Stronger Uricosuric Effects of the Novel Selective URAT1 Inhibitor UR-1102 Lowered Plasma Urate in Tufted Capuchin Monkeys to a Greater Extent than Benzbromarone

Sung Oh Ahn, Shuichi Ohtomo, Jumpei Kiyokawa, Toshito Nakagawa, Mizuki Yamane, Kyoung June Lee, Ki Hwan Kim, Byung Ho Kim, Jo Tanaka, Yoshiki Kawabe, and Naoshi Horiba

Discovery Research Center, C&C Research Laboratories, Suwon, Republic of Korea (S.O.A., B.H.K.); Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan (S.O., J.K., T.N., M.Y., Y.K., N.H.); Drug Discovery Center, JW Pharmaceutical Corp. Seoul, Republic of Korea (K.J.L.); JW CreaGene, Seongnam, Republic of Korea (K.H.K.); Drug Safety Research Laboratory, Shin Nihon Biological Laboratories, Miyanoura, Kagoshima, Japan (J.T.)

Received December 21, 2015; accepted February 11, 2016

ABSTRACT

Urate-lowering therapy is indispensable for the treatment of gout, but available drugs do not control serum urate levels tightly enough. Although the uricosurics benzbromarone and probenecid inhibit a urate reabsorption transporter known as renal urate transporter 1 (URAT1) and thus lower serum urate levels, they also inhibit other transporters responsible for secretion of urate into urine, which suggests that inhibiting URAT1 selectively would lower serum urate more effectively. We identified a novel potent and selective URAT1 inhibitor, UR-1102, and compared its efficacy with benzbromarone. UR-1102 showed a better pharmacokinetic profile, increased the fractional excretion of urinary uric acid, and reduced plasma uric acid more effectively. Moreover, the maximum efficacy of UR-1102 was twice that of benzbromarone, suggesting that selective inhibition of URAT1 is effective. Additionally, UR-1102 showed lower in vitro potential for mechanisms causing the hepatotoxicity induced by benzbromarone. These results indicate that UR-1102 achieves strong uricosuric effects by selectively inhibiting URAT1 over OAT1 and OAT3 in monkeys, and could be a novel therapeutic option for patients with gout or hyperuricemia.

Introduction

Gout has become a global burden in recent years because of its increasing prevalence, extensive comorbidity associated with disability, and increased mortality (Robinson and Dalbeth, 2015). Because the clinical manifestations of gout are associated with the formation of monosodium urate crystals in the joints, controlling serum urate is important when treating gout. Several major guidelines, including the 2012 American College of Rheumatology Guidelines for Management of Gout (ACR guidelines), recommend that serum urate level should be lowered sufficiently to improve signs and symptoms of gout, with a target minimum of 6 mg/dl, or in many cases 5 mg/dl (Khanna et al., 2012). Moreover, the lower the serum urate level, the faster and more significant the reduction in the size of tophi, which are solid deposits of monosodium urate crystals (Perez-Ruiz et al., 2002, 2007). This is ordinarily achieved with either a urate synthesis inhibitor (USI) or a uricosuric (Shahid and Singh, 2015). The ACR guidelines recommend the use of a USI, such as allopurinol or febuxostat, as the first-line approach for pharmacologic urate-lowering therapy and, because the urate-lowering efficacy of currently available USI drugs is insufficient, that this be combined with a uricosuric when the serum urate target is not met by the USI. Typical uricosurics, namely benzbromarone or probenecid, increase the urate excretion by inhibiting urate transporter 1 (URAT1), the transporter responsible for urate reabsorption in the renal proximal tubules (Enomoto et al., 2002; Shin et al., 2011).

URAT1 is a member of the SLC22A—organic anion transporter (OAT)—family, and its mutations can cause
hypouricemia (Ichida et al., 2004; Dinour et al., 2011). Transporters in the SLC22A family play important roles in the reabsorption and excretion of anionic substances, including urate and other endogenous substances, xenobiotics, and drugs in the kidney (Burckhardt, 2012). In addition to URAT1, OAT1, and OAT3 are also SLC22A family members and transport urate in the kidney; however, these are thought to be responsible for the secretion of urate into the urine, whereas URAT1 is responsible for reabsorption (Bakhyia et al., 2003; Ichida et al., 2003; Choi et al., 2005). In fact, inhibition of OAT3 is thought to be one reason why some angiotensin II receptor blockers, such as candesartan or valsartan, can cause hyperuricemia (Sato et al., 2008). Probenecid, which is considered to have insufficient clinical efficacy in lowering urate is known to inhibit not only URAT1 but also OAT1 and OAT3 (Takeda et al., 2001; Shitara et al., 2005; Kusuhara et al., 2013). Although the precise contribution of the two secretory transporters to urate excretion remains unclear, selective inhibition of URAT1 would potentially achieve stronger urate excretion. Benz bromor amone lowers serum urate more effectively than probenecid; however, it is only available in a few countries outside the United States, owing to safety concerns, which include the risk of hepatitis (Lee et al., 2008). In addition, benz bromarone also reportedly inhibits OAT3 (Kimura et al., 2000), which suggests that its uricosuric efficacy could be surpassed by an inhibitor that is selective only for URAT1. In summary, a safe and potent uricosuric drug that can achieve target serum urate levels of less than 5 mg/dl is required to treat patients with gout, especially those with tophi, and a selective URAT1 inhibitor could be one approach for realizing this concept.

It is well known that there are marked species differences in purine metabolism and urinary uric acid excretion between humans and most experimental animals, such as rats, rabbits, dogs, and cynomolgus monkeys (Roch-Ramal and Peters, 1978). The enzyme uricase in these animals can degrade uric acid to allantoin, and as a result their serum urate levels are about 1/10th of human values (Choi et al., 2005), which makes it difficult to assess the uricosuric effect. However, New World monkeys in general have relatively low uricase activity compared with other mammals and show relatively high levels of serum uric acid (Simkin, 1971). One subgroup in particular, Cebus monkeys, has relatively high serum urate levels, and the renal tubular transport of urate is similar to that of humans (Fanelli et al., 1970; Roch-Ramal and Weiner, 1973), which makes this animal quite valuable for assessing uricosurics (Dan et al., 1989; Fannelli and Weiner, 1975).

Here, we identified UR-1102 as a novel URAT1 inhibitor that showed high selectivity to URAT1 over OAT1 and OAT3 in vitro when compared with benz bromarone. Then, by comparing these two compounds in vivo using tufted capuchin monkeys (Cebus apella), we examined the importance of the selective inhibition of URAT1 for the treatment of gout.

In Vitro Transporter Inhibition Assays

Cell Culture and Transfection. An expression plasmid containing human SLC22A12 (URAT1) (GenBank Accession No. NM_144585) was prepared by digesting the fragments from URAT1-pME18SFL3 vector (Toyobo Co., Tokyo, Japan) and ligating them into the multicloning site of pcDNA3.1 (+) (Life Technologies/Thermo Fisher Scientific, Waltham, MA). Expression plasmids containing human SLC22A6 (OAT1) and SLC22A8 (OAT3) (GenBank Accession Nos. NM_153276, NM_004254) were purchased from Origene Technologies (Rockville, MD).

Human embryonic kidney (HEK)293 cells (American Type Culture Collection, Manassas, VA), a transformed cell line derived from human embryonic kidney, were cultured in complete medium consisting of Dulbecco's modified Eagle's medium (Sigma-Aldrich/MerckMillipore) with 10% fetal calf serum in an atmosphere of 5% CO₂ and 95% air at 37°C. Cells were seeded in 100-mm cell culture dishes. When they reached confluency, they were transfected with URAT1 plasmid, OAT1 plasmid, OAT3 plasmid, or control vector [pcDNA3.1 (+) for URAT1 and pCMV6-XL5 (Origene Technologies) for OAT1/3], using Lipofectamine 2000 transfection reagent (Life Technologies/Thermo Fisher Scientific) according to the manufacturer's instructions. After 4–6 hours of transfection, cells were subcultured in poly-L-lysine-coated 24-well plates at a density of 2 × 10⁵ cells/well. At 48 hours after transfection, the cells were used for uptake experiments.

Uptake Experiment in HEK293 Cells. Cells expressing URAT1, OAT1, OAT3, or control vector were used to measure the amount of specific substrate (uric acid for URAT1, PAH for OAT1 and OAT3) taken up at various concentrations of UR-1102 or benz bromarone. The composition of the incubation medium was as follows: 140 mM sodium gluconate, 2.7 mM potassium gluconate, 1.8 mM KH₂PO₄, and 8.1 mM Na₂HPO₄ for OAT1 and OAT3. The cells were incubated with medium containing UR-1102 or benz bromarone for a certain period of time (30 minutes for URAT1, 15 minutes for OAT1 and OAT3) at 37°C. A certain amount medium containing pyrido-oxazine. 4H-Pyrido[4,3-b][1,4]oxazin-3-one was converted to the corresponding pyrido-oxazine by reaction with 1.0 mol/l lithium aluminum hydride. The resulting pyrido-oxazine was then reacted with 3,5-dibromo-4-methoxy benzyl chloride, followed by demethylation under acidic conditions. Details of synthesis are included in Example 4 in Ahn et al. (2013). [¹⁴C]UR-1102 and [¹⁴C]benzbromarone were synthesized at Korea RadioChemicals Center (Suwon, Republic of Korea). Benz bromor amone was purchased from Sigma-Aldrich/MerckMillipore (St. Louis, MO). [8-¹⁴C]Uric acid ([¹⁴C]uric acid) and [ring-¹³C]acetamidophenol ([¹³C]acetaminophen) were purchased from American Radiolabeled Chemicals (St. Louis, MO). p-[Glycyl-2-¹³C]aminohippuric acid ([¹³C]PAH) was obtained from PerkinElmer Inc. (Waltham, MA). p-Aminohippuric acid (PAH) and acetaminophen were purchased from Wako Pure Chemical Industries, Ltd. (Tokyo, Japan). All other chemicals were of the highest purity available.

Materials and Methods

Chemicals

UR-1102 [(3,5-dibromo-4-hydroxyphenyl)[2,3-dihydro-4H-pyrido [4,3-b][1,4]oxazin-4-yl]methanone; Fig. 1] was synthesized at JW Pharmaceutical Corp. (Seoul, Republic of Korea). UR-1102 was synthesized using the condensation reaction of benzoyl chloride with pyrido-oxazine. 4H-Pyrido[4,3-b][1,4]oxazin-3-one was converted to the corresponding pyrido-oxazine by reaction with 1.0 mol/l lithium aluminum hydride. The resulting pyrido-oxazine was then reacted with 3,5-dibromo-4-methoxy benzyl chloride, followed by demethylation under acidic conditions. Details of synthesis are included in Example 4 in Ahn et al. (2013). [¹⁴C]UR-1102 and [¹⁴C]benzbromarone were synthesized at Korea RadioChemicals Center (Suwon, Republic of Korea). Benz bromor amone was purchased from Sigma-Aldrich/MerckMillipore (St. Louis, MO). [8-¹⁴C]Uric acid ([¹⁴C]uric acid) and [ring-¹³C]acetamidophenol ([¹³C]acetaminophen) were purchased from American Radiolabeled Chemicals (St. Louis, MO). p-[Glycyl-2-¹³C]aminohippuric acid ([¹³C]PAH) was obtained from PerkinElmer Inc. (Waltham, MA). p-Aminohippuric acid (PAH) and acetaminophen were purchased from Wako Pure Chemical Industries, Ltd. (Tokyo, Japan). All other chemicals were of the highest purity available.
and 30 mg kg

AAALAC International.

the animal welfare bylaws of Shin Nippon Biomedical Laboratories

Water was available ad libitum from an automatic supply. This study

were provided to each animal once daily between 13:00 and 14:00.

solid food for monkeys {New World Primate Diet 5040; Purina Mills,

medium was aspirated at the end of the incubation period, and the

slope of the least squares regression line of the plot that was created

calculated. The velocity of substrate uptake (v) that depends on

unstable, we used the average plasma uric acid concentration as the

by both a USI (febuxostat) and a uricosuric (benzbromarone), we

administration induced a transient increase in plasma uric acid; the

Animals.

Four male and two female tufted capuchin monkeys 6- to

13-years-old at Shin Nippon Biomedical Laboratories, Ltd. (Ragoshima,

Japan) were used. The animals were housed under a 12-hour light/ dark cycle (lights on 7:00 AM to 7:00 PM), at a controlled room temperature (23–29°C) and humidity (35–75%). Approximately 80 g of solid food for monkeys (New World Primate Diet 5040; Purina Mills, LLC, St, Louis, MO) and approximately 100 g of apple as a supplement were provided to each animal once daily between 13:00 and 14:00. Water was available ad libitum from an automatic supply. This study was approved by the Institutional Animal Care and Use Committee (Approval No. IACUC036-120) and was performed in accordance with the animal welfare bylaws of Shin Nippon Biomedical Laboratories Drug Safety Research Laboratories, which is fully accredited by AAALAC International.

Effect of UR-1102 and Benz bromarone on Renal Fractional Excretion of Uric Acid and Plasma Uric Acid. UR-1102 at 3, 10, and 30 mg kg\(^{-1}\) day\(^{-1}\), benz bromarone at 3, 10, 30, and 100 mg kg\(^{-1}\) day\(^{-1}\), or vehicle (1% methylcellulose and 0.01 mol/l HCl solution) were administered by oral gavage to the monkeys. Compounds or vehicle were administered by once-daily dosing for 3 days to complete each phase, with 2-week intervals between each of eight phases (crossover design with eight groups). Clinical signs and body weight were checked throughout the study period. Urine and plasma were collected to measure uric acid or creatinine concentration at the stated times. Blood samples were collected from the saphenous vein immediately before dosing (0 hours) and at 2, 4, 8, and 24 hours after every dosing, and plasma samples were obtained. Urine was collected from 8 hours to immediately before dosing, and 0 to 8 hours after every dosing. The concentration levels of uric acid and creatinine were measured by the uricase F-DAOS method and the creatinase F-DAOS method, respectively, using an automatic analyzer (JCA-BM6070; JEOL Co., Ltd., Tokyo, Japan).

In this monkey model, as shown in the control group, oral administration induced a transient increase in plasma uric acid; the concentration returned to normal at 24 hours. Although the precise mechanism of this increase remains unknown, it might be the result of transient stimulation of urate synthesis, because the increase was suppressed by febuxostat at 3 mg/kg, which is equivalent to the clinical dose. After confirming in a preliminary study that this increase in plasma uric acid concentration was reproducible and was suppressed by both a USI (febuxostat) and a uricosuric (benzbromarone), we concluded that this monkey model would be suitable for evaluating urate-lowering drugs. Because the plasma uric acid concentration was unstable, we used the average plasma uric acid concentration as the parameter. The averages for plasma uric acid and creatinine were calculated from the areas under the plasma uric acid and creatinine concentration-versus-time curves from 0 to 8 hours after dosing (calculated according to the linear-trapezoidal rule) divided by the collection time (8 hours). Urinary uric acid fractional excretion (FEUA) was calculated using the equation below:

\[
\text{FEUA}(%) = \frac{\text{urinary uric acid concentration (mg/dL)}}{\text{average plasma creatinine concentration (mg/dL)}} \times \frac{1}{[\text{urinary uric acid concentration (mg/dL)}]} \times \frac{1}{[\text{average plasma uric acid concentration (mg/dL)}]} \times 100
\]

Pharmacokinetics of UR-1102 and Benz bromarone. Plasma samples on the first day were obtained at six time points (0.5, 1, 2, 4, 8, and 24 hours after dosing) and the pharmacokinetic (PK) parameters were calculated. UR-1102 and benz bromarone were extracted from plasma by adding acetonitrile and were measured with a liquid chromatography–tandem mass spectrometry system [high-performance liquid chromatography (Shimadzu 20A; Shimadzu Corporation, Kyoto, Japan) and tandem quadrupole mass spectrometer (API 4000; Applied Biosystems, Foster City, CA)]. Pharmacokinetic parameters (C\(_{\text{max}}\), T\(_{\text{max}}\), AUC\(_{0-\text{inf}}\), f\(_{\text{u}}\)) were obtained from the quantitative values of each animal by using WinNonlin version 5.2.1 (Pharsight Corporation, Mountain View, CA).

In Vivo Evaluation in Tufted Capuchin Monkeys

Mitochondrial Toxicity Study. The human hepatoma cell line HepG2 cells (American Type Culture Collection) was maintained in minimum essential medium (MEM) containing 10% fetal bovine serum. After incubation, 0.2 μmol/l of Mitotracker Red CMXRs (Life Technologies/Thermo Fisher Scientific) and 10 μg/ml of Hoechst 33342 (Life Technologies/Thermo Fisher Scientific) was added to the cells, which were then incubated for 30–40 minutes at 37°C. Automated live-cell multispectral images were acquired on a Cellomics ArrayScan VTI HCS Reader using a 20× objective (Thermo Fisher Scientific, Waltham, MA) and an X93 filter (Omega Optical, Inc., Brattleboro, VT). The images were analyzed using vHCS software (Spot Detector V4 algorithm; Thermo Fisher Scientific), and the MMP was analyzed as “Mean Object Spot Total Intensity”. Cell viability was evaluated by measuring intracellular lactate dehydrogenase (LDH) activity using an LDH-Cytotoxic Test (Wako Pure Chemical Industries, Richmond, VA). Both compounds were tested in duplicate at each concentration and the test was repeated four times.

Reactive Metabolite Formation. The formation of reactive metabolites in human liver microsomes by UR-1102 and benz bromarone was investigated. Briefly, 1 mg/ml of human liver microsomes (XenoTech, LLC, Lenexa, KS) was incubated at 37°C for 30 minutes with \(^{14}\text{C} \text{UR-1102} \text{ or } ^{13}\text{C} \text{benz bromarone} \text{ at a concentration of 10 μmol/l in the presence or absence of 1 mmol/l NADPH}.\) The remaining radioactivity in the microsomal protein after washing with 0.1% sulfuric acid/methanol solution was measured using a liquid scintillation counter (Tri-Carb 3110TR; PerkinElmer Inc.). The protein content was assayed using a BCA protein assay kit (Pierce Biotechnology Inc., Rockford, IL) according to the manufacturer’s instructions. The formation of reactive metabolites by \(^{14}\text{C} \text{acetaminophen} \) was also measured as a positive control.
Binding on Various Receptors, Channels, and Transporters

The selectivity of UR-1102 for various molecular targets (70 receptors, 5 ion channels, 3 transporters) was examined by Cerep (Celle L’Evescault, France) using standard in vitro radioligand binding assays (Supplemental Table S1). UR-1102 was tested at 10 μM. All studies were internally controlled with reference ligands, and further details of the methodologies for each assay can be found at http://www.cerep.fr.

Statistical Analysis

Average plasma uric acid concentrations and FEUA at each analysis point were taken as fixed effects and animals as random effects, and these were analyzed by pairwise comparison between the control group and the UR-1102 groups on the basis of a mixed-effects model. Dose dependency was investigated by applying an E_{max}-based nonlinear model (Dheeraj and Gomathi, 2012). The above-stated analyses were performed using SAS System for Windows, version 9.2 (SAS Institute Inc., Cary, NC).

For the mitochondrial toxicity study, IC_{50} values for MMP in each test were calculated using sigmoidal fittings with the Dose Response model in OriginPro 8J SR4 v8.0951 (OriginLab Corp., Northampton, MA). The 95% confidence interval (CI) for IC_{50} value was calculated using the analysis of variance (ANOVA) test in SAS version 8.2 (SAS Institute).

Results

In Vitro URAT1, OAT1, and OAT3 Inhibition. To identify a compound that is more highly selective against URAT1 than OAT1 or OAT3 and is highly soluble for a good PK profile, we screened 79 compounds modified from the benzbromarone structure at 0.1, 1, and 10 μmol/l and finally obtained UR-1102. The structure of UR-1102 and benzbromarone are shown in Fig. 1. UR-1102 inhibited urate and PAH uptake by HEK293 cells transiently expressing URAT1, OAT1, or OAT3. Analysis using Lineweaver–Burk plots showed that both UR-1102 and benzbromarone inhibited urate uptake in a mixed and a noncompetitive inhibition manner (Fig. 2, A and B). In addition, these compounds also inhibited PAH uptake by OAT1 and OAT3 (Fig. 2, C–F), but with different levels of efficacy, as the K_{i} values for UR-1102 and benzbromarone show (Table 1). Although the K_{i} value for UR-1102 against URAT1 was comparable to that of benzbromarone (0.057 ± 0.038 μmol/l versus 0.052 ± 0.017 μmol/l), the K_{i} values for UR-1102 against OAT1 and OAT3 just exceeded 10 times the K_{i} values of benzbromarone (OAT1: 7.2 ± 0.8 μmol/l versus 0.22 ± 0.03 μmol/l; OAT3: 2.4 ± 0.2 μmol/l versus 0.11 ± 0.05 μmol/l). As a result, the K_{i} ratios for URAT1 over OAT1 and OAT3, which show the selectivity of UR-1102, were 130 and 42, respectively, whereas those of benzbromarone were only 4.2 and 2.1 (Table 1).

Pharmacokinetics of UR-1102 and Benzbromarone in the Monkey Model. To compare the uricosuric efficacy of UR-1102 with that of benzbromarone, we referred to the preliminary PK results and the in vitro URAT1 inhibitory activity and set the dose at 3, 10, and 30 mg kg^{-1} day^{-1} for UR-1102 and at 3, 10, 30, and 100 mg kg^{-1} day^{-1} for benzbromarone. To confirm the validity of the dose selection and to examine the PK profiles of UR-1102 and benzbromarone, plasma concentrations of both compounds were measured and the PK parameters were analyzed for 24 hours after the first dosing on day 1 (Table 2). After oral administration, UR-1102 was rapidly absorbed into the blood and reached a maximum plasma concentration at 0.5 to 0.8 hours, while benzbromarone showed a lower C_{max} and a longer t_{max} at the same dose. Plasma concentration of UR-1102 then decreased with a longer t_{1/2} than that of benzbromarone, resulting in higher exposure of UR-1102 than that of benzbromarone at the same dose. The plasma exposure (AUC_{0–inf}) of a 3-fold lower dose of UR-1102 was comparable to that of the benzbromarone dosage, indicating that the selected dose range was valid for further comparison of these two compounds.

Urate-Lowering Effects of UR-1102 and Benzbromarone in the Monkey Model. In the monkey study described above we compared the plasma urate-lowering efficacy of UR-1102 and benzbromarone. In this monkey model, the control group showed that oral administration of vehicle induced a transient increase in the concentration of plasma uric acid for 8 hours, which returned to normal within 24 hours, and a similar response was observed on days 2 and 3 (Fig. 3). Both UR-1102 and benzbromarone dose dependently suppressed the increased plasma uric acid concentration from 0 to 8 hours after dosing over 3 days (Fig. 3 and Supplemental Fig. S1). On day 3, the average plasma uric acid concentration from 0 to 8 hours compared with vehicle dosing was significantly reduced by UR-1102 at 3, 10, and 30 mg/kg and by benzbromarone at 10, 30, and 100 mg/kg, but not by 3 mg/kg benzbromarone (Fig. 4). Comparing 30 mg/kg of UR-1102 and 100 mg/kg of benzbromarone (doses with comparable plasma exposure, Table 2), average plasma uric acid concentration with UR-1102 was significantly lower than that with benzbromarone (1.8 ± 0.2 versus 2.7 ± 0.2 mg/dl, p < 0.01, Fig. 4). Moreover, the urate-lowering effect in plasma achieved by UR-1102 at 3 mg/kg was comparable to that of benzbromarone at 100 mg/kg (2.5 ± 0.3 versus 2.7 ± 0.2 mg/dl, Fig. 4).

Uricosuric Effects of UR-1102 and Benzbromarone in the Monkey Model. In the above monkey model, we also assessed the effects on urinary excretion of uric acid as FEUA. Both UR-1102 and benzbromarone dose dependently increased FEUA from 0 to 8 hours after dosing on all 3 days (Supplemental Fig. S2). Compared with vehicle dosing, FEUA on day 3 was significantly increased by UR-1102 at 3, 10, 30 mg/kg and by benzbromarone at 10, 30, and 100 mg/kg, but not by 3 mg/kg benzbromarone treatment (Fig. 5). Interestingly, FEUA was significantly higher at 30 mg/kg UR-1102 than at 100 mg/kg benzbromarone on day 3 (42.1 ± 4.4% versus 20.6 ± 2.3%, p < 0.05). Furthermore, the increase in FEUA achieved by 3 mg/kg UR-1102 was comparable to that achieved by benzbromarone at 100 mg/kg (22.6 ± 3.6% versus 20.6 ± 2.3%) (Fig. 5).

We also used the E_{max}-based model to assess FEUA of UR-1102 and benzbromarone on day 3. The E_{max}-based model showed that the compounds had comparable ED_{50} (Fig. 6 and Table 3), and the simulated E_{max} values of FEUA for UR-1102 and benzbromarone at the highest doses were similar to the actual FEUA. Most importantly, the simulated E_{max} for UR-1102 was twice as high as that of benzbromarone, the effect of which reached its maximum at a lower dose (30 mg/kg).
General Condition and Changes in Renal Function in the Monkey Model. We also assessed the safety of UR-1102 in the monkey model during the dosing and observation periods. The monkeys exhibited no compound-related adverse changes in their general condition. Additionally, regarding the effects on renal function, no significant changes in plasma creatinine or urinary creatinine excretion by either UR-1102 or benz bromarone were observed during the dosing period (Supplemental Tables S2 and S3).

Fig. 2. Inhibition of URAT1, OAT1, and OAT3 by UR-1102 (A, C, E) and by benz bromarone (B, D, F). Urate or PAH uptake was measured in HEK293 cells transiently expressing URAT1, OAT1, or OAT3 in the presence or absence of UR-1102 or benz bromarone at various concentrations of each substrate. Velocity (v) was calculated and used for Lineweaver–Burk plots against 1/[S]. Experiments were performed three times.
In Vitro Safety Assessments. The hepatic toxicity of benzbroconare is a known safety concern. Although the detailed mechanisms underlying its hepatic toxicity are still unknown, mitochondrial toxicity and reactive metabolite formation have been proposed as potential mechanisms (Kaufmann et al., 2005; McDonald and Rettie, 2007; Felser et al., 2014).

Therefore, we evaluated MMP in HepG2 cells to assess the potential of UR-1102 to induce these mechanisms in comparison with benzbroconare. Although both UR-1102 and benzbroconare showed concentration-dependent decreases in MMP, their intracellular LDH activity did not change in a viability assay (Fig. 7), which indicates that the decreases in MMP were not caused by cell loss but by the effects on mitochondrial function. Although benzbroconare decreased MMP almost completely at 89 μmol/l (Fig. 7B), UR-1102 showed no effect at the same concentration (Fig. 7A). Furthermore, the 95% CI of the IC50 values for MMP in UR-1102-treated cells was 258–1830 μmol/l, which was 27.6–1649 times that in cells exposed to benzbroconare (95% CI: 1.11–9.34 μmol/l) (Supplemental Table S4). These results suggest that UR-1102 probably has a lower potential for mitochondrial toxicity than benzbroconare.

We then assessed the potential of UR-1102 and benzbroconare to form reactive metabolites by using radiolabeled compounds that were incubated with human liver microsomes extracted in the presence of NADPH. While the amount of covalent binding to [14C]acetaminophen (as a positive control) and to [14C]benzbroconare was 134.5 and 698.1 pmol/mg human microsomal protein, respectively, that of [14C]UR-1102 was significantly lower (13.6 pmol/mg human microsomal protein) (Fig. 8). These results suggest a lower potential for reactive metabolite formation in the liver.

Discussion

In the present study we identified a novel compound, UR-1102, as a potent URAT1 inhibitor that is selective over OAT1 and OAT3. In the monkey model, UR-1102 showed a better PK profile and reduced the levels of urate in plasma to a greater extent through its stronger uricosuric effect compared with benzbroconare, even when the plasma exposures were comparable, and achieved a maximum efficacy twice that of benzbroconare at a lower dose. Additionally, UR-1102 showed lower in vitro toxic potential in every mechanism that has been proposed for the hepatic toxicity of benzbroconare.

OAT1 and OAT3 are nonspecific anion transporters reported to be involved in urate excretion. Because they are both expressed in the basolateral membrane of renal proximal tubules and transport urate from the blood to inside the cells (Bakhiya et al., 2003; Ichida et al., 2003; Choi et al., 2005), inhibiting these transporters would decrease the secretion of urate into the urine. As mentioned earlier, the inability of probenecid to sufficiently lower urate (Kydd et al., 2014) suggests the hypothesis that if URAT1 could be selectively inhibited, greater urate-lowering efficacy could be achieved. However, separating the inhibitory action of a particular compound on URAT1 from that on OAT1 and OAT3 was challenging, because URAT1, OAT1, and OAT3 all belong to the SLC22A family, and the amino acid sequence homology between human URAT1 and human OAT1 or OAT3 is relatively high (45% and 41%, respectively). From our extensive compound screening on the basis of the modification of benzbroconare, we identified a potent and selective URAT1 inhibitor, UR-1102, with an inhibitory effect on URAT1 almost equivalent to that of benzbroconare and an inhibitory effect on OAT1 and OAT3 significantly weaker than that of benzbroconare (about 30- and 20-fold higher Ki, respectively).

By using UR-1102 in a monkey model, we evaluated the effect of selective URAT1 inhibition on the urate-lowering efficacy in vivo by comparing the compound with the nonselective URAT1 inhibitor benzbroconare. The PK analyses showed that the plasma exposure (AUC_{0-\text{inf}}) of UR-1102 was similar to that of a 3-fold higher dose of benzbroconare; in addition, the inhibitory activity of UR-1102 on URAT1 in vitro was similar to that of benzbroconare, with the protein binding of both compounds to plasma of tufted capuchin monkeys at about 98% (data not shown). These results

TABLE 1

Inhibitory effects of UR-1102 and benzbroconare on URAT1, OAT1, and OAT3. Figures in parentheses represent the level of URAT1 selectivity on the basis of the Ki value.

<table>
<thead>
<tr>
<th></th>
<th>UR-1102</th>
<th>Benzbroconare</th>
</tr>
</thead>
<tbody>
<tr>
<td>URAT1, K<sub>i</sub> value (versus URAT1)</td>
<td>0.057 ± 0.036 μM</td>
<td>0.052 ± 0.017 μM</td>
</tr>
<tr>
<td>OAT1, K<sub>i</sub> value (versus URAT1)</td>
<td>7.2 ± 0.8 μM (130-fold)</td>
<td>0.22 ± 0.03 μM (4.2-fold)</td>
</tr>
<tr>
<td>OAT3, K<sub>i</sub> value (versus URAT1)</td>
<td>2.4 ± 0.2 μM (42-fold)</td>
<td>0.11 ± 0.05 μM (2.1-fold)</td>
</tr>
</tbody>
</table>

Data represents mean ± S.D. (n = 3).
suggested that a dose of UR-1102 one-third that of benzbromarone would have the same URAT1 inhibitory activity in monkeys; in fact, both the uricosuric and urate-lowering effects of UR-1102 at 3 mg/kg, the lowest dose, were comparable to those of benzbromarone at 100 mg/kg, the highest dose, with maximum efficacy. Moreover, the maximum efficacy of UR-1102 at 30 mg/kg was significantly higher than that of benzbromarone at 100 mg/kg. Evaluation using the FEUA Emax model showed that the Emax for UR-1102 was twice that of benzbromarone. When protein binding is considered, the free concentration of plasma UR-1102 at 10–30 mg/kg or benzbromarone at 100 mg/kg is estimated to be about 2–4 μmol/l. At this concentration, benzbromarone significantly inhibited OAT1 and OAT3 but UR-1102 did not, since the Ki values of benzbromarone and UR-1102 for OAT1 are 0.22 μmol/l and 7.2 μmol/l and those for OAT3 are 0.11 μmol/l and 2.4 μmol/l, respectively. Thus, the high dose of benzbromarone would compromise the uricosuric effect induced by URAT1 inhibition, but this is probably not the case for UR-1102, which inhibits URAT1 more selectively and which showed incremental uricosuric effects even at high doses. In summary, selectively inhibiting URAT1 over OAT1 and OAT3 appears to be a valuable approach for effectively lowering urate.
In the monkey experiment, the plasma exposure of UR-1102 was clearly better than that of benzbromarone on day 1. One reason for this better PK would be the good solubility of this compound (UR-1102 can be solubilized in phosphate buffer (pH 6.8) at 970 mg/ml, whereas benzbromarone can only be solubilized at 18 mg/ml [data not shown]). The better PK profile would also contribute to better efficacy, especially at the lower dose, and UR-1102 at 3 mg/kg exhibited both better systemic exposure and significantly greater plasma urate-lowering than benzbromarone at 3 mg/kg.

There are significant differences between species in terms of urate metabolism. In humans, as mentioned earlier, URAT1 mutations cause severe hypouricemia, and most gout patients are classified as under-excretors (Choi et al., 2005); therefore, URAT1 inhibition would be expected to cause significant urate-lowering in gout patients. On the other hand, Cebus monkeys have a certain level of uricase, and additionally their rate of urate synthesis is 7–8 times that in humans (Scott et al., 1969; Simkin, 1971). Taken together, these facts would suggest that the contribution of URAT1 to urate metabolism is smaller in tufted capuchin monkeys than in humans; that is to say, the effect of UR-1102 or benzbromarone might be slighter in this animal. Actually, benzbromarone shows a more significant uricosuric effect in patients with gout than the results obtained in this tufted capuchin monkey study; likewise, UR-1102 would be expected to show a much more significant effect in patients with gout than the greater decrease in plasma urate level it achieved in these monkeys.

From these predictions and the above discussions, UR-1102 would potentially provide significant uricosuric efficacy in the clinical setting.

Recently, several transporters other than URAT1, OAT1, and OAT3 have been proposed as also involved in the control of urate metabolism, particularly by the results of genome-wide association studies of hyperuricemia (Chiba et al., 2015; Matsuo et al., 2015). Although the data shown here and the results of our global assessment of enzymes and transporters

Table 3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>UR-1102</th>
<th>Benzbromarone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emax (%)</td>
<td>46.3 ± 12.2</td>
<td>23.4 ± 6.9</td>
</tr>
<tr>
<td>ED<sub>50</sub> (mg/kg)</td>
<td>3.1 ± 1.7</td>
<td>4.5 ± 4.3</td>
</tr>
<tr>
<td>γ</td>
<td>1.02 ± 0.85</td>
<td>0.65 ± 0.48</td>
</tr>
</tbody>
</table>

Data represents mean ± S.E. (n = 6).

![Fig. 6](image_url)

Fig. 6. E_{max} model of FEUA at day 3 from oral treatment with (A) UR-1102 or (B) benzbromarone. Solid line shows the estimated dose-response curve. Dots represent actual values (n = 6 at each dose). Parameters are listed in Table 3.

Fig. 7. Effects of UR-1102 and benzbromarone on mitochondrial membrane potential and cell viability in HepG2 cells. The graph shows representative example of four experiments. MMP and intracellular lactate dehydrogenase activity (cell viability) were measured in the cells treated with UR-1102 (A) or benzbromarone (B) for 4 hours. Each assay was performed in duplicate. UR, UR-1102; BZ, benzbromarone.
Caused by benzbromarone is the formation of drug metabolites that has been proposed for the hepatotoxicity due to the formation of a reactive metabolite that induces an immune-mediated reaction. In some instances (especially in the case of idiosyncratic cases of fulminant hepatitis in humans) the mechanism causing the hepatotoxicity of drugs is often unknown, but in some instances (especially in the case of idiosyncratic hepatotoxicity) the pathogenesis of toxic reactions may be due to reactive metabolites that induce an immunemediated reaction through immunogenic conjugates. One mechanism that has been proposed for the hepatotoxicity caused by benzbromarone is the formation of drug–protein adducts through a reactive metabolite. The propensity for a reactive intermediate to form is generally thought to be revealed by a covalent binding assessment, but does not cover all transporters and enzymes involved in urate metabolism; therefore, it is possible that the significant effect of UR-1102 shown here may be attributed to inhibition of proteins other than URAT1, OAT1, and OAT3. UR-1102, which is derived from the chemical structure of benzbromarone, was designed to not only improve URAT1 selectivity and solubility but also to avoid the hepatic toxicity concern of benzbromarone, which is known to be associated with hepatic injury and to have the potential to cause fulminant hepatitis in humans. The mechanism causing the hepatotoxicity of drugs is often unknown, but in some instances (especially in the case of idiosyncratic hepatotoxicity) the pathogenesis of toxic reactions may be due to reactive metabolites that induce an immunemediated reaction through immunogenic conjugates. One mechanism that has been proposed for the hepatotoxicity caused by benzbromarone is the formation of drug–protein adducts through a reactive metabolite (McDonald and Rettie, 2007). The propensity for a reactive intermediate to form is generally thought to be revealed by a covalent binding assessment (Ju and Uetrecht, 2002), and quantitatively, a compound with a binding affinity of over 50 pmol equivalent/mg microsomal protein is considered to have a potentially toxic profile (Evans et al., 2004). In our evaluation using the standard format, the covalent binding of UR-1102 was only evaluated in Phase II clinical trials, and its pharmacological effect in patients with hyperuricemia will be revealed soon.

Authorship Contributions

Participated in research design: Horiba, Ohtomo, Kiyokawa, Nakagawa, Lee, Ahn.

Conducted experiments: Ohtomo, Kiyokawa, Yamane, Nakagawa, Tanaka, KH Kim, BH Kim, Horiba.

Contributed new reagents or analytic tools: Ahn.

Performed data analysis: Horiba, Ohtomo, Kiyokawa, Yamane, Nakagawa, and Tanaka.

Wrote or contributed to the writing of the manuscript: Horiba, Ohtomo, Kiyokawa, Nakagawa, Ahn, Kawabe.

Acknowledgments

We thank Hitoshi Hagita (employee of Chugai Research Institute for Medical Science, Inc.) and Miho Fukasawa (employee of Chugai Pharmaceutical Co., Ltd.) for their assistance in evaluating the pharmacological profiles in the in vitro experiments; Kiyonori Kuromaru, Yasuharu Kato (employees of Chugai Pharmaceutical Co., Ltd.), Chan Hee Park, Jun Hwan Im, Soom Ok Lee, Kwang Seok Ko, Min Jung Kong, Ji Eun Lee and Yu Mi Song (employees of C&C Research Laboratories) for their assistance with overall execution of the study; Do Kyu Pyun (employee of JW Pharmaceutical Corp.) for his assistance in synthesizing UR-1102; Sally Matsuura (employee of Chugai Pharmaceutical Co., Ltd.) for her assistance with English usage; and Takaki Koga and Fumihiko Ichikawa (employees of Chugai Pharmaceutical Co., Ltd.) for helpful discussions.

References

Address correspondence to: Dr. Naoshi Horiba, Komakado 1-135, Gotemba, Shizuoka 412-8513, Japan. E-mail: horibanos@chugai-pharm.co.jp