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Fig. 4. Results on the basis of the random forest analyses. Variable importance plots showing comparisons for drug attributes predicting interaction
with transporters. Importance of attributes are ranked from the upper right of the plot (most important) to the lower left (least important). As discussed
in the text, these results are highly comparable to the results from decision trees.

aliphatic bonds,” and drugs with the greater number of
aliphatic bonds were classified as OCT1 drugs. When we
examined the three other OAT versus OCT trees, they
followed trends similar to the OAT1/OCT1 tree; OCT ligands
generally had a higher number of “an” than OAT ligands, and

OAT ligands had higher numbers of “adb” and “ao” than did
OCT ligands. Interestingly, statistics from the accuracy of
these decision tree models (which excluded charge) were not as
strong as ones including charge but were still reasonable
(Table 1). In addition, the attributes “ao,” “adb,” and “SP3
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Fig. 5. Decision trees excluding charge properties. The attributes of positive and negative charge were excluded in the building of the model so as to
identify other important properties that potentially segregate OAT and OCT drugs. Again, it was found that some charge-associated attributes and the

SP3 character were key determinants.

character” were confirmed as important attributes in the ¢ test
statistical analysis (below and Table 2).

Pairwise Comparison between OAT1 and OATS3
Reveals Differences between the Two OATs. When
OAT1 and OAT3 were compared (Fig. 3E), the first attribute
separating OAT1 and OAT3 ligands was the number of acyclic
tetravalent nodes (“aqv”). Drugs that have the greater number
of acyclic tetravalent nodes tended to be classified as interact-
ing with OAT3. The next attribute separating the OAT ligands
was the number of phosphorous atoms (“p”). Drugs that had at
least one or more phosphorus atoms tended to be classified as
OAT1-interacting. A third attribute that emerged from these
comparisons of OAT1 and OAT3 ligands was the number of
positive charges; drugs with a positive charge were associated
with an OATS3 classification (Fig. 3E). (The aforementioned
properties will be discussed in more detail below when we
present wet laboratory support for the computational analy-
sis.) In contrast to the comparison of the two OATs, the model
generated for comparison of the two OCT's had poor validation
performance; it appears that OCT ligands are too similar to be
distinguished by the approaches we used; hence, the results
for that decision tree model will not be discussed further.

Statistical Analysis Confirmed the Machine-Learning
Analyses. When performing ¢ test analyses on individual
attributes for each pairwise transporter comparison, we iden-
tified a number of attributes as statistically different between
ligands interacting with each pair of transporters. The

attributes that had the lowest P values for each compar-
ison are summarized in Table 2 and are consistent with the
machine-learning analyses. The two properties that had the
lowest P values were the “number of positive charge” and
the “number of negative charge,” corresponding to the results
from the machine-learning analyses. After positive and neg-
ative charge, the next attributes that came out from the
ranking were numbers of acyclic double bond (“adb”), acyclic
oxygen (“a0”), hydrogen bond acceptor site (“hbam”), and
SP3 character (Table 2). For the pairwise comparison of
the two OATSs, the two properties seen in the OAT1/0OAT3
decision tree [i.e., the “number of acyclic tetravalent nodes”
(“aqv”) and “number of positive charges”] were also found to
have the lowest P values in the ranking. Again, the results
from both decision trees and random forest are consistent
with the statistical analysis.

Explanation of Properties Found to Be Relevant in
Results. As described above, on the basis of the results of
machine-learning and statistical tests, we found that ligands
of the OATs (either OAT1 or OAT3) generally had higher
numbers of negative charge, acyclic double bonds, acyclic
oxygen, and hydrogen bond acceptor sites than an OCT ligand
(either OCT1 or OCT2). These properties tend to be associated
with the anionic propensity. For example, most acyclic double
bonds within the structures were in the forms of carbonyl
(0=C0), thial (S=C), sulfoxide (S=0), and the electronegative
oxygen and sulfur within these double bonds are prominent
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TABLE 2

Pairwise comparisons of individual attributes for the four SLC22 transporters®

Number of Attributes,

by P Value

Liu et al.
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“The Student’s ¢ tests calculated the P values for each attribute for each pairwise transporter comparison, and the level of significance is indicated. The results are found to be consistent with the results from the machine-

learning analyses.

hydrogen bond accepting sites. The “number of acyclic oxygen”
is another property that expresses the anionic propensity, as
the acyclic oxygen also serves as a potential hydrogen bond
accepting site.

Importantly, in addition to having differences in properties
associated with charges and ionization, ligands of OCTs and
OATSs are different in geometry-related properties, particu-
larly with respect to the SP3 character value. SP3 character is
defined as the number of SP3-hybridized carbons divided by
the total number of atoms; it is one measure of the degree of
three-dimensionality of a compound. If a drug has a higher
SP3 character value, it is more three-dimensional; likewise, a
lower SP3 character value is taken to imply that the drug is
more planar (Lovering et al., 2009; Over et al., 2014). In
machine-learning models and statistical analyses, drugs with
a stronger affinity for the OCTs had a greater SP3 character
value than those with a stronger affinity for the OATS,
supporting the view that the “OCT-interacting drugs” are
more three-dimensional than “OAT-interacting drugs.” As
measured by SP3 character, compared with most other drugs
in the data set, amantadine, nandrolone, and atropine are
three OCT drugs that have highly three-dimensional struc-
tures, each with a SP3 character value of 0.357, 0.326, and
0.227, respectively. On the other hand, OAT drugs have much
lower values of SP3 character, with none of the OAT drugs
having SP3 character values greater than 0.300.

Some differences are also observed among the ligands of the
two OATSs; OAT3 tended to interact with drugs that have more
acyclic tetravalent nodes and more positive charges, whereas
OAT1 tended to interact with those that have more phospho-
rus atoms. An acyclic tetravalent node usually is composed of a
carbon-forming tetravalent bond with four elements. In the
decision tree model, 11 drugs were classified as OAT3 drugs
from this node; among them were verapamil, pravastatin,
enalapril, and methotrexate, and along with the higher
number of acyclic tetravalent nodes, these drugs have longer
and more hydrophobic chains. The next attribute separating
OAT1 and OAT3 ligands was the number of phosphorous
atoms (“p”). Drugs that had at least one or more phosphorus
atoms were classified as interacting with OAT1; the three
drugs in this category were cidofovir, tenofovir, and adefovir.
The chemical structures of these drugs showed that the
phosphorus atoms were in phosphate groups. Since the
phosphate groups contain several oxygen atoms binding with
phosphorus—some of which were deprotonated at the normal
pH range—the phosphate group is highly anionic. Thus, the
number of phosphorus atoms was directly correlated with the
anionic propensity. In summary, even though both OAT1 and
OATS3 were found to have functional overlap, there were some
differences between their ligands identified in our analyses.
OATS3 preferred to interact with drugs with more positive
charge and long hydrophobic chains, and OAT1 ligands tended
to be more anionic than OAT3.

Analysis of Mid-Affinity Drugs Supports the Results
of High-Affinity Drugs. Well described OAT ligands veri-
fied in vivo in knockouts include many compounds with an
affinity greater than 100 uM (Eraly et al., 2006; Vallon et al.,
2008a; Wikoff et al., 2011; Wu et al., 2013; Nigam, 2015;
Nigam et al., 2015a,b). Thus, in addition to understanding the
molecular interactions between transporters and drugs that
bind with high affinity (=100 uM), we also tried to study how
OAT1, OAT3, OCT1, and OCT2 interact with drugs in the
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Fig. 6. The decision trees constructed with drugs that interact with the transporters at mid-affinity range (between 100 and 1000 uM). The trees show
that, in the mid-affinity range, the main differences between OAT- and OCT-interacting drugs were still attributable to charges, but to a lesser degree

than drugs in the high-affinity range.

mid-affinity range (100-1000 uM). The decision trees con-
structed with mid-affinity drugs (Fig. 6) demonstrate that
major factors involved in classifying a drug as an OAT or an
OCT substrate were the result of charge, as in the high-affinity
group. But the separation was less impressive than for the
high-affinity (<100 uM) drugs. The decision tree comparing
OAT1 and OATS3 in the mid-affinity range had only one node,
which split on positive charge (Fig. 6). Drugs with a positive
charge generally classified as OAT3-interacting.
Three-Dimensional Pharmacophore Models Showed
Structural Similarities Corresponding to the Overlap
in Functions for OATs and for OCTs. Since it was found
that OAT3 ligands also possessed some cationic characteris-
tics, on the basis of the machine-learning analyses, pharma-
cophore models for OAT3-, OCT1-, and OCT2-interacting
drugs were built to compare the functional similarities/differ-
ences between the OAT and the OCTs in three-dimensional
space (Fig. 7). The models showed that OAT3 and OCTs
interacted with drugs that had hydrophobic and aromatic
centers. However, a slight difference in compound backbone
appeared, as the hydrophobic chains for OCT1 and OCT2
models would sometimes enclose cationic spheres (seen in
OCT1 pharmacophore models 3, 4, 5, and 6), which is not
observed in most OAT3 models. Overall, models of
OAT3-interacting ligands were more anionic, and models of

OCT-interacting ligands were more cationic. This can also be
seen from Table 3, which shows the quantitative measure-
ments of the seven properties for individual models; as
measured by the mean, the table shows that ligands of the
OATs had higher “hydrogen bond acceptors” and higher
“negative charges”; in contrast, ligands of the OCTs had
higher “hydrogen bond donors” and higher “positive charges.”

The Pharmacophore Models Revealed Structural
Similarities between Ligands of OAT3 and OCT1. Even
though the majority of pharmacophore models for ligands of
OAT3 had similar features, there was one clear exception, the
pharmacophore model formed on the basis of group 9 for OAT3
(Fig. 7). Unlike other OAT ligand models, this model contained
a hydrophobic chain that tended to enclose a sphere enriched
with hydrogen bond donors and positive charges, which was a
pattern shared among many OCT1 and OCT2 ligand models.
Thus, this model (OATS3 pharmacophore model 9) was found to
be very OCT-like, and the quantitative APF measurement of
this model was found to have greater values of “positive
charges” and “electropositive charges.”

Interestingly, the list of drugs used to construct this model
from group 9 for OAT3 was found to be highly similar to the list
of drugs that was independently separated on the basis of the
first attribute or node in the OAT1/OATS decision tree (Fig. 3).
Out of the nine drugs used to construct the pharmacophore
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Fig. 7. The pharmacophore models for OAT3, OCT1, and OCT2. Since the drugs interacting with each transporter were diverse in their three-
dimensional structures, the drugs were clustered into groups on the basis of APF. The drugs within the same clustering groups were then aligned, and
pharmacophore models for each group were created. In the pharmacophore models, different colors represent various APF properties: blue, hydrogen
bond donor; red, hydrogen bond acceptor; white, aromaticity; yellow, hydrophobicity; light red, negative charges; light blue, positive charges. The OAT3
models and OCT1 models are found to be distinctive. With one notable exception, the OAT3 models for each group contained more characteristics of
negative charges, electronegativity, and hydrogen bond acceptors, and vice versa for OCT1 models. However, the OAT3 model derived from group 9 was
an exception as it contained several characteristics found largely in models from OCT groups.

model, six of them contained more than seven acyclic tetrava-
lent nodes and were classified as “OAT3” drugs in the decision
tree. This is important since it demonstrates that the results
from the decision trees and the pharmacophore models identi-
fied the same differences found between ligands of OAT1 and
OATS3, and the differences were attributable to the apparent
capability of OAT3 to interact with OCT-like substrates.
Experimental Validation of In Silico Screening
Results Identified New Cationic Drugs That Preferen-
tially Interact with OAT3 But Not OAT1. The finding
that OAT3 prefers more cationic substrates than does OAT1
was thus consistent in decision tree and random forest
analyses, and there was one (cationic) OAT3 pharmacophore
model that was strikingly similar to OCT pharmacophore
models. Thus, with the idea of trying to validate this
experimentally, the OAT3 cationic model was used for virtual
screening in silico. Using the pharmacophore model on the
basis of group 9 of the OAT3 substrates, a virtual screen of the
DrugBank database identified potential new OAT3 cationic
ligands. Six top hits were selected for further wet laboratory
validation. These hits were then tested for their ability to
interact selectively with OAT3 using wet laboratory transport
assays in OAT1-expressing or OAT3-expressing cells. Four of
the ligands were found to interact with OAT3, with strong
inhibition of tracer uptake. In marked contrast, when these six
cationic drugs were tested in the OAT1 uptake assay, it was
found that only two of them inhibited OAT1 function, and,

importantly, with a much lower affinity (Fig. 8). The prefer-
ence of these compounds for interaction with OAT3, but not
OAT1, not only supports the validity of the pharmacophore
model (model 9) but it is consistent with the machine-learning
analysis indicating the capability of OAT3 to interact with
cationic drugs. The measured IC5, values of tested compounds
against OAT1 and OAT3 are summarized in Table 4.

Discussion

Recent knockout and in vitro data on a limited set of ligands
suggest that the specificity of the OATs and OCTs of greatest
clinical and pharmaceutical interest goes beyond whether the
ligand is an anion or a cation (Ahn et al., 2009; Vallon, 2012;
Nigam, 2015; Nigam et al., 2015a,b). Thus, molecular proper-
ties other than ligand charge need to be carefully addressed.
To systemically examine this question, an extensive litera-
ture search was first done to build a complete-as-possible
transporter-ligand database (nearly any compound found to
interact with the transporters of interest was initially cu-
rated). Within this data (Supplemental Table 1), all drugs
reliably known to interact with OAT1, OAT3, OCT1, and
OCT2 were selected and used to study the functional differ-
ences and similarities between the transporters by applying
machine-learning tools. Among the machine-learning tools
(which included neural nets, support vector machines, and
other methods as shown in Supplemental Table 2), decision
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Quantitative APF property measurements
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Hydrogen Bond

Charge Electro

Transporter Pharmacophore Sp2 Lipophilic ~ Size (large) Querall
’ Model Donors Acceptors Hybridization PO ¢ Positive Negative Positive Negative Space

OAT3 1 143.204 154.117 839.695 101.509 213.651 0 0 219.724 —117.089 47124
2 68.1087  484.381 1560.94 628.674 773.567 0 —230.93 587.804 —289.52 82173

3 7.92777 175.642 1009.03 493.385 636.479 5.5641 —193.954 529.816 —102.394 80496

4 88.2388  189.257 1441.67 925.382 1058.15 0 —138.558 964.06 —140.411 98000

5 35.8698  387.069 1795.93 923.052 1148.9 0 —-197.94 987.326 —151.581 120744

6 220.122 169.155 894.646 580.978 656.921 0 —38.4882 588.515 —325.512 68894

7 197.147 244.087 881.089 588.426 752.08 57.7324 —173.197 773.25 —176.682 66924

8 123.888 427.116 1445.62 664.117 934.116 0 —181.445 686.311 —246.445 116550

>9¢ 66.121 252.657 850.408 1164.04 1388.78 73.3208 —175.956 1331.36 —99.7383 149940

OCT1 1 48.1776 31.481 1056.59 570.64 704.827 102.635 0 823.36 —23.6594 115248
2 90.1057  195.495 1020.17 716.752 937.245 46.1859 0 829.391 —75.0204 92752

3 89.3848 32.1592 845.243 850.424 951.403 110.846 0 997.719 —20.1164 134160

4 74.3945 95.9579 670.303 748.842 882.211 115.465 0 979.179  —55.4599 93240

>5 80.1732  150.189 951.337 1241.55 1355.43 115.465 0 1323.47 —66.1869 110124

>6 77.3553 68.1684 211.241 896.307 962.966 69.2789 0 1106.73 —21.3618 80360

7 216.391 229.452 556.192 339.69 495.407 17.6656 —56.1539 503.882 —61.267 62700

8 193.59 217.192 1639.75 1511.09 1759.88 46.1859 0 1827.44 —80.0704 164883

9 554.411 58.0202 1109.79 377.711 472.479 346.394 0 887.07 —48.0251 105408

OCT2 1 211.184 222.252 622.403 345.852 501.321 23.0927 —69.2787 498.707 —75.3364 115248
2 68.8115 29.6212 918.67 778.429 899.004 98.145 0 946.223 —7.10932 92752

3 101.393 47913 287.96 825.327 881.816 79.382 0 992.614 —23.1909 134160

4 82.6908 86.1924 667.67 738.494 867.966 128.294 0 977.612 —49.6171 93240

5 133.952 214.602 1024.3 1186.25 1402.03 76.9765 0 1347.41 —64.4698 110124

6 502 39.793 1078.9 362.868 453.107 269.418 0 826.522  —24.6827 80360

“OAT3 pharmacophore model 9 (arrowhead) was found to have higher value of positive charge and electropositive charge than the rest of OAT3 pharmacophore models. The
APF property values of this model were also found to be comparable with several OCT1 models, such as OCT1 models 5 and 6 (arrowheads).

trees and random forests were more helpful from the view-
point of understanding this question of substrate specificity as
opposed to simply fitting data (Figs. 3-6).

The results of the decision tree analyses were in agreement
with the results of the random forest, and these results were
further verified by conventional statistical tests (Table 2). The
results indicated that, although the main difference between
the ligand preferences of OATs and OCTs (with respect to
physicochemical descriptors) was charge, the structure of
ligands also affected the interaction with the transporters.
Thus, in considering factors beyond charge, OCTs interacted
with more three-dimensional structures (more SP3 character),
whereas OATs interacted with planar compounds (Figs. 3-5).
This may imply that the binding pockets of OCTs accommo-
date fewer planar compounds than those of OATSs, which is
worthy of further investigation once crystal structures of these
transporters become available (Koepsell, 2013; Matsson and
Bergstrom, 2015; Nigam et al., 2015a).

In addition to finding differences between OATSs and OCTs,
some differences among the submembers of these families
were also identified. On the basis of machine-learning models
and pharmacophore models, OAT1 and OAT3 were found to be
different in that the latter possesses some ability to interact
with cations, making it more functionally similar to OCT1 and
OCT2 in this respect (Figs. 3 and 5). Among high-affinity
drugs (<100 mM Km, Ki, or IC5y), OATS could interact with
ligands with more diverse structures (per machine-learning
analysis of physicochemical descriptors and pharmacophore
analysis) than did OAT1, again implying that OAT3 has
different binding pockets than OAT1 and supporting the
importance of obtaining structures for both transporters.

On the basis of the pharmacophore OAT3/OCT1 (Fig. 7)
overlay, OAT3 binding pockets could have similarity to
binding pockets of the OCTSs, enabling OAT3 to bind some

ligands with cationic characteristics. Our studies indicate
that, although OAT1, OAT3, OCT1, and OCT2 are “multi-
specific” (or “polyspecific”), this multispecificity (polyspecific-
ity) is restricted, and the actual interaction of each transporter
with their ligands goes beyond conventional views about
charge. This is our main finding, supported by machine-
learning analysis, pharmacophore modeling, and wet labora-
tory transport assays. In particular, OAT3 stands out. OAT3
has overlapping ligands with OAT1, and like OAT1 it has a
preference for planar anionic molecules, but OAT3 also
accepts larger ligands and more cationic/zwitterionic ones—
including those that might conventionally be viewed as OCT
substrates. We support this conclusion with wet laboratory
data using an OAT3 transport assay indicating that cationic
drugs not previously reported (as far as we know) to be ligands
indeed interact with OAT3. Together, the computational and
wet laboratory analyses indicate that the boundary that
separates OATs and OCTs is not as clear as the current
literature suggests.

Thus, finding the differences and similarities between the
transporters with respect to ligand preference can help to
predict and identify new compounds that interact with the
transporter (as we have done here), since the set of rules
defined by decision trees can be further used for in-silico
screening of new ligands/inhibitors (drugs, toxins, metabo-
lites, signaling molecules). These rules can also be used to
design new, potent, selective ligands that can target a
particular transporter. These could be drugs that are aimed
at targeting a particular tissue or body fluid, or alternatively,
selective inhibitors of transport.

Expression of varying levels of OAT1, OAT3, OCT1, and
OCT2 may thus help the cell alter the net ligand (drugs,
toxins, metabolites, signaling molecules) taken up by kidney,
liver, and other tissues in nonobvious ways. The potential
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Fig. 8. Uptake inhibition assay on the basis of the virtual screening of the
OAT3 pharmacophore model from group 9 (i.e., cationic pharmacophore)
against the DrugBank database. For OAT1 inhibition assay, 10 uM
6-carboxyfluorescein was used as fluorescent tracer, and for OAT3 assay,
20 uM 5-carboxyfluorescein was used. Please see Materials and Methods
and text for additional details.

relevance of this concept to normal physiology and pathophys-
iological states has been discussed in the Remote Sensing and
Signaling Hypothesis (Kaler et al., 2006; Ahn and Nigam,

TABLE 4

1C50 values of cationic drugs tested for interaction with OAT1 and
OAT3

1Cs0 (uM)
Drug Name

OAT1 OAT3
Probenecid” 2.4 33
Darifenacin 807 198
Paliperidone 1082 260
Loperamide No significant inhibition 95
Nebivolol No significant inhibition 169
Halofantrine No inhibition No inhibition
Cisapride No inhibition No inhibition

“The data for probenecid uptake inhibition is shown as a control.

2009; Wu et al., 2011; Nigam, 2015; Nigam et al., 2015a). Our
results should also be useful for predicting potential drug-drug
interactions and drug-metabolite interactions.

As discussed throughout this article, the study may be
somewhat limited owing to paucity of direct transport data
and the reliance on inhibition data. As indicated in a recent
review addressing ligand-based modeling of SLC and ABC
drug transporters, the limited transport data available is an
issue for the whole field (Matsson and Bergstrom, 2015); even
with inhibition data, competitive versus noncompetitive in-
hibition is also generally not addressed, although the former is
often assumed (Matsson and Bergstrom, 2015). However, at
least for the drugs studied here the limited transport data
were quite consistent with binding data. In support of this
notion, one can also consider in vivo studies in the Oat and Oct
knockout animals. A number of general classes of organic
anion, organ cation, and organic zwitterion compounds ana-
lyzed here (e.g., antivirals, antibiotics, diuretics, metformin,
zwitterions) have also been evaluated in the Oat1, Oat3, Oct1,
and Oct2 knockout animals or in knockout tissues, and
abnormalities in handling of these compounds consistent with
inhibition affinities have been demonstrated (Eraly et al.,
2006; Vanwert et al., 2007, 2008; Truong et al., 2008; Vallon
et al., 2008b, 2012; Nagle et al., 2011, 2013). Indeed, the
knockout data even seems to support the preference of Oat3
(compared with Oatl) for zwitterions such as creatinine
(Vallon et al.,, 2012). Nevertheless, caution about relying
entirely on inhibition data seems appropriate as there may
be cases where high-affinity binding to transporters such as
Octl may not necessarily correspond to physiologically rele-
vant transport (He et al., 2016).

As discussed above, we also performed decision tree anal-
yses on the set of drugs that had inhibition (Ki) data (not
including drugs with transport data as indicated by Km
values); in this analysis, results were obtained similar to
those from the larger dataset consisting of both Ki and Km
data (Supplemental Fig. 2). In addition, we attempted to
obtain reliable decision trees for the considerably smaller set
of compounds for which transport (Km) data had been found
(Supplemental Fig. 3). Although similar trends (to the Ki plus
Km decision trees) were found in some cases, clear, consistent,
and significant results could not be generally obtained with
this limited set of compounds with Km values. This again
highlights the need for the field to obtain transport data for all
the drugs and, with respect to inhibition data, the need to
distinguish competitive from noncompetitive inhibition
(Matsson and Bergstrom, 2015). In addition, it can be argued
that ligand-based modeling for multispecific SLC drug
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transporters, which handle structurally diverse compounds,
might be more difficult than for transporters that handle a
single class of structurally similar compounds (Matsson and
Bergstrom, 2015). This is one reason we believed it was
reasonable to use as large a dataset as possible, despite the
limitations described above—an approach that was partly
experimentally validated. As more transport and other bio-
chemical data becomes available, and as machine-learning
and other data science approaches continue to improve, it may
be possible to obtain an even clearer picture of the chemical
features of drugs that enable transport by one or another SLC
and/or ABC transporter.
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