CONTENTS

NUMBER 1, MAY, 1928

I. A Comparative Study of the Convulsant Action of the Acid and Neutral Salts of Acid Fuchsin. By J. E. Thomas 1

II. A Comparison of the Actions of Cocaine and Epinephrine upon Excised Smooth Muscles of Different Species. By C. H. Thiennes 21

III. Studies on Hypnotics of the Barbituric Acid Series. By Nathan B. Eddy ... 43

IV. Pharmacological Action and Chemical Characteristics of Products Produced from Witte's Peptone by Electrolysis. By Frank P. Underhill and Erwin G. Gross .. 69

V. The Pharmacology of Cardiazol. By W. J. R. Camp ... 81

VI. The Influence of Atropine and Epinephrine on the Reaction of the Perfused Frog Heart to Acetyl Choline. By O. W. Barlow 93

NUMBER 2, JUNE, 1928

VII. The Rate of Action of Drugs and Ions on Frog's Heart. By Premankur De ... 115

VIII. Comparative Antiedemic Efficiency of Epinephrine and Related Amines and Pituitary in Experimental Edemas. By M. L. Tainter 129

IX. The Sequence of Events in the Excitation of the Respiratory Center by Caffeine and Some Other Stimulants. By Ralph G. Smith 147

X. Tolerance and Cross-Tolerance in the Human Subject to the Diuretic Effect of Caffeine, Theobromine and Theophylline. By Nathan B. Eddy and Ardrey W. Downs ... 167

XI. A Comparison of the Pharmacological Action of Diacetone Alcohol and Acetone. By D. C. Walton, E. F. Kehr, and A. S. Loevenhart 175

XII. On the Adsorption of Quinine by Blood Cells. By O. S. Gibbs 185

XIII. II. The Effect of Morphine and Papaverine upon the Peristaltic and Antiperistaltic Contractions of the Ureter. By Charles M. Gruber 191

XIV. III. A Note on the Influence of Sodium Phenobarbital upon the Peristaltic and Antiperistaltic Activity of the Ureter. By Charles M. Gruber 201

XV. Further Observations on the Accuracy of the Cat Method for the Assay of Digitalis. By Chas. C. Haskell 207

XVI. Variations in Blood Pressure on Repeated Administration of l- and dl-Ephedrines. By K. K. Chen 219

XVII. A Comparative Study of Synthetic and Natural Ephedrines. By K. K. Chen ... 237

NUMBER 3, JULY, 1928

XVIII. The Scientific Proceedings of the American Society for Pharmacology and Experimental Therapeutics 259
CONTENTS

XIX. Upon the Action of Ergotoxin in the Mammalian Heart. By Harold L. Otto .. 285

XXI. The Anuran in Bio-Titration of Pituitrin. By A. J. McLean 301

XXII. The Effect of External and Internal Application of Heat and Cold on the Muscular Activity of the Stomach of Unanesthetized Dogs. By H. V. Atkinson ... 321

XXIV. Studies in Chronic Morphine Poisoning in Dogs. II. Changes in Blood Cells and Hemoglobin during Addiction and Withdrawal. By I. H. Pierce and O. H. Plant .. 359

XXVI. Pharmacology of the Crop (Esophageal) Muscles. By P. J. Hanzlik and E. M. Butt ... 387

XXVIII. The Therapeutic Value of Etharsanol and Proparsanol in Experimental Trypanosomiasis in Rats and Rabbits. By W. K. Stratman-Thomas and A. S. Loevenhart .. 459

XXIX. The Therapeutic Action of the Monosodium Salts of 2-p-Arsono-Anilino-Ethanol and 3-p-Arsono-Anilino-Propanol in Experimental Rabbit Syphilis. By G. E. Wakerlin and A. S. Loevenhart 479

XXX. Antagonisms and Reversals of Contracted Crop (Esophageal) Muscle Caused by a Variety of Muscular Stimulants. By P. J. Hanzlik and E. M. Butt ... 483

XXXI. Studies on Crystalline Insulin. VI. Further Contributions to the Question whether or not Crystalline Insulin is an Adsorption Product. By Vincent du Vigneaud, E. M. K. Geiling and C. A. Eddy 497

XXXII. Studies on Crystalline Insulin. VIII. The Acetylation of Crystalline Insulin, and the Behavior of Insulin towards Alkali. By H. Jensen and E. M. K. Geiling .. 511

XXXIII. Index .. 521
ILLUSTRATIONS

Longitudinal strip of fundus of rat stomach (Fig. 1) 26
Cat duodenum (Fig. 2) ... 27
Rabbit duodenum (Fig. 3) ... 27
--- duodenum (Fig. 4) ... 28
--- duodenum (Fig. 5) ... 29
--- duodenum (Fig. 6) ... 30
--- duodenum (Fig. 7) ... 31
--- duodenum (Fig. 8) ... 32
Guinea pig duodenum (Fig. 9) .. 33
Rat duodenum (Fig. 10) ... 33
Rabbit colon (Fig. 11) ... 34
Fundus of urinary bladder of cat (Fig. 12) .. 35
Cat uterus, non-pregnant (Fig. 13) .. 36
Frog pyloric antrum ring (Fig. 14) .. 37
Ring of frog esophagus (Fig. 15) .. 37
Stimulation of respiration produced by 20 mgm. of cardiazol injected into
fourth ventricle after respiration had been stopped (Fig. 1) 84
Changes in respiration, blood pressure and gut produced by 100 mgm. cardi-
azol. Time, six seconds (Fig. 2) .. 86
--- in blood pressure, kidney volume and urinary secretion induced by
cardiazol (Fig. 3) ... 88
Change in blood pressure and contraction of urinary bladder effected by
cardiazol (Fig. 4) ... 89
Percentile median change in the amplitude of contraction and the rate
per minute of a series of perfused hearts following the administration of
various concentrations of acetyl choline (Fig. 1) 96
Corresponding phenomena with the Straub heart (Fig. 2) 96
Response of a series of perfused hearts to acetyl choline 1 in 10 at perfusion
pressure from 2 to 5 cm. (Fig. 3) .. 98
Effect of various perfusion pressures on the cardiac response to a constant
concentration of acetyl choline (Fig. 4) ... 99
Correlation of changes in cardiac amplitude, rate and sensitivity of the vagus
nerve to electrical stimulation with various pressures during the per-
fusion of Ringer's solution (Fig. 5) .. 100
Effects of prolonged perfusion of acetyl choline 1 in 10 under 2 cm. pressure
on the cardiac amplitude, rate and vagus sensitivity (Fig. 6) 100
Gradual development of the changes in the sensitivity of the vagus to elec-
trical stimulation, and is represented by the distance in centimeters of
the secondary from the primary coil (Fig. 7) 101
Acetyl choline in concentrations of 1 in 10 produces immediate cardiac dia-
stole irrespective of atropine (Fig. 8) ... 103
ILLUSTRATIONS

Muscular depressant effects of acetyl choline in a concentration of 1 in 10⁵, develops irrespective of atropine whether applied previously or simultaneously with the acetyl choline (Fig. 9) .. 104

Effects of atropine and acetyl choline on the amplitude and rate of the perfused heart, when applied singly or simultaneously (Fig. 10) .. 105

Degree of antagonism of various concentrations of epinephrine toward acetyl choline (Fig. 11) ... 108

Very dilute epinephrine solutions ineffectively antagonize acetyl choline (Fig. 11A) ... 108

Antagonism of an acetyl choline action by epinephrine (Fig. 11B) 108

Two type cardiac responses to the same procedure (Fig. 11C and D) 108

Fictitious acetyl choline epinephrine synergism (Straub heart) (Fig. 12) 110

Same heart as 13A—cardiac arrest from epinephrine alone (Fig. 12B) 110

Irregularity on the responses of a heart to the same acetyl choline solution perfused in sequence (Fig. 13A and B) 110

Abrupt development of diastolic standstill subsequent to perfusion of acetyl choline (Fig. 14) .. 111

Action of calcium-free Ringer's fluid on frog's ventricle (Fig. 1) 116

— of calcium-free Ringer's fluid. Effect of variations in frequency of stimulus (Fig. 2) .. 117

— of calcium-free Ringer's fluid. Effect of interrupting stimulus (Fig. 3) ... 120

— of Ringer's fluid containing excess of potassium (KCl 0.09 per cent).
 Effect of variation in frequency of stimulus (Fig. 4) 121

— of Ringer's fluid containing excess of potassium (KCl 0.09 per cent).
 Effect of interrupting stimulus (Fig. 5) 122

— of acidified Ringer's fluid (pH 6.0). Effect of variation in frequency of stimulus (Fig. 6) .. 124

— of acidified Ringer's fluid (pH 6.0). Effect of interrupting stimulus (Fig. 7) .. 125

Excitation of the respiratory center by caffeine and some other stimulants (Fig. 1) 157

Experiment 7. Dog, weight 11.2 kgm. (Fig. 1) 177

Excised pig ureter (three hours) (Fig. 1) 193

— pig ureter (six hours) (Fig. 2) .. 194

— pig ureter (three hours) (Fig. 3) 196

— pig ureter (fifty-two hours) (Fig. 4) 197

— pig ureter, 36 cm. in length, kept in ice-cold Locke's solution twenty-four hours before this record was made (Fig. 1) 203

— pig ureter, 28 cm. in length, from another animal, otherwise same as figure 1. Spontaneous antiperistaltic contractions present (Fig. 2) 204

Influence of a previous injection of natural ephedrine on the pressor action of synthetic ephedrine (Fig. 1) .. 220

— of a previous injection of synthetic ephedrine on the pressor action of natural ephedrine (Fig. 2) .. 221

An exception in which the pressor action of natural ephedrine was not overpowered by a previous injection of synthetic ephedrine (Fig. 3) 221

Effect of repeated injections of synthetic and natural ephedrines on the blood pressure and kidney volume (consult table 1) (Fig. 4) 222, 223
ILLUSTRATIONS

Effect of repeated administration of natural ephedrine on systolic blood pressure in men (Fig. 5) ... 227
— of repeated administration of synthetic ephedrine on systolic blood pressure in men (Fig. 6) ... 228
An experiment to determine the influence of cocaine on the pressor action of ephedrine (Fig. 7) ... 230
Effect of synthetic ephedrine on blood pressure, and nasal mucous membrane and accessory nasal sinuses (Fig. 1) 241
Reversal of the pressor action of epinephrine, but not of synthetic ephedrine, by the same dose of ergotamine (Fig. 2) 242
Comparison of the pressor action of synthetic and natural ephedrines in men (Fig. 3) ... 244
Effect of synthetic ephedrine on the isolated virgin guinea pig's uterus (Fig. 4) ... 245
— of synthetic ephedrine on an isolated virgin cat's uterus (Fig. 5) ... 246
Comparison of the intensity of pressor action of synthetic ephedrine and that of epinephrine (Fig. 6) ... 249
— of the intensity of pressor action on natural ephedrine and that of epinephrine (Fig. 7) ... 250
Action of ergotoxin in mammalian heart (Fig. 1) ... 287
— of ergotoxin in mammalian heart (Fig. 2) ... 288
— of ergotoxin in mammalian heart (Fig. 3) ... 289
Successive stages of the changes in the form of the T wave following stimulation of the right accelerator nerve (Fig. 4) 291
Electrocardiogram before and after stimulation of the left accelerator nerve (Fig. 5) ... 291
Photograph of operative field of completed perfusion preparation, using rapid dorsal approach (Fig. 1) ... 302
Completed preparation, showing method of totally immobilizing the cannulae by two point fixation (Fig. 2) ... 304
Showing effect of intraperitoneal injection of dialysates of sera (Fig. 3) ... 310
Graph showing magnitude of darkening and blanching of R. pipiens skin under influence of varying pH, in terms of standard pituitary powder and ergamine acid phosphate (histamine) (Fig. 4) ... 312
Illustration of discrepancy between absolute findings of perfusion and oxytocic methods, using same ampoule of standard and same unknown (Fig. 5) ... 313
Ablation of hypophysial anlage in Rana pipiens larvae (Fig. 6) ... 315
Tracings showing the effect of the external application of cold on the movements of the stomach (Fig. 1) ... 323
— showing the effect of the external application of heat on the movements of the stomach (Fig. 2) ... 324
— showing the effect of the internal administration of water at various temperatures on the movements of the stomach (Fig. 3) ... 325
Chronic morphine poisoning in dogs (Fig. 1) ... 363
— morphine poisoning in dogs (Fig. 2) ... 364
Dog 7. Curves showing general level of blood sugar during control period, addiction and withdrawal, dosage, and weight. Addiction 330 days, withdrawal at 210 mgm. morphine sulphate per kilogram (Fig. 1) ... 374
ILLUSTRATIONS

Curves showing general level of blood sugar, in 1 control dog and in 3 dogs during addiction, one a short experiment, two long experiments (Fig. 2) . 375

Dog 10. Curves showing disappearance of the hyperglycemia that occurs immediately after the injection of morphine, as tolerance develops, along with curves showing simultaneous fall in temperature (Fig. 3) . 379

Curves showing the effect of temporary withdrawal on the hyperglycemia and on the fall in temperature when the administration of morphine is resumed (Fig. 4) . 380

--- showing blood sugar during withdrawal (Fig. 5) . 381

Effects of apocodeine (10 mgm. per kilogram) on the crop muscles (experiment 99) (Fig. 1) . 392

Simultaneous contraction of the circular and longitudinal muscles of the crop by arecoline (0.05 and 0.1 mgm. per kilogram) with complete antagonism and prevention by atropine (3 mgm. per kilogram) (experiment 133) (Fig. 2) . 393

Effects of choline on crop muscles (Fig. 3) . 395

Different effects of epinephrine on crop muscles (Fig. 4) . 399

Stimulation of a strip of circular muscle of the excised pigeon crop by epinephrine (1:2,500,000) (Fig. 5) . 400

Reciprocal response of circular and longitudinal muscles of the crop (experiment 59) to a small dose of physostigmine (0.9 mgm. per kilogram) and complete antagonism by atropine (0.54 mgm. per kilogram) (Fig. 6) . 405

Effects of pilocarpine, nicotine, atropine and a large dose of physostigmine on the crop muscles (experiment 63) (Fig. 7) . 408

Smallest action of pilocarpine (13.3 mgm. per kilogram) and a definite though moderate muscular stimulation from physostigmine (3 mgm. per kilogram) in pigeon 76 (anaphylaxis series) with nerves cut and degenerated during twenty-eight days (Fig. 8) . 409

Inhibition of peristalsis and increase in tonus of the longitudinal muscle of the pigeon crop (experiment 176) after intravenous injection of morphine (20 mgm. per kilogram) (Fig. 9) . 414

Effects of morphine on the longitudinal muscle of the crop in pigeons (Fig. 10) . 415

Moderate but definite stimulation by morphine of an excised strip of circular muscle of the crop and marked relaxation and depression by papaverine; recovered with barium (Fig. 11) . 419

Effects of guanidine on crop muscles (Fig. 12) . 423

Reciprocal response of the circular and longitudinal muscles of an untreated crop (experiment 89) to histamine (0.64 mgm. per kilogram) (Fig. 13) . 425

Effects of peptone on crop muscles (experiment 35) (Fig. 14) . 426

--- of epinephrine and tyramine on the same crop before and after cocaine (experiment 88) (Fig. 15) . 428

Reciprocal response of crop muscle to barium (3.5 mgm. per kilogram) in an atropinized crop (experiment 66) (Fig. 16) . 429

Agarized serum on crop muscle (Fig. 17) . 434

Control response of the crop of another pigeon injected with untreated pigeon serum (experiment 86) (Fig. 18) . 435

Healing power of etharsanol in experimental rabbit syphilis (Fig. 1) . 480
ILLUSTRATIONS ix

Healing power of proparanol in experimental rabbit syphilis (Fig. 2) 481
Degrees of antagonism of contracted crop muscle (Fig. 1) 485
Antagonisms of choline contraction by electrical vagus stimulation and by epinephrine (Fig. 2) 487
Antagonism of contractions from continuous electrical vagus stimulation by guanidine (Fig. 3) 487
—— of ergot contraction by epinephrine (Fig. 4) 487
Antagonisms of peptone contraction by epinephrine and by electrical vagus stimulation (Fig. 5) 487
Antagonism of pilocarpine contraction by tyramine (Fig. 6) 487
—— of nicotine contraction by epinephrine (Fig. 7) 487
—— of guanidine contraction by tyramine (Fig. 8) 487
—— of pilocarpine contraction by electrical vagus stimulation and by epinephrine (Fig. 9A) 488
—— of pilocarpine contraction by guanidine and of barium contraction by epinephrine (continuation of tracing from figure 9A) (Fig. 9B) 488
Reversals by epinephrine of contractions during continuous electrical stimulation of the vagi (Fig. 10) 491
Reversals of pilocarpine contraction by guanidine and partial antagonism by epinephrine (Fig. 11) 491
—— of barium contraction by guanidine and partial antagonism by epinephrine (Fig. 12) 491
—— of guanidine contraction by epinephrine (Fig. 13) 491
—— of serum (agarized) contraction by epinephrine (Fig. 14) 491