CONTENTS

NUMBER 1, MAY, 1929

I. On the Standardization of the Female Sexual Hormone, Especially of Pure Water-Soluble Preparations (Menformon). By Ernst Laqueur and S. E. de Jongh .. 1

II. Pharmacological Actions of Phenylethanolamine. By Maurice L. Tainter ... 29

III. A Contribution to the Study of Locoism. By James Fitton Couch 55

IV. The Biological Assay of Ergot Preparations. By George L. Pattee and Erwin E. Nelson ... 85

V. Saline Injections. By Swale Vincent and J. H. Thompson 107

VI. Studies on Crystalline Insulin. VIII. The Isolation of Crystalline Insulin from Fish Islets (Cod and Pollock) and from the Pig's Pancreas. The Activity of Crystalline Insulin and Further Remarks on Its Preparation. By H. Jensen, O. Wintersteiner and E. M. K. Geiling 115

NUMBER 2, JUNE, 1929

VII. The Effect of Magnesium Sulphate on Strychnine Convulsions. By Frank P. Underhill and Edward C. Wood .. 129

VIII. The Blood Pressure in Unanesthetized Animals as Affected by "Vasopressin," "Oxytocin," Pituitary Extract and Other Drugs. By Charles M. Gruber ... 155

IX. The Effect of Ceanothyn Extract on the Normal Human Blood-Coagulation Time. By O. S. Gibbs .. 173

X. Comparative Studies on Pupillary Reaction in Tetrapods. V. The Action of Pilocarpine on the Pupil of the Guinea Pig. By Theodore Koppányi ... 179

XI. Action of Calcium on the Isolated Human Fetal Heart. By W. D. M. Lloyd ... 185

XII. The Effect of Mercury on Cardiac Inhibition. By William Salant and Keeve Brodman .. 195

XIII. The Influence of Pituitary Extract, "Vasopressin" and "Oxytocin" upon the Intact Intestine in Unanesthetized Dogs. By Charles M. Gruber and Paul I. Robinson ... 203

XIV. Nitrite Toleration. By Harold B. Myers and V. Thomas Austin........ 227

XV. Experimental Study on the Sugar in Blood and Cerebro-Spinal Fluid. By S. Katzenelbogen ... 231

XVI. The Modification of Insulin Action in Medulliadrenal Inactivated Cats by Post-Pituitary Extracts. By E. M. K. Geiling, S. W. Britton and H. O. Calvery .. 235

XVII. A Pharmacological Study of Leucines and Cystines. By David I. Macht ... 243
CONTENTS

NUMBER 3, JULY, 1929

XIX. The Solubility of Lead Salts in Physiological Salt Solutions. By L. C. Maxwell and Fritz Bischoff .. 279

XX. The Action of Mercury upon the Heart. By F. D. McCrea and Walter J. Meek ... 295

XXI. Effects of Long Continued Administration of Adrenalin. By A. M. Affleck .. 301

XXIII. The Salicylates. XVIII. Actions of Ammonium Salicylate Compared with Sodium Salicylate. By C. C. Johnson and P. J. Hanzlik ... 319

XXIV. Comparison of Various Lactones with Santonin. I. Studies of Chemical Constitution and Pharmacological Action. By W. F. von Oettingen ... 335

XXV. The Toxicity and Vermicidal Properties of the Dilactone of Acetone Diacetic Acid and Beta Angelica Lactone in Cats. Dilactone and Beta Angelica Lactone as Anthelmintics. By W. F. von Oettingen and F. Garcia ... 355

XXVI. Relationship between the Pharmacological Action and the Chemical Constitution and Configuration of the Optical Isomers of Ephedrine and Related Compounds. By K. K. Chen, Chang-Keng Wu and Erle Henriksen ... 365

XXVII. Experimental Cocaine Addiction. By A. L. Tatum and M. H. Seever ... 401

XXIX. The Nature of the Strychnin Reversal of the Ammonia Reflex in the Rabbit. By P. F. Swindle ... 419

XXX. Racial Differences as Illustrated by the Mydriatic Action of Cocaine, Euphthalmine, and Ephedrine. By K. K. Chen and Edgar J. Poth ... 429

XXXII. Effect of Some Opium Alkaloids on Intestinal Movements in Cats. By N. B. Dreyer ... 477

XXXIII. Ouabain (p-Strophanthin or Atoxaktherin), Physiological Standard for Digitalis, Strophanthus, and Squill. By E. W. Schwartz, R. M. Hann and G. L. Keenan ... 481

XXXIV. Arthur S. Loevenhart ... 493
CONTENTS

NUMBER 4, AUGUST, 1929

XXXV. The Control of Respiration in the Domestic Duck (Anas boschas).
 By Marion S. Dooley and Theodore Koppányi.......................... 507

XXXVI. A Comparative Study of the Effect upon Rat and Rabbit Tissues of
 Ephedrine Sulphate, Epinephrine Chloride and an Adrenaline-like
 Substance. By Edwin J. Doty.......................... 519

XXXVII. The Administration of Large Amounts of Ammonium Salts of
 Organic Acids. By Victor John Harding and Leslie Nelles Silverthorne.. 525

XXXVIII. I. The Action of Ephedrine, Pseudoephedrine and Epinephrine
 on the Bronchioles. By Edward E. Swanson.......................... 541

XXXIX. Comparative Effects of Ephedrine and Epinephrine on Blood
 Pressure, Pulse and Respiration with Reference to Their Alteration by
 Cocaine. By M. L. Tainter... 569

XL. The Oxytocic Substance of Cerebrospinal Fluid. By H. B. Van Dyke,
 Percival Bailey and Paul C. Bucy... 595

XLI. The Toxicity of Synthalin. By W. G. Karr, W. P. Belk and O. H.
 Petty.. 611

XLII. Effects of Excessive Doses of Irradiated Ergosterol in Growing Rats
 and Dogs. By G. F. Cartland, J. H. Speer and F. W. Heyl 619

XLIII. Effect on Intestinal Movements of Certain Salts Administered Intra-
 venously. By N. B. Dreyer and Thelma Tsung ... 629

XLIV. Experimental Studies on Heart Tonics. I. The Variable Response
 of the Frog Heart to the Action of the Drug. By William Nyiri and
 Louis Du Bois... 635

XLV. The Specific Action of Ergot Alkaloids on the Sympathetic Nervous
 System. By E. Rothlin... 657

XLVI. Index... 685
ILLUSTRATIONS

Standardization of the female sexual hormone, especially of pure water-soluble preparations (menformon) (Fig. 1) .. 9
Phenylethanolamine on untreated and previously constricted blood vessels of perfused rabbit ears (Fig. 1) .. 35
Pressor reactions of phenylethanolamine and epinephrine before and after ergotoxin in a dog (8.2 kgm.) (Fig. 2) .. 38
Cocaine desensitization (partial) of phenylethanolamine and sensitization of epinephrine on blood pressure in a rabbit (2.0 kgm.) (Fig. 3) 39
— desensitization (complete) of phenylethanolamine and sensitization of epinephrine on blood pressure in a cat (20 kgm.) (Fig. 4) 40
Comparative effects of phenylethanolamine and epinephrine on excised bovine iris (Fig. 5) .. 45
— inhibitory effects of phenylethanolamine (1:4200) and of epinephrine (1:5,000,000) on longitudinal strips of excised rabbit duodenum (Magnus method) (Fig. 6) .. 47
Stimulation by phenylethanolamine of excised strip of ergotoxinized non-pregnant uterus of rabbit, contrasted with slight depression by epinephrine (Fig. 7) .. 49
Diagram to show method of fractionating loco extracts used for feeding 58
Weight curve of cat 28, fed fraction A, from January 6 to March 2, 1925 (Fig. 1) .. 63
— curve of cat 18, fed fraction B, from May 9 to June 16, 1923 (Fig. 2) 63
— curve of cat 17, fed fraction B, from May 9 to August 7, 1923, when feeding of the loco was discontinued (Fig. 3) ... 64
— curve of cat 19, fed fraction B, from May 9 to July 9, 1923, when feeding of the loco was discontinued (Fig. 4) ... 65
— curve of cat 20 from October 12 to November 24, 1923, during the experimental feeding of fraction BA—the substances precipitated by lead acetate from the water-soluble fraction (Fig. 5) 67
— curve of cat 21 from October 12 to November 24 fed the same fraction as cat 20 (Fig. 6) .. 67
— curve of cat 20 from August 21 to October 2, 1923, during the experimental feeding of fraction BC—the substances precipitated by basic lead acetate from the water-soluble fraction (Fig. 7) 68
— curve of cat 21 from August 21 to October 2, 1923, fed the same fraction as cat 20 (Fig. 8) .. 68
— curve of cat 22 from September 20, 1923, to January 7, 1924, during experimental feeding of fraction BD—the substances not precipitated by lead (Fig. 9) .. 68
— curve of cat 23 from September 20 to December 3, 1923, fed the same fraction as cat 22 (Fig. 10) .. 68
Weight curve of cat 24 from December 10, 1923, to March 17, 1924, while being fed the alkaloidal fraction BDE (Fig. 11) 70
— curve of cat 25 from December 10, 1923, to March 17, 1924, while being fed the alkaloidal fraction BDE (Fig. 12) 71
— curves of cats 35, 36, and 37 (Fig. 13) 72
— curve of cat 32 fed resin acid, fraction BDC from July 18 to September 20, 1927 (Fig. 14) 72
— curve of cat 20, fed fraction BDD from December 3, 1923, to March 27, 1924 (Fig. 15) 73
— curve of cat 21 fed fraction BDD from December 3, 1923, to January 10, 1924 (Fig. 16) 74
— curve of cat 26 fed fraction BDA from January 21 to March 27, 1924 (Fig. 17) 74
— curve of cat 27 fed fraction BDA from January 21 to March 27, 1924 (Fig. 18) 75
— curve of cat 28, fed fraction BDG from September 19 to November 17, 1924 (Fig. 19) 75
— curve of cat 24, fed fraction BDH from September 29, 1924, to February 4, 1925 (Fig. 20) 76
— curve of cat 29 fed fraction BDF from June 25 to August 12, 1925 (Fig. 21) 78
— curve of cat 28 fed fraction BDF from June 25 to August 11, 1925 (Fig. 22) 79
— curve of cat 30, fed increasing doses of barium chloride from November 16, 1925, to October 26, 1926 (Fig. 23) 81
Two strips from the same uterus (Fig. 1) 91
Experiment in which the same concentration of ergotamine was added to both strips, but histamine only to the upper one (Fig. 2) 92
Fall of blood-pressure due to injection of 10 cc. saline (Fig. 1) 108
Injection of 10 cc. saline into internal jugular vein, femoral vein (Fig. 2) 108
Experiment demonstrating the effect upon the blood-pressure of 10 cc. saline injected at different speeds: 2, 5, 10, 15, 20, 40, 55 seconds (Fig. 3) 1
Injections of 10 cc. saline at various temperatures showing falls of blood-pressure below 37°C. and rises above 37°C., while at this critical temperature compound effects occur (Fig. 4) 109
Fall of blood-pressure due to injection of 10 cc. saline—blood pressure 120 mm. Hg (Fig. 5a) 111
Same animal as figure 5a. Compound effect—delayed initial rise and after-fall—due to injection of 10 cc. saline—blood pressure 110 mm. Hg (Fig. 5b) 111
— animal as figures 5a and b. Rise of blood-pressure due to injection of 10 cc. saline—blood pressure 80 (Fig. 5c) 111
Male dog, 29 kgm. (Fig. 1) 158
Unanesthetized female dog, 25 kgm. (Fig. 2) 163
Male dog, 6 kgm. (Fig. 3) 164
Dog, 6 kgm. (Fig. 4) 166
—, 8.2 kgm. (Fig. 5) 168
—, 10.2 kgm. See figure 5 (Fig. 6) 169
Kymographic tracing of the beating human fetal heart after the addition of
the first 10.5 cc. of a 0.25 per cent calcium chloride solution to the perfusing fluid (Fig. 1) 189
— tracing of human fetal heart after the addition of a second 4 cc. of a 0.25 per cent calcium chloride solution to the perfusing fluid (Fig. 2) 190
— tracing of human fetal heart following calcium administration (Fig. 3) 191
— tracing of human fetal heart showing the effects of the addition of weak
calcium solutions to the perfusing fluid (Fig. 4) 191
Experiment 696. Cat, weight, 2.5 kgm. Urethane anesthesia (Fig. 1) 196
— C-6. Cat, weight, 3.8 kgm. Urethane anesthesia (Fig. 2) 199
Unanesthetized 18-kgm. dog. Reduced \(^{4}\) (Fig. 1) 211
— 16-kgm. dog. Reduced \(^{4}\) (Fig. 2) 212
— 16-kgm. dog. Reduced \(^{4}\) (Fig. 3) 214
— 14-kgm. dog. Reduced \(^{4}\) (Fig. 4) 215
— dog weighing 14 kgm. Reduced \(^{4}\) (Fig. 5) 216
— dog weighing 17 kgm. Reduced \(^{4}\) (Fig. 6) 218
— dog weighing 17 kgm. Reduced \(^{4}\) (Fig. 7) 219
— 18-kgm. dog (Fig. 8) 220
— dog weighing 17 kgm. (Fig. 9) 221
— dog weighing 10 kgm. Reduced \(^{4}\) (Fig. 10) 222
Development of toleration toward sodium nitrite recovery of susceptibility
on withdrawal of the nitrite (Fig. 1) 228
— of toleration toward nitroglycerin in rabbits receiving sodium nitrite
with recovery of susceptibility on withdrawal of the nitrite (Fig. 2) 229
Body weight, total morphine sulfate, and fluidity of stools during acute
experimental periods (Fig. 1) 254
Blood specific gravity (Fig. 2) 261
Serum specific gravity (Fig. 3) 263
Water content of liver (Fig. 4) 264
— content of muscle (Fig. 5) 264
Liver fat (Fig. 6) 266
Muscle fat (Fig. 7) 268
Water intake and urine volume of dogs (Fig. 8) 269
Alkali reserve of serum (Fig. 9) 271
Serum calcium (Fig. 10) 273
Solubility of lead salts in physiological salt solutions (Fig. 1) 290
Experiment 4. Dog. Weight 18 kgm. Showing the effect of 3 mgm. per
kilogram of mercuric chloride injected intravenously. Ether anesthesia
(Fig. 1) 298
Liberation of free salicylic acid according to hydrolysis of ammonium salicyl-
ate and sodium salicylate in phosphate-citric acid buffer mixtures after
one-hour incubation at 38\(^{\circ}\)C. (Fig. 1) 322
Effects of small (4 gram) doses of ammonium salicylate on urinary volume,
nitrogen and uric acid and blood uric acid, and the total urinary excretion
of salicyl in human subjects on purine-free diets (Fig. 2) 324
Comparative effects of clinical "toxic" doses of ammonium and sodium salicyl-
ates on urine and blood metabolites and the total urinary excretion of
salicyl in convalescent subjects (Fig. 3) 325
ILLUSTRATIONS ix

Antipyretic effects of ammonium and sodium salicylates in experimental systemic infection of rabbits (Fig. 4) 329
Effect of lactones on the intestines (Fig. 1) 345
—of lactones on the heart (Fig. 2) 347
Analysis of the lactone effect (Fig. 3) 349
Action of related compounds of ephedrine on blood pressure (Fig. 1) 370
—of related compounds of ephedrine on blood pressure (Fig. 2) 371
—of related compounds of ephedrine on blood pressure (Fig. 3) 372
—of related compounds of ephedrine on blood pressure (Fig. 4) 373
—of related compounds of ephedrine on blood pressure (Fig. 5) 374
—of related compounds of ephedrine on frog's heart (Fig. 6) 376
—of related compounds of ephedrine on frog's heart (Fig. 7) 378
—of related compounds of ephedrine on frog's heart (Fig. 8) 379
—of related compounds of ephedrine on frog's heart (Fig. 9) 380
—of optical isomers of ephedrine on blood pressure (Figs. 10 and 11) 387
Quantitative comparison of the pressor activity of ephedrine isomers (Fig. 12) 387
Action of related compounds of ephedrine on blood pressure (Fig. 13) 395
—of related compounds of ephedrine on blood pressure (Fig. 14) 396
Intestinal loop of rabbit in 75 cc. tyrode solution (Fig. 1) 413
—loop of cat in 75 cc. tyrode solution (Fig. 2) 413
—loop of cat in 75 cc. tyrode solution (Figs. 3 and 4) 414
—loop of cat in 75 cc. tyrode solution (Figs. 5 and 6) 416
Nature of the strychnin reversal of the ammonia reflex in the rabbit (Figs. 1 to 4) 425
—of the strychnin reversal of the ammonia reflex in the rabbit (Fig. 5) 426
Comparison of the mydriatic action of l-ephedrine, dl-ephedrine, d-pseudoephedrine, cocaine, and euphthalmine in Caucasians, the Chinese, and Negroes (Fig. 1) 440
Morphine addiction and its physiological interpretation based on experimental evidences (Fig. 1) 472
Effect of some opium alkaloids on intestinal movements in cats (Figs. 1 and 2) 478
—of some opium alkaloids on intestinal movements in cats (Fig. 3) 479
Arthur S. Loevenhart
Respiratory tracing of an etherized duck (Fig. 1) 510
The upper tracing represents the respiratory, the lower one the blood pressure curve of a duck (Fig. 2) 510
Respiratory (upper tracing) and blood pressure (lower tracing) records of a duck (Fig. 3) 510
—tracing of a blindfolded, non-anesthetized duck, showing the effects of intravenous injections of CO2 (Fig. 4) 510
—tracing of a blindfolded, non-anesthetized duck, showing the effect of CO2 inhalation from a closed jar; and the effect of intravenous injection of CO2 on postural apnea (Fig. 5) 510
—tracing of a blindfolded, non-anesthetized duck, showing the effect of the intravenous injection of 20 cc. of O2 on respiration (Fig. 6) 510
ILLUSTRATIONS

Respiratory (upper tracing) and blood pressure (lower tracing) records of an anesthetized duck, showing the production of "apnea vera" by continuous insufflation through the left humerus (Fig. 7) 510

— (upper tracing) and blood pressure (lower tracing) records of a duck, demonstrating the effect of the stimulation of the central end of the vagus on respiration (Fig. 8) 510

— record of an unanesthetized duck, demonstrating the effect of heat on respiratory rate and postural apnea (Fig. 9) 512

— (upper tracing) and blood pressure (lower tracing) records of a duck, demonstrating the effect of subcutaneous injection of 30 mgm. of morphine sulphate on postural apnea (Fig. 10) 512

— tracing of a duck, showing the effect of the intravenous injection of 30 mgm. of caffeine on the respiratory rate (Fig. 11) 512

— (upper tracing) and blood pressure (lower tracing) records of a duck, demonstrating the effect of intramuscular injection of 6 cc. of a 1 per cent ammonium chloride solution on the respiratory rate (Fig. 12) 512

— tracing of an unanesthetized guinea pig, showing the effects of stretching of the animal's hind legs and neck on respiration (Fig. 13) 512

— tracing of a guinea pig, showing the effect of CO₂ inhalation on the respiratory rate (Fig. 14) 512

— tracing of a guinea pig, demonstrating the effect of the section of the right vagus (the left vagus has already been cut) on respiration (Fig. 15) 512

Action of ephedrine, pseudoephedrine and epinephrine on the bronchioles (Fig. 1) 547

— of ephedrine, pseudoephedrine and epinephrine on the bronchioles (Fig. 2) 548

— of ephedrine, pseudoephedrine and epinephrine on the bronchioles (Fig. 3) 549

— of ephedrine, pseudoephedrine and epinephrine on the bronchioles (Fig. 4) 550

— of ephedrine, pseudoephedrine and epinephrine on the bronchioles (Fig. 5) 551

— of ephedrine, pseudoephedrine and epinephrine on the bronchioles (Fig. 6) 552

— of ephedrine, pseudoephedrine and epinephrine on the bronchioles (Fig. 7) 553

— of ephedrine, pseudoephedrine and epinephrine on the bronchioles (Fig. 8) 554

— of ephedrine, pseudoephedrine and epinephrine on the bronchioles (Fig. 9) 555

— of ephedrine, pseudoephedrine and epinephrine on the bronchioles (Fig. 10) 556

— of ephedrine, pseudoephedrine and epinephrine on the bronchioles (Fig. 11) 557

— of ephedrine, pseudoephedrine and epinephrine on the bronchioles (Fig. 12) 558

— of ephedrine, pseudoephedrine and epinephrine on the bronchioles (Fig. 13) 559
ILLUSTRATIONS

Action of ephedrine, pseudoephedrine and epinephrine on the bronchioles (Fig. 14) ... 560
— of ephedrine, pseudoephedrine and epinephrine on the bronchioles (Fig. 15) .. 561
— of ephedrine, pseudoephedrine and epinephrine on the bronchioles (Figs. 16 and 17) 565
— of ephedrine, pseudoephedrine and epinephrine on the bronchioles (Figs. 18 and 19) 566
Median pressor responses to successive injections of ephedrine and epinephrine in dogs and cats (Fig. 1) 574
Typical sensitization to the pressor action of epinephrine and simultaneous desensitization to that of ephedrine in a cocainized dog (Fig. 2) 579
— sensitization to the pressor action of epinephrine and simultaneous desensitization to that of ephedrine in a cocainized cat (Fig. 3) .. 580
— desensitization to the pressor action of the first injection of ephedrine and sensitization to epinephrine in a cocainized dog (Fig. 4) ... 583
Increases in pulse rate after successive injections of ephedrine and of epinephrine (Fig. 5) 584
Control experiments illustrating the non-destruction of pituitary oxytocic principle when the calcium concentrations of artificial solution on canine cisternal cerebrospinal fluid were reduced by precipitation with Ca₃(PO₄)₂ (Fig.1) .. 598
Modified Trendelenburg apparatus for the titration of small amounts of oxytocic substances (Fig. 2) 601
Typical experiments illustrating the abolishment of the oxytocic effect of cerebrospinal fluid by the reduction of the calcium concentration of the fluid to the concentration present in the uterine bath-solution (Fig. 3) 602
Tracings from an experiment with a highly calcium-sensitive uterus (Fig. 4) .. 602
Oxytocic effects of increased calcium concentrations in artificial solutions (Fig. 5) ... 605
Effects of excessive doses of irradiated ergosterol in growing rats and dogs (Fig.1) ... 622
— of excessive doses of irradiated ergosterol in growing rats and dogs (Fig. 2A) .. 623
— of excessive doses of irradiated ergosterol in growing rats and dogs (Fig. 2B) .. 624
— of excessive doses of irradiated ergosterol in growing rats and dogs (Fig. 2C) .. 625
Shows the effect of intravenous injections of isotonic and hypertonic solutions of sodium chloride and sodium sulphate (Fig.1) ... 630
— results obtained by giving isotonic sodium chloride solution, isotonic and hypertonic solutions of sodium bicarbonate and carbonate (Fig. 2) ... 630
— depressing effect of magnesium sulphate and stimulating effect of sodium carbonate on the gut (Fig. 3) 631
Illustration of technic of operation upon frog ... 642
Experimental studies on heart tonics (Fig. 1) ... 650
— studies on heart tonics (Fig. 2) .. 651
(Trendelenburg’s method.) Isolated guinea pig gut (Fig. 1) ... 662
ILLUSTRATIONS

(Magnus' technique.) Isolated rabbit gut (Fig. 2) 663
Two specimens of isolated small intestine of rabbit (Fig. 3, a to d) 664
—— specimens of isolated small intestine of rabbit (Fig. 4, a to c) 665
—— specimens of isolated small intestine (Fig. 5, a to d) 666
—— specimens of isolated small intestine of rabbit (Fig. 6) 667
Rabbit weighing 2.8 kgm. (Fig. 7, a to c) 671
Dog (Fig. 8, a and b) ... 672
—— weighing 8 kgm. (Fig. 9) 674
Non-gravid isolated cat uterus (Fig. 10, a and b) 675
Isolated non-gravid uterus of cat (Fig. 11, a and b) 677
—— uterus of a cat which had kittens a day before (Fig. 12, a and b) 678