridine (entries 13 and 14) ring was expected to bring torsion in the thiazole-pyridine plane leading to a change in the overall conformation of the molecule and subsequent binding affinity. A small alkyl group on the thiazole (Me, entry 11) was well tolerated, whereas a bulkier isopropyl (entry 12) was not favorable. Likewise, methyl substituent on the pyridine (entry 13) did not yield substantial change in cardioprotective properties. However, the electron-withdrawing ester moiety caused full obliteration of activity.

Simultaneously with structure-activity studies, we investigated potential target pathways of CP-312 and other hit scaffolds. A backup scaffold in our screening hit set shared structural similarity to a 8-hydroxyquinoline class of compounds that are known iron chelators and have been previously reported to inhibit iron-containing prolyl hydroxylase domain (PHD) enzymes that regulate HIF and its target genes (i.e., EPO, HK2, and PDK1) (Hong et al., 2014). Therapeutic inhibition of PHDs activates ischemic preconditioning pathways that promote multiple protective responses (Eckle et al., 2008; Ong et al., 2014; Martin-Puig et al., 2015; Vogler et al., 2015). We therefore investigated whether a potential mechanism of action for our screening hits to protect hiPSC-CMs from oxidative stress was via targeting the HIF-PHD pathway. We examined the expression on HIF-regulated target genes, hexokinase 2 (HK2) and PDK1 in hiPSC-CMs, by qRT-PCR and observed no difference following treatment with CP-312 for 3 hours (Fig. 4A). We further examined the effect of CP-312 in HIF1-specific MIA PaCa-2 and HIF2-specific PANC luciferase reporter cell lines (Fig. 4, B and C) and determined the effect of CP-312 on HIF-inducible expression of erythropoietin in Hep3b cells by qRT-PCR (Fig. 4D). Our results revealed that our screening hits including CP-312 and the 8-hydroxyquinolines (not shown) had no significant effect on HIF transcriptional activity compared with known PHD inhibitors FG4592, FG2216, and BAY85-3934 (Fig. 4, B–D).

We also tested CP-312 for the compound’s ability to chelate Fe2+ as determined by calcein fluorescence. CP-312 showed significantly less potency and efficacy (EC50 = 1.27 μM; pEC50 = 2.59 ± 0.1, Emax = 60%) compared with deferoxamine.

Further and expanded in subsequent lead optimization efforts. An introduction of a substituent either on the thiazole (entries 11 and 12) or on the pyridine (entries 13 and 14) ring was expected to bring torsion in the thiazole-pyridine plane leading to a change in the overall conformation of the molecule and subsequent binding affinity. A small alkyl group on the thiazole (Me, entry 11) was well tolerated, whereas a bulkier isopropyl (entry 12) was not favorable. Likewise, methyl substituent on the pyridine (entry 13) did not yield substantial change in cardioprotective properties. However, the electron-withdrawing ester moiety caused full obliteration of activity.

Simultaneously with structure-activity studies, we investigated potential target pathways of CP-312 and other hit scaffolds. A backup scaffold in our screening hit set shared structural similarity to a 8-hydroxyquinoline class of compounds that are known iron chelators and have been previously reported to inhibit iron-containing prolyl hydroxylase domain (PHD) enzymes that regulate HIF and its target genes (i.e., EPO, HK2, and PDK1) (Hong et al., 2014). Therapeutic inhibition of PHDs activates ischemic preconditioning pathways that promote multiple protective responses (Eckle et al., 2008; Ong et al., 2014; Martin-Puig et al., 2015; Vogler et al., 2015). We therefore investigated whether a potential mechanism of action for our screening hits to protect hiPSC-CMs from oxidative stress was via targeting the HIF-PHD pathway. We examined the expression on HIF-regulated target genes, hexokinase 2 (HK2) and PDK1 in hiPSC-CMs, by qRT-PCR and observed no difference following treatment with CP-312 for 3 hours (Fig. 4A). We further examined the effect of CP-312 in HIF1-specific MIA PaCa-2 and HIF2-specific PANC luciferase reporter cell lines (Fig. 4, B and C) and determined the effect of CP-312 on HIF-inducible expression of erythropoietin in Hep3b cells by qRT-PCR (Fig. 4D). Our results revealed that our screening hits including CP-312 and the 8-hydroxyquinolines (not shown) had no significant effect on HIF transcriptional activity compared with known PHD inhibitors FG4592, FG2216, and BAY85-3934 (Fig. 4, B–D).

We also tested CP-312 for the compound’s ability to chelate Fe2+ as determined by calcein fluorescence. CP-312 showed significantly less potency and efficacy (EC50 = 1.27 μM; pEC50 = 2.59 ± 0.1, Emax = 60%) compared with deferoxamine.

TABLE 1

<table>
<thead>
<tr>
<th>Entry</th>
<th>CP-</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>X</th>
<th>Y</th>
<th>EC50 (μM)</th>
<th>Emax, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>312</td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td>S</td>
<td>CH2</td>
<td>4.60</td>
<td>82</td>
</tr>
<tr>
<td>2</td>
<td>724</td>
<td>CF3</td>
<td>H</td>
<td>H</td>
<td>S</td>
<td>CH2</td>
<td>4.70</td>
<td>80</td>
</tr>
<tr>
<td>3</td>
<td>317</td>
<td>F</td>
<td>H</td>
<td>H</td>
<td>S</td>
<td>CH2</td>
<td>3.53</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>315</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>S</td>
<td>CH2</td>
<td>2.33</td>
<td>78</td>
</tr>
<tr>
<td>5</td>
<td>311</td>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>S</td>
<td>CH2</td>
<td>4.32</td>
<td>78</td>
</tr>
<tr>
<td>6</td>
<td>796</td>
<td>OMe</td>
<td>H</td>
<td>H</td>
<td>S</td>
<td>CH2</td>
<td>7.40</td>
<td>118</td>
</tr>
<tr>
<td>7</td>
<td>139</td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td>NH</td>
<td>CH2</td>
<td>11.84</td>
<td>63</td>
</tr>
<tr>
<td>8</td>
<td>465</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>SO3</td>
<td>CH2</td>
<td>13.89</td>
<td>45</td>
</tr>
<tr>
<td>9</td>
<td>124</td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td>S</td>
<td>CHMe</td>
<td>4.79</td>
<td>92</td>
</tr>
<tr>
<td>10</td>
<td>127</td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td>S</td>
<td>CHPh</td>
<td>3.67</td>
<td>63</td>
</tr>
<tr>
<td>11</td>
<td>723</td>
<td>F</td>
<td>Me</td>
<td>H</td>
<td>S</td>
<td>CH2</td>
<td>2.85</td>
<td>82</td>
</tr>
<tr>
<td>12</td>
<td>133</td>
<td>CHMe2</td>
<td>H</td>
<td>S</td>
<td>CH2</td>
<td>10.68</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>129</td>
<td>CF3</td>
<td>H</td>
<td>Me</td>
<td>S</td>
<td>CH2</td>
<td>6.34</td>
<td>79</td>
</tr>
<tr>
<td>14</td>
<td>131</td>
<td>Cl</td>
<td>H</td>
<td>CO2Et</td>
<td>S</td>
<td>CH2</td>
<td>>100</td>
<td>n/a</td>
</tr>
</tbody>
</table>
(EC$_{50}$ = 0.24 μM; pEC$_{50}$ = -6.62 ± 0.04, E$_{\text{max}}$ = 97%), a potent chelator (Fig. 4E). Deferoxamine did not provide protection of viability in iPSC-CMs when tested under the same conditions as our primary assay, nor did FG4592 and BAY85-3934 (Fig. 4E). These results taken together indicate that the mechanism of action of our screening hit to protect hiPSC-CMs from oxidative stress is not specific to the HIF-PHD pathway and not the result of chelation alone.

We continued to investigate the hypoxia-responsive antioxidant response network in cells by examining the nuclear factor erythroid 2 p45-related factor 2 (Nrf2) signaling pathway. Nrf2 acts as a sensor of oxidative stress and through its inhibitory binding protein kelch-like ECH-associated protein 1 (keap1) regulates the expression of antioxidant and detoxifying genes such as HMOX1. We therefore examined gene expression of HMOX1 following treatment with CP-312 to determine whether upregulation by CP-312 contributes to the protection of hiPSC-CMs from peroxide-induced cell death. We observed a robust induction of HMOX1 expression, ranging from 80- to 600-fold over baseline, from RNA isolated from adherent hiPSC-CMs treated for 3 hours with CP-312 (Fig. 5, A and B). CP-131, a close analog of CP-312 that was inactive in providing protection following peroxide exposure (Table 1, entry 14), did not have a significant effect on HMOX1 expression (Fig. 5A).

Treatment of hiPSC-CMs with other known HMOX1 inducers, CDDO-Me or cobalt protoporphyrin (CoPP), increased HMOX1 expression to a much lesser extent at 3 hours than did CP-312 (Fig. 5B) and did not provide protection to peroxide exposure (Fig. 5D). After 24 hours, however, cells treated with CDDO-Me or CoPP exhibited greater HMOX1 expression levels (Fig. 5C) and increased viability following peroxide exposure (Fig. 5D), whereas cells treated with CP-312 for 24 hours maintained both elevated HMOX1 expression levels and protection from peroxide exposure (Fig. 5, C and D).

Interestingly, the expression of NQO1, another gene regulated by Nrf2, was unaltered at 3 hours by treatment with any of the cardioprotective agents (Fig. 5B) yet was significantly upregulated after 24 hours treatment with either CDDO-Me or CoPP, but not CP-312 (Fig. 5C). Dose-response testing indicated that lower concentrations of CDDO-Me, CoPP, or CP-312 were less effective inducers of HMOX1 and NQO1 gene expression and did not provide significant protection of hiPSC-CMs from peroxide exposure (Supplemental Fig. S1). Compound protection therefore appears to correlate with the induction of genes associated with the antioxidant response network including HMOX1, yet the transcriptional response differs between CP-312 and the known Nrf2 activators, CDDO-Me and CoPP.

Discussion

Pharmacological manipulation of stem cells has been shown to improve cell survival post-transplantation and represents a viable treatment modality for ischemic disease. Preconditioning mesenchymal stem cells with diazoxide enhanced cell survival after transplantation in vivo via nuclear factor κB regulation (Afzal et al., 2010). In addition, human embryonic-derived
cardiomyocytes pretreated with the heme oxygenase-inducer CoPP and delivered to injured rat myocardium improved postinfarct ventricular function (Luo et al., 2014b).

The autologous transplantation of a patient’s iPSC-CM provides a personalized approach to cardiac cell therapy without the immunosuppressive and oncological complications of donor stem cell-based therapies (Anisimov et al., 2010). Thus, small molecules hold promise for improving clinical outcomes when they can reversibly inhibit the death of iPSC-CMs and prime the cells for engraftment without the long-term side effect of carcinogenesis inherent in gene therapy approaches.

A phenotypic chemical biology screening approach in hiPSC-CMs is a powerful strategy to identify relevant molecular probes of novel pathways involved in cardiac myocyte survival mechanisms associated with oxidative stress. The goal of this project was to model oxidative damage in hiPSC-CMs for high-throughput screening to identify small-molecule cardioprotectors of oxidant-induced hiPSC-CM cell death. These probes shed light on mechanisms of stem cell cardiomyocyte survival and may be used to enhance survival of iPSC-CMs during transplantation.

We report a robust 1536-well HTS screening format (Z’ = 0.63) that employs a suspension assay to measure cell viability by ATP in hiPSC-CMs following 2-hour pretreatment with compounds and exposure to a lethal concentration of H2O2. HTS of 48,640 compounds representative of the SBP internal library followed by concentration-response assays measuring cellular viability, and real-time monitoring of cellular impedance in adherent hiPSC-CMs, identified CP-312 with EC50 = 4.6 and 1.6 μM, respectively. CP-312 also preserved cardiomyocyte contractility over 24 hours.

We previously screened for inhibitors of cell death using a similar approach in H9c2 embryonic rat heart-derived myoblasts (Kane et al., 2010). These compounds, however, did not exhibit any protective activity when tested in hiPSC-CMs. Furthermore, CP-312 provided little protection to H9c2 cells, indicating a critical difference between these cell lineages. Compared with H9c2 cell line, hiPSC-CMs have increased fatty acid oxidation capacity and reduced glycolytic capacity (CDI-reported data). Furthermore, hiPSC-CMs were challenged in our assay with oxidative stress in media containing galactose to maximize the cells’ use of oxidative phosphorylation to generate ATP, whereas H9c2 cells were challenged in media containing high glucose as these cells do not maintain viability in media containing only galactose.

Fig. 5. (A) mRNA expression of heme oxygenase-1 (HMOX1) in hiPSC-CMs following 3 h treatment with 0.1% DMSO vehicle control, 10 μM CP-312, or 10 μM CP-131. (B and C) mRNA expression of heme oxygenase-1 (HMOX1) and NAD(P)H quinone dehydrogenase (NQO1) in hiPSC-CMs following (B) 3 h or (C) 24 h treatment with 0.1% DMSO vehicle control, 10 μM CP-312, 1 μM CDDO-Me, or 20 μM CoPP. Relative gene expression was determined by qRT-PCR using Taqman primer-probe sets normalized to expression of HPRT1 and illustrated as fold-change relative to DMSO vehicle control. Data are mean ± S.E.M. from two independent experiments (n = 4–5) analyzed by two-tailed t test. *P < 0.05; **P < 0.005 compared with DMSO vehicle control. (D) Normalized cell index values measured by cell impedance for hiPSC-CMs pretreated for 3 or 24 hours with 0.1% DMSO vehicle control, 10 μM CP-312, 1 μM CDDO-Me, or 20 μM CoPP followed by 1-hour exposure to 40 μM H2O2. Data are the mean ± S.E.M. from two independent experiments (n = 6–11) analyzed by two-tailed t test. **P < 0.005; ***P < 0.0001 compared with DMSO vehicle control.

Diabetic hyperglycemia has also been shown to block the cardioprotective effects of anesthetic preconditioning in vitro and in vivo by impairing the Nrf2 signaling response (Li et al., 2015; Canfield et al., 2016; Gao et al., 2016; Wang et al., 2016b). Differences in metabolism between hiPSC-CMs and H9c2 cells probably account for the observed differences in protection between the cell types for the hit compounds and demonstrates the relevance of the cell model and culture conditions for hit identification.
Having identified CP-312 as a promoter of iPSC-derived cardiomyocyte cell survival under oxidative stress, we probed for potential target identification, focusing on the hypoxia-responsive signaling pathways. Activation of the HIF-1 pathway has been associated with cardioprotection following ischemic preconditioning; however, the mechanism by which HIF-pathway induction imparts cardioprotection remains poorly understood. PHD2 and PHD3 isoforms are reported to be highly regulated by hypoxia in cardiomyocytes, and pharmacological inhibition has been shown to provide protection from ischemic injury (Cioffi et al., 2003; Vogler et al., 2015; Xie et al., 2015). We did not observe any change in HIF-regulated expression of HK2 and PDK1 in iPSC-CM treated with CP-312. Our results comparing the response to CP-312 with known PHD inhibitors using HIF-1 and HIF-2 reporter assays in MIA PaCa-2 and PANC-1 cells, as well as erythropoietin expression in Hep3b, also showed that CP-312 is not directly targeting PHD enzyme inhibition or activation of HIF. However, HIF activation may act as an upstream signal triggering paracrine factors that elicit protective responses in the cardiac tissue. This prompted us to investigate downstream target effectors, particularly the Nrf2/HMOX1 axis, as part of HIF protective antioxidant response network.

Induction of heme oxygenase-1 is a critical component of the protective antioxidant response network, and recent advances have shown that pharmacologic induction of HMOX1 following 24-hour treatment of stem cell cardiomyocytes with CoPP prior to transplantation significantly improved myocyte graft survival and postinfarct ventricular function (Luo et al., 2014a,b). Increased expression of HMOX1 by cardiac-specific transgenic overexpression, gene therapy, or pharmacological approaches have also proven to significantly mitigate myocardial damage following an ischemic event (Yet et al., 2001; Melo et al., 2002; Vulapalli et al., 2002; Liu et al., 2007; Li et al., 2011). Our gene expression analysis in hiPSC-CMs showed >100-fold increase in HMOX1 expression compared with baseline after 3-hour treatment with CP-312, and the increase was maintained at elevated levels for 24 hours. An inactive analog of CP-312, CP-131, did not induce HMOX1 expression, suggesting a correlation of HMOX1 expression with protection from peroxide-induced cell death.

The observed increase in HMOX1 expression induced by CP-312 was greater and more rapid compared with CDDO-Me or CoPP, which induce HMOX1 by activating Nrf2 pathway via inhibition of keap1 interaction with Nrf2. In addition to HMOX1, NQO1 is a prototypical target gene of Nrf2 (Kumar et al., 2011; Kim et al., 2017). Differences in the dynamics of the HMOX1 response and the lack of NQO1 upregulation in hiPSC-CMs treated with CP-312 lead us to speculate that CP-312 may be regulating HMOX1 expression in a Nrf2-independent manner. Previous studies in Nrf2 null mice, Nrf2-deficient mouse embryo fibroblast cells, and human embryonic kidney 293 (HEK-293) cells treated with Nrf2-specific short-hairpin RNA demonstrate HMOX1 induction by Nrf2-independent mechanisms that are uncoupled from regulation of other antioxidant response genes, including NQO1 (Wright et al., 2009; Kang et al., 2014). Further studies utilizing CP-312 will elucidate the underlying mechanisms regulating HMOX1 expression.

Our results strongly suggest that CP-312 is a novel scaffold that protects hiPSC-CM viability and function by targeting the antioxidant response network through induction of HMOX1 expression. Following the in vivo approach of injecting hiPSC-CMs into the peri-infarct myocardium of rats with acute myocardium infarction, it is our hypothesis that pretreatment of hiPSC-CMs with CP-312 or improved derivatives prior to transplantation will enhance cell survival, attenuate infarct size, and improve cardiac function compared with hiPSC-CMs injected alone, just as previous studies have shown using pharmacological preconditioning strategies (Afzal et al., 2010; Luo et al., 2014b). Furthermore, combining CP-312 with CoPP or other compounds that affect complementary pathways may provide the optimal kinetics of stem cell protection for successful engraftment. Advanced imaging technologies may be applied to track the pharmacologically modified cells in vivo and correlate stem cell survival kinetics with functional cardiac changes in the animal to aid drug development (Nguyen et al., 2011).

Initial SAR studies around CP-312 resulted in CP-724 with improved primary activity (entry 2, Table 1). The pyridyl-thiazole moiety and the connectivity between these two aryls appeared to be imperative for the bioactivity. Substitution on the ring system favored small alkyl moieties, whereas bulkier alky and electron-withdrawing groups hindered activity. The linker tolerated substituents of different sizes, however, and sulfur(II) was preferred over other heteroatoms or oxidation level. Ultimately, the para substitution of the phenyl ring on the right-hand side of the scaffold was found to be capable of fine attenuation of the cardioprotective properties of the molecule. It can be postulated that CP-724 as well as CP-315, CP-127, and CP-723 (entries 4, 10, 11, Table 1), which also have improved protective ability, will induce HMOX1 expression to an equal or greater extent than CP-312. Further SAR studies will be governed by the HMOX1 expression level and will explore areas of the molecules marked with R1, R2, R3, X, Y (Table 1). Overall, the SAR studies successfully recognized key areas in the scaffold for further lead optimization of the chemical series surrounding CP-312 that may result in agents with increased potency and efficacy to block oxidative stress in stem cell cardiomyocytes.

The post-transplantation environment is complex and cell death occurs by multiple, interconnected pathways. The advantage of our phenotypic approach is the identification of compounds with activities specifically targeting hiPSC-CM survival pathways. Our goal is to protect stem cell viability until the delivered cells have successfully engrafted. CP-312 appears to protect hiPSC-CMs through induction of HMOX1 by a mechanism distinct from other known HMOX1 inducers, providing a novel tool compound to better understand the regulation of antioxidant response pathways and a chemical series for development of targeted pharmacological agents that may lead to improvement in stem cell survival for cardiac cell therapies.

Acknowledgments

The authors acknowledge the Florida Translational Research Program screening award to S.M. (2014-4-HTS-0011). They thank Cellular Dynamics, International for helpful discussions and acknowledge Alex Tanner of compound management and Sharangdhar Phatak of cheminformatics core resources at Sanford Burnham Prebys Medical Discovery Institute for their expertise and support of this project. The authors thank Mei Ye Koh for providing the MIA PaCa-2 and PANC-1 HIF reporter cell lines.
References

Auryn P, Divlianska, Malany, Smith, Divlianska, Maloney, Peddibhotla, Sessions, Hershberger.

Auryn P, Divlianska, Malany, Smith, Divlianska, Maloney, Peddibhotla, Sessions, Hershberger.

Auryn P, Divlianska, Malany, Smith, Divlianska, Maloney, Peddibhotla, Sessions, Hershberger.

Auryn P, Divlianska, Malany, Smith, Divlianska, Maloney, Peddibhotla, Sessions, Hershberger.

Auryn P, Divlianska, Malany, Smith, Divlianska, Maloney, Peddibhotla, Sessions, Hershberger.

Auryn P, Divlianska, Malany, Smith, Divlianska, Maloney, Peddibhotla, Sessions, Hershberger.

Auryn P, Divlianska, Malany, Smith, Divlianska, Maloney, Peddibhotla, Sessions, Hershberger.
